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Abstract 
Breast cancer is one of the most commonly diagnosed cancers and one of the 
most significant sources of cancer mortality. Triple negative breast cancer 
(TNBC) is a particularly aggressive subtype that has proven difficult to treat 
with standard chemotherapies. Obesity has also been shown to exacerbate 
breast cancer, and diagnoses of these two diseases frequently overlap. Both 
conditions are regulated in part by the fat mass and obesity-associated (FTO) 
demethylase, an RNA demethylase which may drive breast cancers through 
epigenetic alterations to gene expression. Methods of inhibiting FTO have 
been researched in vitro and in vivo as an alternative or adjunct to chemo-
therapies in multiple cancers, including breast cancer. Translating knowledge 
of the role of FTO in breast cancer and the development of novel agents may 
allow for improvements in the treatment of this refractory cancer. This re-
view therefore aims to provide an overview of existing and developing chem-
ical inhibitors of FTO that could be innovatively studied for the treatment of 
TNBC and associated comorbidity.  
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1. Breast Cancer Overview 

Breast cancer comprised about 11.7% of diagnosed cancers in 2020 globally and 
was responsible for 6.9% of cancer deaths. Breast cancer is the greatest contri-
butor to cancer mortality in women [1]. 
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There are multiple types of breast cancer that vary in receptor expression and 
phenotypic characteristics. Luminal breast cancer is characterized by estrogen re-
ceptors (ER), ER regulation, or similarity to luminal epithelial cells. It’s further 
divided into luminal types A and B. Human epidermal growth factor receptor 2 
(HER-2) breast cancer subtypes are defined by their expression of HER-2 [2]. The 
normal-breast-like subtype, as the name suggests, has a less malignant pheno-
type and appears like normal breast tissue histologically. Basal-like breast cancer 
consists of normal and myoepithelial cells and does not express ER, progeste-
rone receptor (PR), or HER-2 [2]. Basal-like phenotypes are one molecular sub-
type of triple negative breast cancer (TNBC) [3]. 

TNBC is common in pre-menopausal patients and is an especially concerning 
diagnosis. TNBC is associated with lower survival rates, quicker relapse, and high-
er metastatic potential, including metastasis to the brain [3]. This subtype does 
not respond to current endocrine and targeted molecular therapies since there is 
a lack of the relevant target receptors [3]. Consequently, TNBC requires addi-
tional and novel chemotherapies [4]. There are six types of TNBC: basal-like 1 
(BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem-like (MSL), im-
munomodulatory (IM), and luminal androgen receptor (LAR). The variation in 
abnormal genetic expression has been studied between subtypes. MYC is over-
expressed in the BL1 subtype, whereas the MSL subtype shows significant in-
creases in genes associated with stemness and mesenchymal cells [3]. Likewise, 
TNBC therapy is still selected broadly based on absence ER, PR, and HER2, al-
though newer targets are approved, like programmed cell death ligand 1 (PDL-1) 
and immune checkpoint inhibitors, or emerging, like anti-androgen receptor 
therapies, and other molecular chemotherapeutics [3]. 

MYC, NOTCH, and Wnt family member (WNT)/epithelial-mesenchymal tran-
sition (EMT) are some of the most studied pathways in relation to breast cancer. 
MYC is a transcription factor implicated in stemness and cell cycle regulation as 
well as WNT and NOTCH signaling [5]. One resistance mechanism to treatment 
demonstrated by ER-positive breast cancers, specifically, may be attributed to 
MYC [6]. While tyrosine kinase inhibitors are one possible mechanism of de-
creasing MYC expression, this method appears unsuccessful in HER2-positive or 
ER-positive breast cancers [6]. 

The NOTCH group of proteins includes cell surface receptors implicated in an-
giogenesis, tumor immunity and maintenance of stemness. In particular, NOTCH1 
and NOTCH4 impact angiogenesis in cancers, including breast cancer [7]. In 
TNBC, NOTCH1 and NOTCH2 cause enhancer of zeste homolog 2 (EZH2) to 
reduce the expression of phosphatase and tensin homolog deleted on chromosome 
ten (PTEN), a tumor suppressor, leading to worse outcomes [8]. In HER2-positive 
breast cancers, more proliferation and resistance to current treatments have 
also been attributed to decreased PTEN activity, via NOTCH1, and thus in-
creased extracellular signal-related kinases 1 and 2 (ERK1 and ERK2) activity [9] 
[10]. 
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WNT is another cell surface receptor heavily implicated in development, stem-
ness, and migration of cancer cells whose activity is also elevated in breast cancer 
cells [11]. Mechanistically, methylation, and possibly other mechanisms, down-
regulate Dapper homolog 1 (DACT1) in breast cancer. This change in expres-
sion promotes WNT signaling [12]. Hypermethylation is also problematic be-
cause it can increase WNT by decreasing signaling antagonists like Aristaless-like 
homeobox-4 (ALX4), Dickkopf-3 (DKK3), and SRY-box 17 (SOX17) [13] [14] 
[15]. 

Like most aggressive cancers, TNBC seems driven by gene expression patterns 
that favor stemness and epithelial mesenchymal transition, such as the genes 
listed previously. Given the changes in gene expression that appear to underly 
breast cancer development and resistance to current treatments, understanding 
these mechanisms and potential ways of affecting them could be important to 
the development of new therapies. 

2. Breast Cancer and the Fat Mass- and Obesity-Associated 
Protein 

The fat mass- and obesity-associated (FTO), originally determined through ge-
nome-wide association studies to contribute to obesity, is a member of the al-
pha-ketoglutarate-dependent hydroxylases, which includes the group of enzymes 
that demethylates nucleic acids [16] [17]. FTO removes methyl groups from 
mRNA, specifically at m6A and m6Am sites [18] [19] [20]. Azzam et al. (2022) 
reviews how FTO demethylation and single nucleotide polymorphisms (SNPs) 
in the gene contribute to obesity and cancer. FTO activity may be inhibited by 
oncometabolites as well as other molecules [21]. FTO has been reported to be 
elevated in breast cancer tissues obtained from mastectomy samples, especially 
in cases of HER-2 positive cancers, suggesting it may function as an oncogene 
[22]. Conversely, FTO has been suggested to have some tumor suppressive qual-
ities in other cancers, like ovarian cancer [23]. 

2.1. Correlation between Obesity and Breast Cancer 

Clinical studies have revealed overlaps between obesity and cancer in the patient 
population. Obesity was associated with about 40% of patients developing can-
cer, according to United States Cancer Statistics data from 2014 [24] [25]. Expe-
riencing an increase in weight post-menopause and having diabetes were corre-
lated with breast cancer and related mortality risk [26] [27] [28]. Obesity may 
further complicate the efficacy of current therapies for breast cancer [29]. 

Breast tissue is made up of a complex interplay of fatty tissues, immune and 
vascular cells, stromal tissues and mammary glandular tissues. Like all complex 
organs, there are intracellular communications between the cells in both normal 
tissues and in the cancers that derive from these organs. For example, adipose 
tissue macrophages may be influenced by the abnormal microenvironment in 
obesity and contribute to aggressive behavior of tumors, metastasis, and an im-
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mune-suppressive microenvironment [30]. Similarly, cross talk from the adipo-
cytes in obesity also seems to promote fibrosis, aggressiveness and metastasis in 
breast cancer and other obesity-associated cancers [31]. 

Mechanistically, ongoing studies have revealed FTO’s contributions to signal-
ing pathways with downstream impacts related to both obesity and cancer. For in-
stance, FTO supports the mammalian target of rapamycin complex 1 (mTORC1) 
pathway, thereby limiting autophagy and potentially protecting against obesity. 
However, FTO may have a problematic function in cancer since this mTORC1 
pathway seems to contribute to oncogenesis [32] [33]. FTO is also involved in 
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling in breast 
cancer, thereby increasing energy metabolism. This process was suggested to be 
active prominently in those who are ER-positive, and estrogen is deemed to be a 
postmenopausal risk factor for breast cancer [34] [35]. 

2.2. Single Nucleotide Polymorphisms, Mutations, and Breast 
Cancer 

SNPs are single nucleotide mutations in genes that may alter gene expression 
and therefore impact cancer susceptibility depending on the regions the SNPs 
localize to in introns, exons, promotors, 5’- and 3’-UTRs, or other gene regulatory 
elements [36]. SNP mutations in FTO have been examined for their involvement 
in breast cancer and obesity development, as described in-depth by Hernan-
dez-Caballero and Sierra-Ramírez (2015) and Lan et al. (2020) [25] [37]. SNP 
rs9939609 and others in FTO’s first intron are relevant and may relate to gene 
expression, with effects varying based on the type of SNP, type of mutation, and 
type of receptor [28] [38]. 

Data from breast cancer patients and controls showed that SNP rs1477196 and 
rs9939609, independently and together, as well as rs1477196 contribute to breast 
cancer risk [28]. Rs9939609 is correlated with patients who are HER-2-negative 
[39]. Evidence is mixed about whether rs9939609 is important in the develop-
ment of breast cancer in those who are overweight and whether rs1477196 cor-
relates with a diagnosis of stage 1 breast cancer [28] [35] [40] [41]. 

Other pertinent SNPs include rs720690 and rs8047395. According to analyses 
that considered SNPs in the context of their interactions with other SNPs, these 
SNPs are significant in breast cancer [28]. In vitro data on metastatic triple neg-
ative breast cancer has suggested SNP rs8050136 and rs1421085 activity that re-
lates back to obesity [21] [42]. However, other studies have not found a correla-
tion between metastatic breast cancers and FTO SNPs [37]. 

Several SNPs categorized as non-body-mass-index(BMI)-related, including 
those in FTO’s intron 8, have also been identified in breast cancers. ER− and 
ER+ breast cancers were linked to rs11075995 and rs17817449, respectively [37] 
[43] [44]. Certain mutations in FTO SNPs rs1121980 and rs9939609 alongside 
the MC4R SNP rs17782313 have been shown to significantly affect breast cancer 
[37] [45]. 
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2.3. Fat Mass- and Obesity-Associated Protein Demethylation in 
Breast Cancer 

In addition to SNPs, FTO’s function as a demethylase has also been associated 
with breast cancer. FTO is thought to cause 3’ demethylation of BCL2 interact-
ing protein 3 gene (BNIP3) transcripts, resulting in breakdown of the mRNA. 
This process inhibits apoptosis and allows for breast cancer growth [21] [25] 
[46]. Furthermore, in triple negative breast cancer, methylation from methyl-
transferase-like 3 (METTL3) decreases collagen type III alpha 1 (COL3A1) le-
vels, inhibiting metastasis. It was found that increased FTO activity—and thus 
demethylation—did have the opposite effect by increasing onset of evident 
metastasis [47]. Our own laboratory has identified FTO inhibition to impact 
stemness gene expression and cancer aggressiveness (unpublished data). Further 
study is needed to explore the impact of FTO demethylation on breast cancer 
development, especially considering the study of related mechanisms in other 
cancers. 

3. RNA Methylation Regulates Gene Expression 

The path from gene to protein includes the DNA messages (the genome), the 
epigenome (which includes histone modifications and DNA methylation), the 
RNA message (the transcriptome), RNA modifications including RNA methyla-
tion (the RNA epitranscriptome), protein expression and the protein post trans-
lational modifications that make up the proteome. In addition to the chemical 
modifications made to DNA that impact genetic expression through epigenetics 
by modulating transcription, post-transcriptional changes contribute to expres-
sion downstream by helping to regulate the fate of RNA transcripts. Epitran-
scriptomics looks at chemical variations on RNAs. These include predominantly 
the presence of methyl groups at N6-methyladenosine (m6A) sites [18]. Methyla-
tions specific to the 5’ end of RNAs are referred to as 2’-O-methyladenosine 
(m6Am) modifications. These changes in mRNAs can have a direct, gene-specific 
impact on translation and contribute to alternate splicing [48]. Studies indicate 
associations between mRNA methylation and bodily systems, including the cen-
tral nervous and reproductive systems. Their regulation is also implicated in 
disease states such as cancer and obesity [49]. The addition, recognition, and 
removal of m6A and m6Am are carried out by methyltransferases, binding pro-
teins, and demethylases, respectively; accordingly referred to as writers, readers, 
and erasers [49]. 

3.1. “Writers”: Methyltransferases 

Known human methyltransferases include METTL3, methyltransferase-like 14 
(METTL14), and methyltransferase-like 16 (METTL16), which individually or 
combined with each other and other proteins partake in m6A methylation in 
mRNAs [50]. The DRACH motif is methylated by a complex consisting of 
METTL3, METTL14, and the Wilms tumor 1 associating protein (WTAP) [50]. 
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Expression, and thereby activity, of these enzymes have been found to have prog-
nostic implications. For example, reduced levels of METTL3 and METTL14, cor-
responding to less methylation, decreased acute myeloid leukemia growth [51] 
[52], but increased glioblastoma growth [53]. Meanwhile, mRNA cap adenosine 
N6-methyltransferase is responsible for methylating m6Am sites [50] Figure 1. 

3.2. “Readers”: Binding Proteins 

The YTH domain family (YTHDF) proteins and insulin-like growth factor 2 
mRNA-binding proteins (IGF2BPs) are responsible for recognizing methylation  

 

 
Figure 1. Epitranscriptomic functions of methyltransferases, binding proteins and deme-
thylases [18] [19] [20] [50] [54] [55] [57] [59]-[64]. 
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on RNAs and may then have roles in degradation or stabilization of bound tran-
scripts. YTH domain family 2 (YTHDF2) partakes in mRNA degradation. Wang 
et al. (2014) specifically showed how YTHDF2 is associated with the m6A sites of 
mRNA in HeLa cells [54]. It has also been proposed that METTL14 methylates 
mRNAs that are targets of YTHDF2, thereby bringing in this reader [55]. Its 
binding may then transfer the mRNA to cellular locations where it can be de-
graded. This mRNA-YTHDF2 interaction was correlated with less survival of the 
mRNA, indicating that YTHDF2 helps break it down [54]. In a study by Su et al. 
(2018) on acute myeloid leukemia cells, reduced YTHDF2 expression stabilized 
MYC mRNA [56]. Meanwhile, evidence suggests that YTH domain family 1 
(YTHDF1) increases translation by binding at m6A sites, primarily at the GRAC 
motif, guiding mRNAs to ribosomes, and then helping to instigate translation 
[57]. YTHDF1 activity is exhibited through associated MYC expression follow-
ing increased m6A methylation in lung adenocarcinoma cells [58]. IGF2BPs also 
associate with m6A sites, especially near the 3’ end of mRNA, to stabilize MYC 
transcripts in vitro [59] (Figure 1). 

3.3. “Erasers”: Demethylases 

Demethylases, including FTO and AlkB Homolog 5 (ALKBH5) proteins, remove 
methyl groups from RNA transcripts. FTO and ALKBH5 act on the m6A sites of 
mRNA and interact with post-transcriptional splicing factors in nuclei [19] [20] 
(Figure 1). FTO has the additional capability of m6Am demethylation [18]. De-
methylase activity may alter mRNA expression by inducing mRNA breakdown 
through splicing or by stabilizing transcripts. This varies based on the associated 
reader and the location of the m6A on the transcript [60]. While not a universal 
rule, decreased stability has been linked to demethylation at 3’ end sites or 5’ 
m6Am. The latter is potentially due to lost integrity of the 5’ cap. Interestingly, 
FTO also has stabilizing activity at the internal m6A of transcripts like MYC in 
acute myeloid leukemia cells and like CAP-Gly domain containing linker pro-
tein 3 (CLIP3) in glioblastoma cells [60] [61] [62] [63]. FTO is known to target 
specific sequences, including RRACH and GAC [64]. At the RRACH consensus 
motif in glioblastoma cells, Zepecki et al. (2021) proposed coordinated activity 
between FTO, argonaut 1 (AGO1), and interleukin enhancer binding factor 3 
(ILF3). The association between the three proteins, mediated by microRNA-145, 
is hypothesized to incite demethylation and subsequent translation of the CLIP3 
tumor suppressor in the cells. Thus, there is a potential mRNA-stabilizing role 
for AGO1, which is commonly incorporated into the RNA-induced silencing 
complex (RISC) [62]. 

4. Fat Mass- and Obesity-Associated Demethylase Activity 
and Inhibition across Obesity and Cancers 

4.1. Roles in Obesity 

While FTO has been increasingly studied in the context of a variety of diseases, 
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one of its signature functions pertains to obesity. 
Studies illustrate that elevated FTO is accompanied by weight gain, fat mass, 

and energy storage, such as through adipogenesis. Conversely, decreasing FTO 
yields the opposite observations [37] [65] [66] [67]. Locations involved in the 
usage and storage of energy, such as the hypothalamus, adipose tissue, and ske-
letal muscle, exhibit FTO expression [25] [63] [68]. Genetic differences in the 
FTO gene’s first intron can correspond to higher BMI, as well as other measures 
of obesity. There is an association with FTO and type 2 diabetes that is known to 
be stimulated by obesity [37] [68] [69]. Accordingly, reducing expression of FTO 
decreases BMI. This suggests that FTO may contribute to obesity onset, poten-
tially through its influence on other molecules’ efficacy [21]. 

Loss of FTO activity hinders adipogenesis by interfering with the ener-
gy-harboring cofactor nicotinamide adenine dinucleotide phosphate (NADPH)’s 
function [70]. Less FTO function similarly reduced autophagy and adipogenesis 
by increasing m6A methylation on the autophagy related 5 and 7 (ATG5 and 
ATG7) transcripts, which have been associated with obesity-related metabolism, 
and thereby decreasing expression of these proteins, possibly through the in-
volvement of YTHDF2 and mRNA degradation [71]. Indirectly, inhibiting FTO 
was shown to increase thermogenesis in adipocytes, indicated by elevated un-
coupling protein 1 (UCP1) [72]. Collectively, these data suggest that FTO is in-
volved in mechanisms that could contribute to obesity if in excess, but inhibiting 
FTO may consequently be a means of moderating this activity experimentally. 

FTO’s impact also depends on its sequence variability as determined by single 
nucleotide polymorphisms (SNPs). Some SNPs differentially regulate FTO or 
nearby gene expression and may contribute to obesity [21] [28] [38] [69]. Stu-
dies have suggested that, in FTO’s first intron, the SNP rs8050136 decreases reti-
nitis pigmentosa GTPase regulator interacting protein 1 like (RPGRIP1L) pro-
tein expression, thereby attenuating the body’s response to leptin and increasing 
feeding [25] [73]. The SNP also increases retinoblastoma-like 2 (RBL2) levels, 
which is known to contribute to preadipocyte growth [25] [74]. A handful of 
other SNPs, including rs1421085 mutations, have been linked to greater Iroquois 
homeobox 3 (IRX3) expression, more white adipose and energy storage, and less 
thermogenesis, heightening obesity characteristics [21] [25] [75] [76]. 

FTO has also been analyzed in obesity for its role as an RNA demethylase that 
can impact transcript processing and translation [72]. In vitro and in vivo data 
have shown that demethylation at m6A promotes transcription factor forkhead 
box protein O1 (FOXO1), which elevates energy storage through hepatic gluco-
neogenesis and simultaneously reduces thermogenesis by decreasing uncoupling 
protein 1 (UCP1) levels [21] [72]. Removal of m6A from ghrelin hormone’s mRNA 
promotes ghrelin expression and thus a pathway associated with obesity [25] 
[77]. The SNP rs9939609 was associated with this observation [77]. Additionally, 
demethylation by FTO prompts exon removal, likely mediated by regulator pro-
teins like serine/arginine-rich splicing factor 2 (SRSF2) [78]. The effects of such 
splicing activity, as well as transcription factors and cellular pathways associated 
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with FTO, modulate adipogenesis [25]. The AMP-activated protein kinase sig-
naling pathway reduces FTO and m6A demethylation, minimizing lipid build up 
[21] [79]. Loss of FTO also induces downregulation of ATG5 and ATG7 through 
transcript degradation, lessening adipogenesis and autophagy and potentially help-
ing to prevent obesity [71]. Meanwhile, zinc finger protein 217 gene (ZNF217) 
(the murine homolog is Zfp217) spurs FTO transcriptional activity and pro-
motes adipocyte proliferation, exemplifying the complex role of FTO in obesity 
and cancer [21] [80]. 

4.2. Roles in Cancer 

In addition to breast cancer, FTO is implicated in other cancers including lung, 
endometrial, pancreatic, gastric, colorectal, bladder, acute myeloid leukemia, gliob-
lastoma multiforme, cutaneous squamous cell carcinoma, and melanoma [18] [21] 
[81]. Estrogen receptor (ER)-mediated PI3K/AKT and mitogen-activated protein 
kinase (MAPK) activity was shown to stimulate FTO and thereby proliferation 
and invasion of endometrial cancer cells [82]. Zhu et al. (2016) identified specif-
ically mTOR signaling, which is associated with PI3K, as an instigator for FTO 
activity in the nucleus and proliferation in this cancer [83]. FTO may then target 
homeobox B13 (HOXB13) transcripts, with demethylation at the 3’ end increas-
ing expression, leading to WNT signaling, and enabling the cancer to spread [84]. 
In gastric cancer, FTO is linked to cancer growth and proliferation through its 
involvement in the epithelial-mesenchymal transition [81]. 

In lung cancer, FTO was shown to promote oncogenesis and proliferation by 
stabilizing and activating Myeloid Zinc Finger Protein 1 (MZF1) and ubiqui-
tin-specific protease 7 (USP7), respectively [85] [86]. These mechanisms suggest 
connections between FTO and breast cancer since HER2/Erb-B2 receptor tyro-
sine kinase (ERBB2) has been observed to promote MZF1 activity in breast can-
cers, and USP7 may also contribute to breast cancer cell survival, growth, and rep-
lication [87] [88]. FTO is also involved in the polarization of macrophages, which 
is associated with signal transducer and activator of transcription 1 (STAT1) le-
vels. STAT1 expression may indicate worse outcomes in breast cancers, in part 
due to its impact on macrophages [18] [89] [90]. 

FTO displays both oncogenic and tumor suppressive activity in pancreatic can-
cer. By improving MYC stability, FTO propagates cancer by assisting cellular 
replication [91]. An opposing mechanism has been suggested in lung adenocar-
cinoma, whereby FTO demethylation reduces MYC expression, so Wnt signal-
ing promotes oncogenesis by decreasing FTO transcription [58]. FTO also exhi-
bited tumor suppressive nature in ovarian cancer. Having destabilizing deme-
thylation of the 3’ end of phosphodiesterase 1C (PDE1C) and phosphodiesterase 
4B (PDE4B) transcripts in these cells decreases expression, enhancing cAMP 
signaling, and thus reducing stemness and cancer cell growth [23]. 

FTO may also regulate metabolic reactions, such as glycolysis and mitochon-
drial activity. This activity can positively and negatively impact cancer progres-
sion and may depend upon the relative roles of m6A writers, readers, and deme-
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thylases in the specific cancer [18]. 

4.3. Inhibitors 

With FTO having shown to possess such widespread regulation of obesity and 
cancer-related processes, research has attempted to inhibit the demethylase us-
ing repurposed and novel molecules to prevent or reverse the effects [21] (Table 
1, Figure 2). 

4.3.1. Natural Oncometabolite Inhibitors 
2-oxoglutarate (2-OG) analogs comprise one such category of inhibitors. The 
oncometabolite R-2-hydroxyglutarate (R-2HG) acts as a competitive inhibitor  

 
Table 1. Fat mass and obesity-associated (FTO) inhibitors under study. 

FTO 
Inhibitor 

Inhibitor Characteristics 

Mechanism of Action Experimental Conditions IC50 (µM) Study 

R-2-hydroxyglut-a
rate (R-2HG) 

Competetive inhibitor In vitro and in vivo for leukemia; in 
vitro for GBM 

N/A but 300 used to 
show inhibition 

Su et al. (2018), Qing 
et al. (2021) 

Entacapone Competetive inhibibitor In silico; 
in vitro for hepatocytes; 
in vivo for metabolic study 

3.5 Peng et al. (2019) 

MA Studied alone and in 
combination with an 
EGFR TKI (Gefitinib) 

In vitro assay [92] [93]; 
in vitro for lung cancer; 
clinical trials for GBM 

4 - 12.5 Chen et al. (2022), 
Huang et al. (2015), 
Huff et al. (2021), 
Zeyen et al. (2022) 

MA derivative: 
FB23-2 

Direct inhibition, higher 
affinity than MA 

In silico; 
in vitro and in vivo for AML 

2.6 ± 0.5 Huang et al. (2019) 

MA derivative: 
MA2 

Competetive inhibitor In vitro and in vivo for 
gastric cancer and GBM; 
in vitro for HeLa cells 

N/A but 20 - 120 used 
to show inhibition 

Cui et al. (2017), 
Shimura et al. (2022), 
Huang et al. (2015) 

FTO-04 Selective competetive 
inhibitor 

In silico; 
in vitro for GBM 

3.4 Huff et al. (2021) 

Bisantrene (CS1) 
and Brequinar 
(CS2) 

Tight, direct FTO 
inhibition 

In silico; 
in vitro and in vivo for AML and 
breast cancer; 
bisantrene phase II clinical trials for 
AML; 
in vitro for GBM 

CS1: 0.02 - 0.8; 
CS2: 0.06 - 10 

Su et al. (2020), 
Canaani et al. (2021) 

Rhein Inhibitor In vitro assay; 
in vivo for TNBC 

30 Chen et al. (2012), 
Niu et al. (2019) 

MO-I-500 Inhibitor In vitro for TNBC 8.7 Singh et al. (2016) 

Table 1 Select FTO inhibitors and their pharmacologic characteristics in oncology studies. List of FTO inhibitors, their mechan-
isms of action if known, experimental conditions under which published results showing inhibition were obtained (in vitro, in 
vivo, in silico, or clinical trial and condition type), IC50 if known, and source of the data. AML = acute myeolid leukemia, EGFR 
TKI = epidermal growth factor receptor tyrosine kinase inhibitor, GBM = glioblasotma multiforme, GSC = glioma stem cells, MA 
= meclofenamic acid, TNBC = triple negative breast cancer. 
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Figure 2. FTO inhibitors, associated mechanisms of action and gene expression changes [18] [21] [25] 
[42] [46] [53] [56] [72] [81] [92] [93] [95] [101] [102] [103] [104] [106]. 

 
and indirectly reduces MYC, curtailing growth of some cancers like leukemia 
and glioblastoma (GBM) [18] [56]. The molecule also blocks the expression of 
some enzymes responsible for aerobic glycolysis necessary and specific to acute 
myeloid leukemia (AML) viability and growth: phosphofructokinase platelet 
(PFKP) and lactate dehydrogenase B (LDHB) [94]. Research suggests that 
D-2-hydroxyglutarate (D-2-HG), produced by isocitrate dehydrogenase (IDH), 
has similar potential to help kill cancer cells by inhibiting FTO [95]. However, if 
patients also have a mutation in the gene for IDH, these inhibitors may promote 
cancer by acting on other enzymes, like ten-eleven translocation methylcytosine 
dioxygenase 2 (TET2) [18] [95]. In gliomas, IDH mutations and D-2-HG activity 
together aid tumor growth, and IDH inhibitors thus also have clinical potential 
for this disease [95] [96] [97]. 

4.3.2. Drug Inhibitors 
Entacapone, currently approved for treatment of Parkinson’s activity because of 
its ability to inhibit catechol-O-methyltransferase (COMT), has also been explored 
as an FTO inhibitor [98]. This molecule has an IC50 of approximately 3.5 µM in 
its interactions with FTO, and in vitro studies have failed to indicate crossover 
inhibition of the ALKBH5 demethylase or ten-eleven translocation methylcyto-
sine dioxygenase 1 (TET1) [72]. In vivo treatment with entacapone reduced ob-
esity-related measures and activity, including fat mass ratio, cholesterols and 
triglycerides, and gluconeogenesis, while increasing energy expenditure and possi-
bly thermogenesis [21] [72]. 

Meclofenamic acid (MA), a nonsteroidal anti-inflammatory drug (NSAID) 
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used to treat some conditions related to pain, arthritis and bleeding, is another 
FTO inhibitor whose derivatives have been analyzed in several cancers [92] [99]. 
MA itself was not particularly effective in vitro for lung cancer, though, in con-
junction with an epidermal growth factor receptor tyrosine kinase inhibitor, it 
prompted apoptosis [100]. Derivatives may hold more promise as individual 
therapeutic agents. For example, FB23 and FB23-2 reduced acute myeloid leu-
kemia growth and cell survival in vitro, with FB23-2 having a relatively low IC50 
of around 2.6 µM and showing anti-tumor effects in vivo, as well, potentially 
through pathways governing cancer cell differentiation [18] [21] [101]. The de-
rivative MA2 has anti-proliferative effects and reduces cancer cell movement in 
gastric cancer, as elucidated through in vivo and in vitro experiments [81]. For 
GBM, this same compound was shown to increase survival in vivo and help 
control MYC activity and cancer development alongside treatment with the ex-
isting chemotherapeutic temozolomide (TMZ) [18] [53] [102]. 

A multitude of other novel inhibitors have been developed and assessed for 
their efficacy against cancers. Huff et al. (2021) found that FTO-04 could suc-
cessfully inhibit FTO in glioma stem cells (GSCs) and restrain cell growth in vi-
tro [18] [93]. The molecule rhein was studied in neuroblastoma, but its implica-
tions for the progression of cancer remain to be determined [103]. Su et al. (2020) 
tested the efficacy of CS1 and CS2, also called bisantrene and brequinar, in AML 
[104]. The compounds were shown to be specific to FTO, acting primarily in 
cancerous cells. In vitro data indicated less cell division and more apoptosis in 
treated AML stem cells. In vivo findings also pointed to a reduction in cancer 
cells. Mechanistically, this inhibition of FTO may downregulate and destabilize 
leukocyte immunoglobulin-like receptor subfamily 4 (LILRB4), which increases 
cells’ susceptibility to immune system defenses. It may also lessen the MYC and 
CCAAT enhancer binding protein alpha (CEBPA) pathways and promote reti-
noic acid receptor alpha (RARA) and ankyrin repeat and SOCS box containing 2 
(ASB2), corroborating the epigenetic effects observed with FTO inhibition using 
FB23-2 [101] [104]. CS1 has progressed to clinical trials for AML patients [105]. 
Both compounds also showed some efficacy in reducing GBM tumor growth 
[104]. 

5. Potential Role of Fat Mass- and Obesity-Associated  
Protein Inhibitors in Breast Cancer Therapy 

5.1. Monotherapies 

Among the potential breast-cancer therapeutics targeting FTO that are under 
study in vitro and in vivo are inhibitors whose effects have been examined inde-
pendent of any other concurrent treatments. In triple-negative breast cancer, 
2-oxogluterate oxygenase has been studied but may not be readily translatable 
to therapies given numerous anticipated downstream effects aside from FTO inhi-
bition [18]. Rhein successfully diminished tumor growth in vivo [46]. MO-I-500 
prevented cell growth in vitro, though this result was dependent on the me-
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dium and thus may not be as applicable to resistant TNBC cells [25] [42] [46]. 
MO-I-500, which has an IC50 of 8.7 μM, resulted in the survival of fewer TNBC 
metastatic-like cells without glutamine for metabolism. However, there was no 
significant inhibition of cell growth in cells adapted to this environment, sug-
gesting that such treatments may need to be provided early. IRX3 and FTO de-
creased in surviving cells, which could have been a causal response or could 
imply that cells with less FTO or IRX3 are less impacted by the FTO inhibitor 
[42]. 

With regards to obesity, rhein has also been associated with decreased levels of 
receptor expressing-enhancing protein 3 (REEP3), which may be a mechanism 
of attenuating adipogenesis [21] [106]. This suggests disparate but potentially 
mutual beneficial effects through different pathways. Nevertheless, more prom-
ising are the FTO inhibitors CS1 and CS2, which were shown to decrease the 
rate of breast tumor growth in vivo, had IC50s of 1 µM and lower concentrations 
in most cell lines tested in vitro, and have been deemed relatively safe [104]. 

5.2. Combination Therapies 

The aforementioned monotherapies and other FTO inhibitors have also revealed 
promising results in cancer research, including breast cancer, when applied in 
combination with current treatments. In glioblastoma, FTO inhibition decreases 
resistance to temozolomide (TMZ) by improving the chemotherapy’s efficacy 
[18] [102]. A clinical trial of the FTO inhibitor MA in combination with TMZ is 
in development [107]. FTO also seems to have an adverse association with obes-
ity through ATG5 and ATG7 activity [71]. Han et al. (2020) found that targeting 
ATG5 in breast cancer may decrease resistance to the prescribed breast cancer 
therapy trastuzumab [108]. The overlap in the mechanisms proposed in these 
two studies suggests that reducing ATG5 function through FTO inhibition could 
reduce both breast cancer and obesity. This could be beneficial in patients with 
both conditions, especially in cases of interdependency. 

NOTCH1 and the melanoma cell adhesion molecule (MCAM), which are ac-
tive in breast cancer, also correlate to TNBC patient mortality, migration, and 
invasion of breast cancer cells [109]. NOTCH1 has been studied as a contributor 
to TNBC and basal-type breast cancers and is associated with EMT genes [110]. 
EMT is, in turn, associated with metastasis and growth of stem cells [81] [110]. 
In silico, in vitro, and in vivo breast cancer results showed that blocking 
NOTCH1 downregulates MCAM, thereby decreasing proliferative EMT. The ul-
timate result of this pathway is a reduction in chemoresistant TNBC, particularly 
with cisplatin [109]. Of note, ER-negative breast cancer also shows high levels of 
NOTCH1 and MCAM [109], suggesting potential relevance of mitigating this 
pathway in multiple types of breast cancer. Breast cancer gene 1 (BRCA1) defi-
ciency also induces NOTCH1 and is linked to more severe breast cancer [110]. 
More specifically, BRCA1 loss was shown to increase ICN1 activity experimen-
tally, which was representative of NOTCH1 activity. This causes ATR to promote 
CHK1 activity, which increases cancer cell survival [110]. Inhibiting NOTCH1 
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may therefore stop uncontrolled cell growth in TNBC [110]. 
Given this data, BRCA1, NOTCH1, MCAM, ATR serine/threonine kinase 

(ATR), and checkpoint kinase 1 (CHK1) could all be plausible sites of therapeu-
tic targeting to inhibit this pathway towards oncogenesis and metastasis, though 
off-target effects and interactions with standard treatments must be considered. 
Chemotherapy has been a preferred treatment for TNBC, with cisplatin being selec-
tive for BRCA1-deficient cancers [109] [110]. CHK1 and ATR inhibitors worked in 
tandem with cisplatin in vitro and ATR inhibitors worked in vivo, as well [110], in-
dicating a potential benefit in reducing activity of the NOTCH1-induced pathway 
alongside treatment with chemotherapy. 

While the research on the connection between NOTCH1 and FTO is limited, 
a loose association can be extrapolated from Yi et al. (2021), who showed how 
FTO in bladder cancer yields changes in m6A levels at NOTCH1 transcripts, 
among some other genes [111]. Further research is necessary to determine wheth-
er a direct connection can be established in other cancers, including breast can-
cer, and whether targeting FTO could take advantage of this pathway, potentially 
in combination with other treatments. 

Lastly, MA was studied in lung cancer in combination with an epidermal 
growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) to decrease resis-
tance via inhibition of the FTO pathway. These findings may hold implications 
in breast cancer since the breast cancer resistance protein (BCRP) is one of the 
proteins responsible for the lack of effectiveness of EGFR inhibition in lung 
cancer [100]. Trying to directly inhibit EGFR in TNBC patients previously was 
ineffective [3]. However, BCRP levels dropped with MA treatment in lung can-
cer experiments. The most likely explanation is the reduction of its transcription 
factor MYC because of more m6A methylation of MYC transcripts following 
FTO inhibition [100]. Perhaps such therapies could consequently be applied to 
breast cancer to improve upon the unsuccessful outcomes. 

6. Discussion 

Breast cancer, especially TNBC, is a significant contributor to mortality that ne-
cessitates improved therapies [1] [3]. The severity and resistance of the disease 
can be attributed to the molecular mechanisms responsible for breast cancer 
growth and development. These are rooted in the expression of certain genes that 
induce downstream effects promoting attributes like stemness, cancer cell growth, 
and metastasis [6]. Such gene expression is regulated by epigenetic changes like 
m6A methylation, which is controlled by methyltransferases, “reader” proteins, 
and demethylases [18] [49]. 

The demethylase FTO contributes to obesity and breast cancer by influencing 
expression and suppression of various genes. In obesity, increases in FTO corre-
late to higher BMI, obesity-associated disorders like type 2 diabetes, and changes 
in molecular processes driving obesity, such as increased autophagy and adipo-
genesis and decreased thermogenesis [21] [37] [63] [65] [66] [67] [68] [69] [72]. 
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Among the cancers affected by FTO are endometrial, lung, and pancreatic can-
cer, which involve receptors and pathways that are also notable in breast cancer, 
such as MYC and estrogen-receptor-related signaling [82] [91] [100]. FTO SNPs 
and demethylation patterns have been linked to the onset and development of 
breast cancer [21] [25] [28] [46]. 

Since obesity can contribute to breast cancer [29], the importance of FTO in 
the progression of both diseases suggests that targeting FTO could be an effec-
tive means of therapy. A variety of FTO inhibitors have already been studied in 
vitro and in vivo to determine their impacts on cancers. These compounds in-
clude repurposed drugs, like entacapone, bisantrene and brequinar, and novel 
therapies, like FTO-04 [18] [21] [72] [93] [104]. Some studies have specifically 
assessed the effects of such FTO inhibitors in breast cancer, alone or in tandem 
with other inhibitors or current chemotherapies [18] [42] [104] [108]. 

Nonetheless, applicability of FTO inhibitors as a treatment is still in the early 
stages of research and more studies are needed to understand their mechanisms 
of action, side effects, interactions with other drugs, and their safety and efficacy 
in human patients. If identified, an appropriate drug candidate that takes ad-
vantage of FTO activity could benefit breast cancer patients who currently see 
grim outcomes, especially those who have comorbid obesity. 
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