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Abstract 
The chemical study of Rumex abyssinicus Jacp (Polygonaceae) led to the iso-
lation of a new ceramide named (R)-2'-hydroxy-N-[(2S,3S,4R,16E)-1,3,4-trihy- 
droxyhexacos-16-en-2-yl]hexadecanamide (rumexamide) (1) together with six-
teen known compounds: bis-(2-ethylhexyl) phthalate (2), chrysophanol (3), 
physcion (4), citreorosein (5), emodin (6), chrysophanein (7), physcionin (8), 
lupeol (9), 3β,28-dihydroxylup-20(29)-ene (10), 3β-dihydroxylup-20(29)-en-28- 
oic acid (11), oleanolic acid (12), ergosta-6,22-diene-3,5,8-triol (13), stigmas-
tane-3,6-dione (14), a mixture of β-sitosterol (15) and stigmasterol (16), and 
stigmasterol 3-O-β-D-glucoside (17). Their structures were determined by in-
terpretation of their spectroscopic 1D NMR (1H and 13C NMR), 2D NMR (COSY 
1H-1H, HSQC and HMBC) data in conjunction with mass spectrometry (TO- 
FESIMS and HR-TOFESIMS) and by comparison with those reported in the 
literature. Among all the known compounds, twelve (2, 5, 8-17) were firstly 
isolated from Rumex abyssinicus, seven (2, 10-14 and 17) from the genus 
Rumex and three (13, 14, 17) from family Polygonaceae. The in vitro anti-
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bacterial activities of extracts (MeOH, n-BuOH and EtOAc), as well as com-
pounds 9, 11, 12, 15 + 16 and 17 against pathogenic bacteria (Staphylococcus 
aureus ATCC 43300, Shigella flexneri NR 518, Klebsiella pneumoniae ATCC 
700603, Escherichia coli ATCC 25922), were performed using the broth mi-
crodilution method and the results show that, extracts were not active (MIC > 
1000 µg/mL) while compounds were weakly or not active (MIC ≥ 500 µg/mL) 
against all bacteria strains. Furthermore, the chemophenetic relationships of 
the isolated compounds and their significances were discussed. 
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1. Introduction 

Since their discoveries, antibiotics have been essential in the treatment of dis-
eases caused by pathogens (especially bacterial infections) which have helped 
in extending the average life expectancy. However, their overexploitation has 
caused the appearance and increase in the rate of resistance of microorganisms 
to said antibiotics [1]. It is well established that this resistance is nowadays re-
sponsible for nearly 7 million deaths per year and it is estimated that it will reach 
to 10 million deaths per year by 2050 [2]. Thus, in order to overcome this state 
of affairs, efforts are being made to find new antimicrobial agents such as me-
dicinal plants [3]. Rumex abyssinicus is a large annual herbaceous plant with 
generally sagittate leaves, highly branched inflorescence and light brown ha-
zelnuts and locally named in Amharic “mekmako” [4]. It is a medicinal plant 
widely distributed in the highlands of tropical Africa and distributed through-
out North Africa and Ethiopia [5]. Indeed, Rumex abyssinicus is used in tradi-
tional medicine to treat several diseases like rheumatism, malaria, typhoid and 
hepatitis [5] [6]. Members of the genus Rumex have been reported to produce 
a wide range of secondary metabolites such as anthraquinones [7], flavonoids 
[8], stilbenoids [9] [10], tannins [11], triterpenoids [12], steroids and saponins 
[13]. Some of them possess several pharmacological activities such as antioxi-
dant, antitumour, antimicrobial, antiparasitic, antiviral [14]. Previous pharma-
cological studies carried out on R. abyssinicus revealed its antimicrobial activi-
ties against Salmonella typhimurium, Listeria monocytogenes (ATCC 29211), 
Escherichia coli (ATCC25922), Staphylococcus aureus (ATCC 4944) [15] and 
antiplasmodial activity against chloroquine-sensitive Plasmodium falciparum 
strain (3D7) [16]. In our continuous search for bioactive secondary metabo-
lites from Cameroonian medicinal plants [17] [18] [19] [20], we report in this 
paper the isolation, characterization, antibacterial activities and Chemophe-
netic significance of secondary metabolites from the whole plant of R. abyssi-
nicus. 
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2. Materials and Methods 
2.1. General Experimental Procedures 

Bruker IR-Alpha spectrometer apparatus was used for scanning IR (Infrared) 
spectroscopy using KBr pellets. Column chromatography was carried out on si-
lica gel 230 - 400 mesh, Merck (Merck, Darmstadt, Germany), 70 - 230 mesh 
(Merck) and/or gel permeation on Sephadex LH-20 (Sigma-Aldrich, Munich, 
Germany). High resolution mass spectra were obtained with QTOF (Quadrupole 
Time of Flight) Compact Spectrometer (Bruker, Germany) equipped with a HRESI 
source. The spectrometer was operated in positive and negative modes (mass 
range: 50 - 1500, with a scan rate of 1.00 Hz) with automatic gain control to pro-
vide high-accuracy mass measurements within 0.4 ppm deviation using Na for-
mate as calibrant. The following parameters were used for experiments: spray 
voltage of 4.5 kV, capillary temperature of 200˚C. Nitrogen was used as sheath 
gas (4 L/min). The 1H and 13C Nuclear Magnetic Resonance (NMR) spectra were 
recorded on Bruker DRX 500 MHz and 600 MHz NMR spectrometers and on a 
Bruker Avance III 600 and 500 spectrometers equipped with a cryo-platform. 2D 
NMR experiments were performed using standard Bruker microprograms (Xwin- 
NMR version 2.1 software) in deuterated solvents. Chemical shifts (δ) are reported 
in parts per million (ppm) using the residual solvent signals as secondary refer-
ence relatively to TMS (Tetramethylsilane) (δ = 0), while the coupling constants 
(J values) are given in Hertz (Hz). Thin-layer chromatography (TLC) was car-
ried out on Merck pre-coated silica gel (60 F254) aluminium foil (Merck) with 
detection accomplished by spraying with diluted sulfuric acid (50% H2SO4, Rie-
del-de Haen AG, 95% - 97%) followed by heating at 100˚C, or by visual inspec-
tion under Ultraviolet (UV) lamp at 254 and 365 nm. 

2.2. Plant Material 

In the present study the whole plant of Rumex abyssinicus was collected in Feb-
ruary 2018 in Dschang Western Region of Cameroon, with GPS data of: latitude: 
N 5˚27'5.94828'' and longitude: E 10˚3'17.39556''. The botanical identification 
was carried out by Victor Nana, a botanist of the National Herbarium of Came-
roon, where a specimen was deposited under the voucher number N˚ 50551/HNC. 

2.3. Extraction and Isolation 

The air-dried plant material (4.5 kg) was powdered and extracted at room tem-
perature with methanol (3 × 20 L, 72 h) to yield 200 g of crude methanolic ex-
tract after evaporation of solvent under reduced pressure. A part of this crude 
extract (195 g) was dissolved in water (H2O, 300 mL) followed by a liquid-liquid 
extraction with ethyl acetate (EtOAc, 500 mL) and n-butanol (n-BuOH, 500 mL) 
yielding respectively 50 g and 18 g after solvents evaporation under vacuum (at 
40˚C). A part of the EtOAc fraction (45 g, i.e 90% of the mass obtained) was 
subjected to silica gel column chromatography using n-hexane-EtOAc (95:5 → 
80:20, v/v) followed by EtOAc-MeOH (95:5 → 70:30, v/v) for a gradient elution. 
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Seventy (70) fractions of 400 mL were collected and combined on the basis of 
their TLC profiles to give 8 fractions A-H (A: 1 - 3; B: 4 - 10; C: 11 - 22; D: 23 - 
28; E: 29 - 35; F: 36 - 44; G: 45 - 63; H: 64 - 70). Compounds 1 (30.8 mg), 17 
(15.5 mg) [21] and 2 (6.8 mg) [22] were obtained after purification of fraction F 
(2 g) on silica gel column chromatography using n-hexane-EtOAc (40:60 → 
00:100, v/v). Fraction A (4 g) was purified on silica gel column chromatography 
with n-hexane-EtOAc as eluent (95:5, v/v) to yield compounds 9 (10.2 mg) [23], 
3 (15 mg) [24] and 4 (17 mg) [25]. Fraction B (5 g) was also purified on silica gel 
column chromatography eluted with n-hexane-EtOAc (95:5 → 90:10, v/v) to give 
a mixture of two compounds (15 and 16) (12.5 mg) [26] and compound 10 (6.4 
mg) [27]. Sephadex LH-20 gel column chromatography of fraction C (1.9 g) led 
to two sub-fractions labelled C1 and C2. The purification of the sub-fraction C1 
(500 mg) by silica gel column chromatography using n-hexane-EtOAc, (90:10 → 
80:20, v/v) as mobile phase afforded to compounds 14 (4.1 mg) [28], 11 (7.6 mg) 
[27], 12 (8.2 mg) [29] and 13 (15 mg) [30]. Sub-fraction C2 (300 mg), was puri-
fied on Sephadex LH-20 gel column chromatography using MeOH as eluent to 
give compound 6 (40 mg) [25]. Fraction D (3.74 g) was also subjected to Sepha-
dex LH-20 gel column chromatography using isocratic elution with MeOH to 
obtain three sub-fractions D1, D2 and D3. Purification of D3 (400 mg) sub-fraction 
on silica gel column chromatography with n-hexane–EtOAc (85:15, v/v) gave 
compound 5 (11 mg) [31]. Recrystallization of fraction G (5 g) afforded a mix-
ture of two compounds 7 and 8 (10 mg) [32]. 

2.4. Methanolysis of Compound 1 

Compound 1 (5.0 mg, 7.3421 μMol) was dissolved in 5% HCl-MeOH (3 mL) 
(HCl, 37% produce by Fisher Scientific and MeOH obtained from SOLEVO-Ca- 
meroon) and refluxed for 14 h at 70˚C. The reaction was monitored using TLC 
analysis. At the end of the reaction, the mixture obtained was extracted with 
methylene chloride (CH2Cl2 obtained from SOLEVO-Cameroon) after neutrali-
zation with dilute potassium carbonate (K2CO3, produce by Fisher Scientific 
with 99.9% purity). The organic phase was separated and concentrated to yield 
2.1 mg. 

2.5. Methodology of Antibacterial Assay 
2.5.1. Bacteria Strains and Sample Preparation 
The microorganisms used in this study were consisted of four bacterial strains 
namely: Staphylococcus aureus NR 43300, Shighella flexineri NR 518, Klebsiella, 
pneumonia ATCC 700603, Escherichia coli ATCC 25922 obtained from our lo-
cal stocks. They were cultivated in petri dishes containing Mueller Hinton Agar 
(MHA) followed by an incubation period of 24 hours at 37˚C. Each microorgan-
ism was sub-cultured in a new agar plate and incubated in the same above men-
tioned conditions prior each experiment. Extracts and compounds were weighed 
and dissolved in different solvents (pyridine, DMSO) for a final of 100 mg/mL 
and 20 mg/mL for extracts and compounds respectively. Positive control Ci-
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profloxacin was prepared at 1 mg/mL. Extracts, compounds and the refer-
ence drugs were screened at 1000 µg/mL, 500 µg/mL and 119 µg/mL, respective-
ly. 

2.5.2. Determination of Minimal Inhibitory Concentration (MIC) 
The antimicrobial activity of each product was done as previously described by 
the CLSI, (2012) using the broth microdilution method in 96-wells microplates. 
Briefly, 196 µL and 190 µL of culture media (Nutrient Broth (NB) for extracts 
and compounds respectively were introduced in plates and 4 µL and 10 µL of 
test products were added only in wells belonging to the first line. After a gentle 
homogenization, serial two-fold dilutions of test products were made by trans-
ferring 100 μL of the mixture from the first well to the second up to the last. 100 
μL of the microbial inoculum standardized at 5.105 UFC/Ml (With 0.5 McFar-
land standard) were respectively introduced in wells. Wells containing the cul-
ture medium only served as sterility control, those containing the microorgan-
isms and the culture medium were the Negative control corresponding to one 
hundred percent growth (100% growth). Positive control Ciprofloxacin was dis-
tinctively screened in same conditions. All the experiments were performed in 
duplicate and twice. The plates were incubated for 24 hours at 37˚C. 20 microli-
ters of resazurin (0.15 mg/mL in PBS) were then added in duplicate wells and 
plates were further incubated for 2 hours. MICs were determined as the lowest 
concentration in which no visible growth (blue colored wells) was observed in 
wells after the incubation period. Test concentrations were 1000 - 15.625 µg/mL 
and 500 - 7.875 µg/mL for extracts and compounds respectively. 

3. Results and Discussion 

The structures of compounds 2-17 were determined on the basis of the spec-
troscopic and mass spectrometric data as bis-(2-ethylhexyl) phthalate (2) [22], 
Chrysophanol (3) [24], physcion (4), citreorosein (5) [31], emodin (6) [25], 
chrysophanein (7) and physcionin (8) [32], lupeol (9) [23], 3β, 28-dihydroxyl- 
up-20(29)-ene (10) [27], 3β-dihydroxylup-20(29)-en-28-oic acid (11) [27], olea-
nolic acid (12) [29], ergosta-6,22-diene-3,5,8-triol (13) [30], stigmastane-3,6-di- 
one (14) [28], β-sitosterol (15) and stigmasterol (16) [26], stigmasterol 3-O-β-D- 
glucoside (17) [21] (Figure 1). 

Compound 1 was obtained as white powder in n-hexane-EtOAc (30:70, v/v). 
Its molecular formula C42H83NO5 was determined on the basis of its HR-TOFESIMS 
spectrum which showed a sodium adduct peak [M+Na]+ at m/z 704.6133 (calcd. 
C42H83NO5Na, 704.6163), indicating two degrees of insaturation. The IR spec-
trum displayed characteristic vibration bands for hydroxy group (3315 cm−1), 
olefinic group (1626 cm−1) and amide carbonyl group (1655 cm−1). The 1H NMR 
spectrum indicated signals of (-NH) at δH 8.61 (1H, d, J = 9.1 Hz), oxygenated 
methylene at δH 4.54 (1H, m, H-1a) and 4.45 (1 H, m, H-1b), three oxymethine 
protons at δH 4.65 (1H, m, H-2’), 4.39 (1H, m, H-3) and 4.32 (1H, m, H-4), 
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Figure 1. Structures of compounds 1-17 isolated from EtOAc soluble fraction of crude 
extract of Rumex abyssinicus. 
 
two terminal methyls at δH 0.88 (6H, t, J = 7.0 Hz, H-16 and H-26). A set of sig-
nals appearing as broad in the range of δH 1.52 - 1.20 corresponding to the me-
thylenes (-CH2-) associated to the two long chains, and a downfield signal at δH 
5.14 (1H, m, H-2) assigned to the aminomethine H-2 of sphingosine were also 
observed [33]. All the above spectral data (Table 1) revealed that compound 1 
was a phytosphingosine type sphingolipid [34]. In addition, its 1H NMR spec-
trum exhibited two olefinic protons at δH 5.57 (1H, m, H-16) and 5.51 (1H, m, 
H-17). 

A concomitant analysis of its 13C-NMR, DEPT and HSQC spectra was in 
agreement with the 1H-NMR spectrum and allowed to identify an amide car-
bonyl carbon at δC 175.5 (C-1'), two olefinic methine carbons resonated at δC 
131.2 (C-16) and 131.1 (C-17), an oxymethylene carbon resonated at δC 62.4 
(C-1), four sp3 methine carbon signals in which, three oxymethines at δC 77.2 
(C-3), 73.3 (C-4), 72.8 (C-2'), and an aminomethine at δC 53.2 (C-2). It also re-
vealed aliphatic methylenic carbons in the range of δC 36.1 - 23.2, and two ter-
minal methyl carbons at δC 14.6 ppm. The trans (E) configuration of the double 
bond was confirmed by the chemical shifts of the allylic carbons at δC 33.7 
(C-15) and 33.6 (C-18) [35] [36]. The correlation observed on its COSY 1H-1H 
(Figure 2) spectrum between protons: H-1a/H-1b and H-2, H-2 and H-3, H-3 
and H-4 allowed us to identify the position of four hydroxy groups. This was 
further confirmed by the HMBC correlations between the protons at δH 4.54  
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Table 1. 1H (600 MHz) and 13C (150 MHz) NMR data of rumexamide (1) in pyridine-d5 
(δ in ppm, J in Hz, TMS as internal standard). 

Position δH (nH, mult; J in Hz) δC (mult) HMBC 

Long chain base     

NH 8.61 (1H, d, J = 9.1) -  - 

1a, 1b 
4.54 (1H, m) 

62.4 (CH2) 2; 3 
4.45 (1H, m) 

2 5.14 (1H, m) 53.2 (CH) 1'; 1; 3 

3 4.39 (1H, m) 77.2 (CH) 1; 2; 4; 5 

4 4.32 (1H, m) 73.3 (CH) 5 

5 2.00 (2H, m) 34.2 (CH2) - 

6 - 14 1.52 - 1.20 (18H, brs) 32.5 - 27.0 (CH2)9 - 

15 2.19 (2H, m) 33.7 (CH2) 16 

16 5.57 (1H, m) 131.2 (CH) 15 

17 5.51 (1H, m) 131.1 (CH) 18 

18 2.02 (2H, m) 33.6 (CH2) 17 

19 - 24 1.52 - 1.20 (10H, brs) 32.5 - 27.0 (CH2)5  

25 1.26 (1H, m) 23.3 (CH2) - 

26 0.88 (3H, t, J = 7.0) 14.6 (CH3) 25 

N-acyl moiety     

1' - 175.5 (C) - 

2' 4.65 (2H, dt, J = 7.7, 3.7) 72.8 (CH2)  

3' 
2.26 (1H, m) 

36.1 (CH2) 
- 

2.06 (1H, m) 2' 

4' - 14' 1.52 - 1.20 (22H, brs) 32.5 - 27.0 (CH2)11 - 

15' 1.26 (1H, m) 23.3 (CH2) - 

16' 0.88 (3H, t, J = 7.0) 14.6 (CH3) 15' 

 

 
Figure 2. Selected COSY and HMBC correlations for compound 1. 
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carbonyl at δC 175.5 (C-1'). In addition, correlation observed between the proton 
of aminomethine at δH 5.14 (H-2) and carbons at δC 77.2 (C-3), 62.4 (C-1) and 
175.5 (C-1') allowed to conclude that, the two chains (acid and basic) are linked. 
The absolute configuration of the stereocenters C-2, C-3, C-4 and C-2', were as-
signed to be 2R, 3S, 4R, 2'R on the basis of their carbon chemical shifts which are 
very close to those of vernoguinamide [37].  

The length of the acid chain (ALC) was determined using the ESI (-) mass spec-
trum where characteristic fragment ions are observed at m/z: 255 [CH3(CH2)13 
CH(OH)CO]−, 227 [CH3 (CH2)13CH(OH)]−, 199 [HNCOCH(OH)(CH2)9]−, 170 
[CH3(CH2)11+H]−, 156 [CH3(CH2)10+H]−. Concerning the basic chain, the length 
was deduced from the mass of the entire molecule by subtracting that of the acid 
chain. Thus, said basic chain has 426 for mass, corresponding to 
[CH3(CH2)8CH=CH(CH2)11CH(OH) CH(OH)CH(NH)CH2(OH)] having a double 
bond. Note that this number of carbon atoms of the acid and basic chains was 
further confirmed by the methanolysis of said compound which led to a fatty 
acid methyl ester unit (FAME; 1a) and a long chain phytosphingosine unit (LCB; 
1b) (Scheme 1). 

The LC-MS analysis of the organic phase showed that, the methanolysis of 
compound 1 led to the formation of methyl (R) 2-hydroxyhexadecanoate (1a), 
(m/z 309.1 [M+Na]−) and (2S,3S,4R,16E)-2-aminohexacos-16-ene-1,3,4-triol (1b), 
(m/z 468.5 [M+CH3CN]+ and m/z 451.3 [M+H+Na]+) (Scheme 1) indicating 16 
carbon atoms for acid chain (1a) and 26 carbon atoms with one double bond for 
basic chain (1b). The position of the double bond was deduced from its ESI (+) 
mass spectrum on which ions fragments are observed at m/z 554 [M-C9H19]+ 
and m/z 152 [C11H21-H]+ (Figure 3). Accordingly, the structure of compound 1 
was established as (R)-2'-hydroxy-N-[(2S,3S,4R,16E)-1,3,4-trihydroxyhexacos-16- 
en-2-yl] hexadecanamide, trivially named rumexamide. 

 

 
Figure 3. Mass fragmentation pattern for compound 1. 
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Scheme 1. Methanolysis of 1. 

 
The antibacterial activities of MeOH, EtOAc and n-BuOH extracts as well as 

compounds 1, 9, 11, 12, 15 + 16 and 17 against pathogenic bacteria are pre-
sented in Table 2. In general, the test samples demonstrated weak variation de-
grees of inhibitory activity against the bacteria. The antibacterial activity of the 
plant extract can be classified as significant (MIC < 100 µg/mL), moderate (100 < 
MIC ≤ 625 µg/mL) and weak (MIC > 625 µg/mL) whereas antimicrobial activity 
of pure compound can be classified as significant (MIC < 10 µg/mL), moderate 
(10 < MIC ≤ 100 µg/mL) and weak (MIC > 100 µg/mL) [38]. Base on this, ex-
tract were not active (MIC > 1000 µg/mL) while compounds were weakly or not 
active (MIC ≥ 500 µg/mL) against all bacteria strains. 

4. Spectroscopic Data of Compounds 1-17 

Bis-(2-ethylhexyl) phthalate (2)—White powder; (C24H38O4); 1H-NMR (400 
MHz, CDCl3): δH: 7.70 (dd, 5.7, 3.3Hz, H-3), 7.52 (dd, 5.7, 3.3Hz, H-4), 4.22 (m, 
H-1'), 1.68 (p, 6.1Hz, H-2’), 1.41 (m, H-7), 1.34 (m, H-3'), 1.32 (m, H-4'), 1.31 
(m, H-5'), 0.92 (m, H-8'), 0.89 (m, H-6'); 13C-NMR (100 MHz, CDCl3) δC:167.9 
(C-1), 132.6 (C-2), 130.9 (C-4), 128.9 (C-3), 68.3 (C-1'), 38.9 (C-2'), 30.5 (C-3'), 
29.1 (C-4'), 23.9 (C-7'), 23.1 (C-5'), 14.2 (C-6'), 11.1 (C-8'). 

Chrysophanol (3)—Yellow powder; (C15H10O4): 1H-NMR (600 MHz, CDCl3) 
δH: 12.08 (s, 1-OH), 11.97 (s, 8-OH) 7.84 (d, 7.5 Hz, H-5), 7.77 (br s, H-6), 7.69 
(br s, H-4), 7.30 (d, 8.4Hz, H-7), 7.12 (br s, H-2), 2.48 (s, -CH3); 13C-NMR (150 
MHz, CDCl3) δC: 192.5 (C-9), 182.1 (C-10), 162.7 (C-1), 162.4 (C-8), 149.3 (C-3), 
137.0 (C-6), 133.6 (C-11), 133.2 (C-14), 124.5 (C-7), 124.3 (C-2), 121.3 (C-4), 
119.9 (C-5), 115.8 (C-12), 113.7 (C-13), 22.4 (-CH3). 

Physcion (4)—Yellow powder; (C16H12O5): 1H-NMR (600 MHz, CDCl3) δH: 
12.34 (s, 1-OH), 12.15 (s, 8-OH), 7.65 (br s, H-5), 7.39 (d, 2.5 Hz, H-4), 7.10 (br 
s, H-7), 6.70 (d, 2.5 Hz, H-2), 3.95 (s, OCH3), 2.46 (s, -CH3); 13C-NMR (150 
MHz, CDCl3) δC: 190.8 (C-9), 182.1 (C-10), 166.6 (C-3), 165.2 (C-1), 162.5 (C-8), 
148.5 (C-6), 135.2 (C-14), 133.2 (C-11), 124.6 (C-7), 121.4 (C-5), 113.7 (C-12), 
110.3 (C-13), 108.3 (C-4), 106.8 (C-2), 56.1 (-OCH3), 22.2 (-CH3). 
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Table 2. Antimicrobial activities of extracts, some isolated compounds and ciprofloxacin. 

Samples 
Parameters 

(µg/mL) 

Bacteria strains 

Sa Sf Kp Ec 

EtOAc extract MIC >1000 >1000 >1000 >1000 

n-BuOH extract MIC >1000 >1000 >1000 >1000 

MeOH extract MIC >1000 >1000 >1000 >1000 

1 MIC >500 500 ± 000 >500 >500 

9 MIC >500 >500 >500 >500 

11 MIC >500 >500 >500 >500 

12 MIC >500 >500 >500 >500 

15 + 16 MIC >500 >500 >500 >500 

17 MIC >500 >500 >500 >500 

Ciprofloxacin MIC 0.232 ± 000 0.232 ± 000 0.464 ± 000 0.232 ± 000 

Sa: Staphylococcus aureus ATCC 43300; Sf: Shighella flexineri NR 518; Kp: Klebsiella pneumonia ATCC 
700603; Ec: Escherichia coli ATCC 25922; MIC: Minimum Inhibitory Concentration; Ciprofloxacin: ref-
erence drug. 

 
Citreorosein (5)—Red powder; (C15H10O6): 1H-NMR (600 MHz, CD3OD) 

δH: 7.28 (br s, H-2), 7.75 (br s, H-4), 7.20 (br s, H-5), 6.54 (br s, H-7), 4.70 (s, 
-OCH2-); 13C-NMR (150 MHz, CD3OD) δC: 191.5 (C-9), 183.4 (C-10), 169.1 (C-8), 
166.7 (C-6), 163.7 (C-1), 152.9 (C-3), 136.9 (C-11), 135.0 (C-14), 122.2 (C-2), 
118.4 (C-4), 115.9 (C-13), 111.1 (C-5), 109.2 (C-7), 108.5 (C-12), 64.1 (-OCH2-). 

Emodin (6)—Red powder; (C15H10O5): 1H-NMR (600 MHz, DMSO-d6) δH: 
12.1 (s, 3-OH), 12.0 (s, 8-OH) 7.48 (d, 0.7Hz, H-5), 7.16 (d, 0.7Hz, H-7) 7.11 (d, 
2.4 Hz, H-4) 6.59 (d, 2.4Hz, H-2), 2.41 (s, -CH3); 13C-NMR (150 MHz, DMSO-d6) 
δC: 190.2 (C-9), 181.9 (C-10), 166.1 (C-1), 164.9 (C-3), 161.9 (C-8), 148.7 (C-6), 
135.6 (C-14), 133.3 (C-11), 124.6 (C-7), 120.9 (C-5), 113.8 (C-12), 109.4 (C-13), 
109.3 (C-4), 108.4 (C-2), 21.9 (-CH3). 

Chrysophanein (7)—Yellow powder; (C21H20O9): 1H-NMR (600 MHz, DMSO- 
d6) δH: 13.1 (s, 1-OH), 7.88 (m, H-5), 7.86 (m, H-6) 7.71 (d; 7.9Hz, H-7) 7.51 (br 
s, H-4) 7.21 (br s, H-2) 5.20 - 3.10 (Glu), 2.44 (s, 3-CH3); 13C-NMR (150 MHz, 
DMSO-d6) δC: 188.0 (C-9), 182.6 (C-10), 162.2 (C-1), 158.7 (C-8), 148.1 (C-3), 
136.4 (C-6), 135.2 (C-11), 132.6 (C-14), 124,5 (C-2), 122.9 (C-7), 121.0 (C-5), 
119.8 (C-4), 115.3 (C-12), 115.2 (C-13), 101.0 (C-1'), 77.8 (C-5'), 77.0 (C-3'), 73.7 
(C-2'), 70.0 (C-4'), 61.1 (C-6'), 21,9 (-CH3). 

Physcionin (8)—Yellow powder; (C22H22O10): 1H-NMR (600 MHz, DMSO-d6) 
δH: 12.8 (s, 1-OH), 7.50 (br s, H-4), 7.37 (d, 2.3Hz, H-5) 7.19 (d, 2.3 Hz, H-7) 
7.18 (br s, H-2), 5.20 - 3.10 (Glu), 3.97 (s, -OCH3), 2.42 (s, -CH3); 13C-NMR (150 
MHz, DMSO-d6) δC: 186.9 (C-9), 182.4 (C-10), 165.2 (C-6), 162.1 (C-1), 161.2 
(C-8), 147.6 (C-3), 135.1 (C-11), 132.5 (C-14), 124.7 (C-2), 119.7 (C-4), 114.96 
(C-13), 114.95 (C-12), 107.9 (C-7), 106.9 (C-5), 101.1 (C-1'), 77.9 (C-5'), 77.1 
(C-3'), 73.8 (C-2'), 70.3 (C-4'), 61.3 (C-6'), 56.6 (-OCH3) 21,8 (-CH3). 

Lupeol (9)—White powder; (C30H50O): 1H-NMR (300 MHz, CDCl3) δH: 4.73 
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(s, H-29b), 4.62 (s, H-29a), 3.23 (m, H-3), 2.04 (m, H-19), 1.73 (s, 30-CH3), 1.07 
(s, 26-CH3), 1.01 (s, 23-CH3), 0.99 (s, 27-CH3), 0.87 (s, 25-CH3), 0.81 (s, 24-CH3), 
0.69 (m, H-5); 13C-NMR (75 MHz, CDCl3) δC: 18.0 (C-28), 150.6 (C-20), 109.9 
(C-29), 79.0 (C-3), 42.8 (C-17), 55.3 (C-5), 50.5 (C-9), 48.3 (C-18), 48.0 (C-19), 
43.0 (C-14), 40.6 (C-8), 38.9 (C-4), 38.7 (C-1), 38.1 (C-13), 37.2 (C-10), 40.8 
(C-22), 34.8 (C-7), 35.2 (C-16), 28.0 (C-15), 29.9 (C-21), 27.5 (C-23), 27.4 (C-2), 
25.2 (C-12), 21.0 (C-11), 18.4 (C-6), 19.3 (C-30), 16.0 (C-25), 16.2 (C-26), 15.4 
(C-24), 14.6 (C-27). 

3β,28-dihydroxylup-20(29)-ene (10)—White powder; (C30H50O2): 1H-NMR 
(300 MHz, CDCl3) δH: 4.73 (s, H-29b), 4.63 (s, H-29a), 3.85 (m, H-28), 3.36 (m, 
H-3), 1.73 (s, 30-CH3), 1.07 (s, 27-CH3), 1.03 (s, 26-CH3), 1.00 (s, 23-CH3), 0.87 
(s, 25-CH3), 0.75 (s, 24-CH3); 13C-NMR (75 MHz, CDCl3) δC: 38.7 (C-1), 27.4 
(C-2), 79.0 (C-3), 39.0 (C-4), 55.3 (C-5), 18.3 (C-6), 34.3 (C-7), 40.9 (C-8), 50.4 
(C-9), 37.4 (C-10), 20.7 (C-11), 25.3 (C-12), 37.2 (C-13), 42.7 (C-14), 27.1 (C-15), 
29.2 (C-16), 47.8 (C-17), 47.8 (C-18), 48.8 (C-19), 150.5 (C-20), 29.7 (C-21), 34.0 
(C-22), 28.0 (C-23), 15.2 (C-24), 16.1 (C-25), 15.5 (C-26), 14.9 (C-27), 60.5 
(C-28), 109.7 (C-29), 19.0 (C-30). 

3β-dihydroxylup-20(29)-en-28-oic acid (11)—White powder; (C30H48O3): 
1H-NMR (500 MHz, Methanol-d5) δH: 4.73 (s, H-29b), 4.61 (s, H-29a), 3.14 (dd, 
11.4 Hz/4.7 Hz, H-3), 3.04 (m, H-19), 2.32 (m, H-13), 2.25 (m, H-16), 1.95 (m, 
H-15a), 1.91 (m, H-22), 1.74 (m, H-12), 1.71 (s, 30-CH3), 1.65 (m, H-18), 1.62 
(m, H-1), 1.59 (m, H-2), 1.56 (m, H-6), 1.49-1.44 (m, H-11), 1.40 (m, H15b), 1.45 - 
1.39 (m, H-7), 1.34 (m, H-9), 1.19 (m, H-21), 1.02 (s, 27-CH3), 0.99 (s, 26-CH3), 
0.97 (s, 23-CH3), 0.88 (s, 25-CH3), 0.77 (s, 24-CH3), 0.73 (m, H-5); 13C-NMR 
(125 MHz, Methanol-d5) δC: 178.7 (C-28), 150.6 (C-20), 108.8 (C-29), 78.3 (C-3), 
56.1 (C-17), 55.5 (C-5), 50.6 (C-9), 49.0 (C-18), 47.2 (C-19), 42.2 (C-14), 40.6 
(C-8), 38.7 (C-4), 38.6 (C-1), 38.3 (C-13), 36.9 (C-10), 36.7 (C-22), 34.2 (C-7), 
31.9 (C-16), 30.3 (C-15), 29.4 (C-21), 27.2 (C-23), 26.6 (C-2), 25.5 (C-12), 20.7 
(C-11), 18.1 (C-6), 18.0 (C-30), 15.3 (C-25), 15.2 (C-26), 14.7 (C-24), 13.7 
(C-27). 

Oleanolic acid (12)—White powder; (C30H48O3): 1H NMR (300 MHz, CDCl3) 
δH: 5.31 (m, H-12), 3.23 (m, H-3), 2.84 (m, H-19), 2.80 (m, H-18), 0.98 (s, 23-CH3), 
0.75 (s, 24-CH3), 0.92 (s, 25-CH3), 0.77 (s, 26-CH3), 1.13 (s, 27-CH3), 0.90 (s, 
29-CH3), 0.92 (s, 30-CH3); 13C NMR (75 MHz, CDCl3) δC: 182.9 (C-28), 143.7 
(C-13), 122.8 (C-12), 79.0 (C-3), 55.3 (C-5), 47.8 (C-9), 46.6 (C-17), 46.0 (C-19), 
41.1 (C-14), 41.7 (C-18), 39.4 (C-8), 38.9 (C-4), 38.5 (C-1), 37.2 (C-10), 33.9 
(C-21), 33.2 (C-29), 32.7 (C-7), 32.7 (C-22), 32.7 (C-20), 27.3 (C-23), 27.8 
(C-15), 28.2 (C-2), 26.1 (C-27), 23.5 (C-30), 23.1 (C-16), 23.7 (C-11), 18.4 (C-6), 
17.3 (C-26), 15.6 (C-24), 15.4 (C-25). 

Ergosta-6,22-diene-3,5,8-triol (13)—White powder; (C28H46O3): 13C-NMR 
(150 MHz, CDCl3): δC 135.5 (C-6), 135.3 (C-22), 132.4 (C-23), 130.9 (C-7), 82.3 
(C-5), 79.6 (C-8), 66.6 (C-3), 56.3 (C-17), 51.8 (C-14), 51.2 (C-9), 44.7 (C-13), 
42.9 (C-24), 39.9 (C-20), 39.4 (C-11), 37.1 (C-10), 37.0 (C-4), 34.8 (C-1), 33.2 
(C-25), 30.2 (C-2), 28.8 (C-15) 23.5 (C-12), 21.0 (C-21), 20.8 (C-16), 20.1 (C-26), 
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19.8 (C-28), 18.3 (C-19), 17.7 (C-27), 13.0 (C-18). 
Stigmastane-3,6-dione (14)—White powder; (C29H48O2): 1H-NMR (500 MHz, 

Pyridine-d5) δH: 2.64 (m, H-5), 2.29 (m, H-4a), 2.42 (m, H-4b), 2.37 (m, H-7a), 2.08 
(m, H-1b), 2.05 (m, H-2a), 2.05 (m, H-12a), 2.00 (m, H-7b), 1.77 (m, H-16a), 1.73 
(m, H-8), 1.64 (m, H-2a), 1.64 (m, H-12b), 1.64 (m, H-25), 1.60 (m, H-11a), 1.43 
(m, H-23a), 1.37 (m, H-9), 1.30 (m, H-11b), 1.26 (m, H-20), 1.25 (m, H-1a), 1.25 
(m, H-17), 1.21 (m, H-22a), 1.18 (m, H-16b), 1.16 (m, H-14), 1.14 (m, H-28), 
1.08 (m, H-15), 1.00 (m, H-23b), 0.92 (m, H-24), 0.91 (d; 6.4 Hz, 29-CH3), 0.90 
(m, H-22b), 0.87 (br s, 21-CH3), 0.83 (s, 18-CH3), 0.82 (d; 3.2 Hz, 26-CH3), 0.80 
(br s, 27-CH3), 0.66 (s, 19-CH3); 13C-NMR (125 MHz, Pyridine-d5) δC: 211.8 (C-3), 
209.4 (C-6), 56.6 (C-5), 55.8 (C-17), 55.3 (C-14), 52.5 (C-9), 45.8 (C-7), 45.1 
(C-24), 42.3 (C-13), 40.6 (C-10), 38.6 (C-1), 37.4 (C-8), 37.2 (C-12), 36.7 (C-4), 
36.2 (C-2), 35.3 (C-20), 33.1 (C-22), 28.4 (C-25), 27.7 (C-16), 25.3 (C-15), 23.3 
(C-23), 22.3 (C-28), 20.9 (C-11), 19.0 (C-26), 18.2 (C-27), 17.9 (C-21), 11.7 (C-29), 
11.3 (C-19), 11.2 (C-18). 

β-sitosterol (15) + stigmasterol (16): White crystal from methanol: mp: 
135˚C - 137˚C [lit. 134˚C - 136˚C] [39]. 

Stigmasterol 3-O-β-D-glucoside (17)—White powder; (C35H58O6): 1H-NMR 
(600 MHz, Pyridine-d5) δH: 5.22 (m, H-22), 5.09 (m, H-23), 5. 05 (d, 7.7Hz, H-1’), 
4.58 (m, H-6'a), 4.40 (m, H-6'b), 4.33 (m, H-3), 4.26 (m, H-4'), 4.05 (m, H-2'), 
3.99 (m, H-3'), 3.96 (m, H-5'), 2.05 (m, H-20), 2.04 (m, H-2), 2.03 (m, H-7a), 
1.98 (m, H-12), 1.82 (m, H-14), 1.81 (m, H-16), 1.74 (m, H-7b), 1.70 (m, H-1),1.60 
(m, H-15), 1.59 (m, H-24), 1.55 (m, H-8), 1.54 (m, H-25), 1.43 (m, H-28), 1.26 
(m, H-17), 1.24 (m, H-9), 1.22 (m, H-4), 1.21 (m, H-11), 1.09 (d, 6.5Hz, 21-CH3), 
0.92 (d, 6.6Hz, 27-CH3), 0.90 (d, 7.3 Hz, H-29), 0.87 (d; 7.1 Hz, 26-CH3), 0.74 (s, 
19-CH3), 0.59 (s, 18-CH3); 13C-NMR (150 MHz, Pyridine-d5) δC: 139.9 (C-5), 
139.1 (C-22), 130.0 (C-23), 118.2 (C-6), 102.6 (C-1'), 79.1 (C-3), 78.9 (C-3'), 77.5 
(C-5'), 75.8 (C-2'), 72.2 (C-4'), 63.3 (C-6'), 56.7 (C-17), 55.9 (C-14), 51.2 (C-24), 
49.9 (C-9), 43.8 (C-13), 41.5 (C-20), 40.5 (C-4), 39.9 (C-12), 37.9 (C-1), 35.1 
(C-10), 34.9 (C-2), 32.6 (C-25), 30.4 (C-7), 30.1 (C-8), 29.3 (C-16), 25.5 (C-28), 
23.7 (C-15), 22.1 (C-11), 22.0 (C-21), 21.7 (C-26), 19.6 (C-27), 13.4 (C-19), 12.9 
(C-29), 12.6 (C-18). 

5. Chemophenetic Significance 

In this study, seventeen secondary metabolites (Figure 1) were isolated from 
Rumex abyssinicus including one new ceramide (1), one phthalate derivative (2), 
six anthraquinones (3-8), four triterpenes (9-12) and five steroids (13-17). From 
all these isolated metabolites, it appears that compounds 2, 5, 8-17 are reported 
here for the first time from R. abyssinicus. All the anthraquinones described here 
have already been isolated from other species of the genus Rumex: Compounds 
3, 4 and 6 were isolated from R. abysinica [40] R. japonicus [24], R. acetosa., R. 
acetosella L., R. confertus Willd., R. crispus L., R. hydrolapathum Huds. R. obtusifo-
lius [41] and R. aquaticus [42], compounds 5 and 7 from R. japonicus [43], R. 
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nepalensis [44], compound 8 from R. obtusifolius [45] and compounds 7 and 8 
from R. acetosa [46]. Base to the fact that, anthraquinones represent one of the 
main classes of secondary metabolites isolated from the genus Rumex [14] [47], 
their presence in all of the above species allowed us to conclude that R. abyssi-
nicus and the other species mentioned exhibit very close chemotaxonomic rela-
tionships. The isolation of a new ceramide (1) from this plant was not a surpris-
ing since the works carried out by Watanabe et al., (2011) reported glucosylcera-
mides in R. obtusifolius. Although compounds 15 and 16 have already been iso-
lated from the genus Rumex [26] [48] [49] [50] [51], stigmasterol 3-O-β-D-gluco- 
side (17), stigmastane-3,6-dione (14), ergosta-6,22-diene-3,5,8-triol (13) have never 
been isolated from the family Polygonaceae. Bis-(2-ethylhexyl) phthalate (DEHP) 
(2) isolated for the first time from Rumex genus has already been reported from 
Polygonaceae family especially from Polygonum runcinatum [52].  

6. Conclusion 

In conclusion, the chemical study of the whole plant of R. abyssinicus led to the 
isolation of one previously undescribed ceramide (1) and sixteen known (2-17) 
compounds which enriched the chemical diversities of the plant, genus Rumex 
and Polygonaceae family. Compounds 10-12 may demonstrate here the rela-
tionship between F. aubertii and other species belonging to other genera herbs of 
Polygonaceae. Unfortunately, the extracts showed no antibacterial activity against 
the strains tested while compounds were either not active or weakly active. It will 
be interesting in future studies to test these extracts as well as the compounds 
isolated on other microbial strains. 
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