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Abstract 
This study aimed to compare the total phenolic content (TPC) and antioxi-
dant activities of A. rigidula extracts. It also aimed to identify phenolic acids 
present in the extracts. The 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic 
acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing anti-
oxidant power (FRAP), and ferric thiocyanate lipid peroxidation antioxidant 
assays were performed. High performance liquid chromatography was used 
to identify phenolic acids. There was no solvent effect on TPC nor on sca-
venging activities, and inhibition of lipid peroxidation (p > 0.05) among 
solvent extracts. On the other hand, 1:1:3 water: acetone: methanol extract 
(10.22 mg GAE/g sample) had significantly higher reducing potential than 
50% ethanol extract (EE) (9.259 mg GAE/g sample) (p < 0.05); but EE was 
not significantly different from 80% methanol extract (9.781 mg GAE/g sam-
ple) (p > 0.05). Phenolic fraction designated as fraction 4 had the highest an-
tioxidant activity (p < 0.05) with 69.49% ABTS scavenging activity and FRAP 
reducing potential, 22.26 mg of GAE/g sample. DPPH scavenging activities 
of fractions 4 (55.59%) and 5 (55.64%) were significantly higher than the 
other fractions (p < 0.05). A. rigidula extracts contain gallic, caffeic, vanillic, 
p-coumaric, salicylic acids and vanillin.  
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1. Introduction 

Antioxidants are a family of compounds that protect against oxidation directly 
or indirectly. Direct antioxidants suppress the formation of reactive oxidative 
species (ROS) in vivo and in vitro. Indirect antioxidants, on the other hand, en-
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hance the antioxidant response of an organism [1]. Antioxidants slow down or 
stop the oxidation of a substrate at low doses. They act by a number of chemical 
mechanisms, such as hydrogen atom transfer (HAT), single electron transfer 
(SET), and transition metal chelation [2] [3]. 

ROS are large family of oxidants derived from molecular oxygen [4]; they are 
oxygen ions (singlet oxygen, superoxide [O2•−]), or oxygen-containing radicals 
(hydroxyl, OH•−). High concentrations of ROS alter the structure of proteins, 
lipids, and nucleic acids [5] [6] which results in adverse and/or detrimental 
health effects such as early aging, diabetes, cancer, neurodegenerative disease, 
inflammatory disease, and cardiac disease [6]-[11]. Antioxidants are known to 
inhibit the enzymes involved in the oxidative stress response, to chelate the trace 
elements that are involved in free radical formation, and to function as ROS 
scavengers [12] [13] [14].  

There is a continuous search for new sources of biologically active compounds 
from plants [11] [14] [15]; these include antioxidants. Plants produce secondary 
metabolites as a defense mechanism against pathogens and other threats [16]. 
Secondary metabolites are also known to contribute to the antioxidant activity 
present in a variety and multitude of plant extracts. More specifically, plants 
containing phenolic compounds are possible sources of natural antioxidants 
which will stabilize free radicals by hydrogenation or by forming complexes with 
oxidizing species [17] [18] [19]. Plants in the genus Acacia possess several sec-
ondary metabolites, that include phenolic acids and flavonoids [20] [21]. Ace-
tone extracts of A. senegal and A. dealbata were reported to have high concen-
trations of phenols and flavonoids and exhibited antioxidant activities [22] [23]. 
Acacia nilotica leaf extracts exhibit reducing capabilities (2.57 mg GAE/mg sam-
ple ± 0.03) similar to ascorbic acid (2.62 mg GAE/mg sample ± 0.07) at 1000 
µg/mL [24]. Various solvent extracts from different plant parts of A. confusa 
have phenolic acid derivatives and flavonoids that also contribute to their anti-
oxidant activities [25]. 

The genus Acacia has an estimated 1200 species distributed all over the world 
and many pharmacological molecules have been isolated from its diverse species 
[17] [20]. However, the phytochemicals of only a small percentage of Acacia 
species have been examined so far [21]. The most predominant compounds iso-
lated from the genus Acacia are flavonoids, terpenoids and phenolic acids. The 
most frequently reported flavonoids are catechin and quercetin. Triterpenoids 
are the reported terpenoids and many gallic acid and coumaric acid derivatives 
were reported to have been isolated from the genus Acacia [20]. Other metabo-
lites known to be present in the Acacia species are polysaccharides (gums) and 
complex phenolic substances (condensed tannins) [26]. Acacia leaves have been 
reported to have antioxidant, antibacterial, antifungal, anticancer, antiparasitic, 
cytotoxicity, and immunomodulatory properties [17] [20] [27].  

The Acacia species understudy is A. rigidula; also known as Vachellia rigidula. 
It is predominantly found in the southern part of Texas and in the northern 
states of Mexico [28]. A. ridigula is found in the form of a large shrub or small 
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tree with rigid, thorny branches that display rich, dark-green foliage. It has some 
degree of drought tolerance and prospers in minimal watering regiments. A. ri-
gidula extracts have been extensively used in popular weight-loss supplements 
[28]. While A. rigidula’s root and stem extracts have been used as reducing and 
capping agent to produce silver nanoparticles. These nanoparticles were reported 
to eradicate pathogenic resistant bacteria in vivo [29]. Methanol bark extracts have 
been reported to have antifungal properties [30]. Cavazos et al. (2021) reported 
the presence of flavonoids and phenolic acids in acetone, methanol, and acetic 
acid extracts of A. rigidula leaves. They also reported A. rigidula’s potential as a 
source of antioxidant and antimicrobial compounds [31]. In this regard, addi-
tional evidence is needed to confirm the extent of the antioxidant activities of 
these compounds present in A. rigidula leaf extracts. To our knowledge, there 
are very limited studies on the biological activities of the species understudy. 

This present study provides additional evidence needed to confirm the extent 
of the antioxidant activities of secondary metabolites particularly total phenolic 
acids (TPAs) present in A. rigidula leaves. This present study’s main objectives 
were: 1) To compare the antioxidant activities of the different solvent extracts 
and the TPA fractions; 2) To identify phenolic acids present in the extract and 
the TPA fractions. The results of this present study will provide evidence that A. 
rigidula leaves can be a potential and viable source of phenolic compounds with 
antioxidant activities, and a basis for the potential use of A. rigidula leaves for 
pharmacological purposes. 

2. Materials and Methods 
2.1. Leaf Collection and Sample Preparation 

A total of four trees of similar height (398 cm - 433 cm) and trunk circumference 
(15.5 cm - 17.2 cm) were selected for leaf collection. These trees are located on 
the campus of Texas A&M International University in Laredo, Texas, USA and 
on the following coordinates: 27˚34'25''N 99˚25'56''W, 27˚34'10''N 99˚25'47''W, 
27˚34'16''N 99˚25'56''W, 27˚34'25''N 99˚25'55''W. The voucher for this specimen 
of A. rigidula (accession number WSCO 004,010) was deposited in the Mary 
Carver Hall Herbarium at Weber State University in Ogden, Utah. The speci-
men’s identity was authenticated by Dr. James Cohen, WSU’s botanist and her-
barium curator.  

In preparing the sample, fresh leaves were washed in running tap water and 
then towel-dried. Leaves with a mass of 150 grams were subjected to oven drying 
at 80˚C for 120 minutes, while checking on the dried mass weight periodically 
until there was no longer a change in mass. The dried leaves were then ground 
into a powder consistency using an electric herb grinder (Cool Knight, M150B) 
and stored at −20˚C. 

2.2. Chemicals 

Ethanol, methanol, and acetone were used as solvents for phytochemical extrac-
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tion. All three solvents were sourced and purchased from Sigma-Aldrich (St. Louis, 
Missouri, USA). Folin-Cioucalteu (2N) reagent, 2,2-diphenyl-1-picrylhydrazyl 
(DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), potas-
sium acetate, 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ), and iron (III) chloride 
were sourced and purchased from Sigma Aldrich. The phenolic standards gallic 
acid (B24887), 4-(diphenylhydroxymethyl) benzoic acid (43081-1G), vanillic ac-
id (94770-10G), vanillin (V1104-100G), caffeic acid (C0625-2G), p-coumaric 
acid (C9008-1G) and salicylic acid (247588-100G) were sourced and purchased 
from Alfa-Aesar (Ward Hill, Massachusetts) and Sigma-Aldrich. 

2.3. Soxhlet Extraction of Secondary Metabolites 

Thirty grams of ground leaves were used to fill a 41 mm × 123 mm Whatman 
cellulose extraction thimble (VWR, 10035-404) and 300 mL of solvent (50% 
ethanol, water: acetone: methanol (1:1:3), 80% methanol) was added to a round 
bottom flask. The solvent was heated and allowed to evaporate and reach the 
Soxhlet condenser. The condenser then released water droplets into the extractor 
containing the thimble. When the solvent reached the siphon, the solvent and 
extractant were cycled back into the round bottom flask for additional extraction 
rounds [32]. To remove excess solvent from the Soxhlet extracts, both rotary 
evaporation and lyophilization were performed. Rotary evaporation was used to 
remove the excess alcoholic solvent from the Soxhlet extract. After the alcoholic 
solvent was removed from the Soxhlet extract, the extract was frozen at −80˚C 
prior to freeze-drying for 48 - 72 hours. The extract was lyophilized using the 
Labconco® FreeZone 2.5 Liter Benchtop Freeze Dry System. This method was 
carried out for each extract. 

2.4. Total Phenolic Content (TPC) Determination 

TPC of each extract was determined using the Folin Ciocalteu (FC) method de-
scribed by Bakasso et al. (2014) with some modifications. An aliquot of 0.5 mL 
of the extract (100 µg/mL) was mixed with 2.5 mL of the 2N Folin Ciocalteu 
reagent. The mixture was allowed to stand at room temperature (RT) for 5 mi-
nutes. Then, 2 mL of sodium carbonate (75 g/L) solution was added and incu-
bated in the dark at RT for 2 hours. The absorbance of each sample mixture was 
measured at a wavelength 760 nm against a blank using a microplate reader 
(Tecan Infinite M Nano). A calibration curve was plotted using gallic acid in 
concentrations of 0, 25, 50, 75, 100, 150, and 200 mg/L. The results are expressed 
as milligrams of Gallic Acid Equivalents (GAE)/gram of extract [33]. 

2.5. Clean up and Fractionation of Phenolic Compounds 

Clean-up and fractionation of phenolic compounds present in the A. rigidula 
water: acetone: methanol (1:1:3 v/v/v) extracts were performed following stan-
dard protocols [34] [35] [36] with some modifications. Sephadex LH-20 (Cytiva 
51218000-EH) column chromatography was performed using a Biologic LP low 
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pressure chromatography system (Bio-Rad) with supporting Biofrac fraction 
collector (Bio-Rad). A Bio-Rad econo-glass column (Bio-Rad 7371532) with di-
mensions of 1.5 cm × 30 cm was used.  

The extract solution (0.5 g of extract dissolved in 2 mL of 50% methanol) was 
filtered using a 0.45 µm PTFE syringe filter (76479-004) before loading into the 
column to prevent large particles to clog the column. The Sephadex LH-20 col-
umn was conditioned using methanol followed by the methanolic extract solu-
tion (0.25 g∙mL−1) and was subjected to methanolic solutions of increasing po-
larity (50% and 70%) followed by elution with 100% methanol to remove phe-
nolics from the sorbent. Elution was carried out at a flow rate of 1 mL min-1, 
with 30 mL of 50% methanol, 15 mL of 70% methanol, and 15 mL of 100% me-
thanol. 

To confirm the presence of phenolic compounds, the collected cleaned frac-
tions were subjected to the Ferric Chloride test described by Panti et al. (2014) 
with some modifications. Three drops of 10% ferric chloride solution were add-
ed to 750 µL of each fraction to determine the presence of phenolic compounds 
with gallic acid (200 µg/mL) used as a positive control. Positive results were in-
dicated by a black-blue coloring while negative results were indicated by bright 
yellow coloring [37].  

The positive results were then subjected to thin layer chromatography (TLC) 
using silica gel plates and toluene:acetone:formic-acid (4.5:4.5:1 v/v/v) as a mo-
bile phase to identify similar phenolic compounds in each fraction. Each TLC 
plate was run allowing the solvent front to reach 8 cm, and the Rf value of each 
compound was measured. Fractions with compounds of the same Rf values were 
pooled and further analyzed for antioxidant activity in triplicates. 

2.6. Comparison of the Antioxidant Activities of Crude Extracts  
and Total Phenolic Fractions 

The extracts (50% EtOH extract, 80% MetOH extract, 1:1:3 WAM extract, and 
the total phenolic fractions) were dissolved in 80% EtOH at a concentration of 1 
mg/mL and then diluted to prepare the series concentrations for the antioxidant 
assays [38]. All assays were performed in triplicates for each of four blocks of the 
experimental design. ABTS scavenging activity (%), DPPH radical scavenging 
activity (%), Ferric reducing antioxidant power (FRAP) assay (mg GAE/g freeze- 
dried sample) and inhibition of linoleic acid peroxidation (%) will represent an-
tioxidant activity. 

2.6.1. ABTS Radical Scavenging Assay  
The 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical sca-
venging assay was performed following the method of Re et al. [38] with mod-
ifications. The ABTS radical was generated by the oxidation of ABTS (Roche 
10102946001) with potassium persulfate (Sigma-Aldrich 60489-250G-F). The 
ABTS solution (7 mM) was reacted with potassium persulfate (2.45 mM) solu-
tion and it was stored at 4˚C in the dark for 12 - 16 hours to produce a dark co-
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lored solution containing the ABTS radical cation. Prior to the assay, the ABTS 
radical cation was diluted with 50% methanol for an initial absorbance of about 
0.70 (±0.02) at 745 nm wavelength. The free radical scavenging activity was eva-
luated by mixing 3 mL of ABTS working standard with 300 μL of test sample 
(50, 100, 150, 200, 300 μg/mL) in a 10 mL beaker. The decrease in the absor-
bance was measured at exactly 1 min after mixing the solution until it reached 6 
min. The final absorbance was noted then. The ABTS scavenging activity (%) 
was calculated based on the following formula [38]:  

ABTS scavenging activity (%) = [(absorbance of control − absorbance of sam-
ple)/absorbance of control] × 100% 

2.6.2. DPPH Radical Scavenging Activity Assay 
The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay was 
performed following the method by Zhu [39] with modifications. One mL of 
DPPH solution (0.1 mM, in methanol) was added to 1 mL of the samples at dif-
ferent concentrations (50 - 300 μg/mL). Then, the reaction mixture was vortexed 
and incubated in the dark at room temperature for 30 min, and the absorbance 
was read at 517 nm using a microplate reader (Tecan Infinite M Nano). A solu-
tion of 80% ethanol served as the negative control while ascorbic acid (BDH 
BDH9242-250G) and gallic acid (Alfa Aesar, B24887) served as positive controls 
(standards). The DPPH scavenging activity (%) was calculated based on the fol-
lowing formula [39]:  

DPPH scavenging activity (%) = [(absorbance of control − absorbance of 
sample)/absorbance of control] × 100% 

2.6.3. Ferric Reducing Antioxidant Power (FRAP) Assay  
Reducing antioxidant power was calculated using the method by Tomasina and 
colleagues [40] with modifications. In a 2.7 mL of freshly prepared FRAP rea-
gent (300 mM acetate buffer (pH 3.6), 10 mM TPTZ and 20 mM FeCl3 solution 
(10:1:1, v: v: v), 0.3 mL of the diluted sample was added. The mixture was incu-
bated for 5 minutes at 37˚C before absorbance was read at 620 nm in a plate 
reader (Tecan Infinite M Nano). Ethanolic solutions of ascorbic acid and gallic 
acid served as positive controls and 80% ethanol served as negative control. The 
results are reported as milligrams of gallic acid equivalents per gram of freeze-dried 
sample. 

2.6.4. Ferric Thiocyanate Lipid Peroxidation Assay  
Percent inhibition of peroxidation in linoleic acid was determined following the 
ferric thiocyanate method by Sultana and colleagues [41]. In a solution mixture 
of linoleic acid (0.13 mL), 99.8% ethanol (10 mL) and 0.2 M sodium phosphate 
pH 7 buffer (10 mL), 5 mg of the freeze-dried sample were added. The mixture 
was diluted with distilled water to reach a final volume of 25 mL. The solution 
was then incubated at 40˚C for 15 days. After the incubation period, 0.2 mL of 
the sample solution was sequentially added with 10 mL of 75% ethanol, 0.2 mL 
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of 30% ammonium thiocyanate, and 0.2 mL 20 mM of ferrous chloride (Alfa 
Aesar A16327) in 3.5% HCl. Positive controls were prepared as described above 
but using ascorbic acid or gallic acid in place of freeze-dried sample. On the 
other hand, the negative control was prepared as described above but without 
the freeze-dried sample. After 3 min of stirring, the absorbance of the samples 
was read thrice using a microplate reader (Tecan Infinite M Nano) at a 500 nm 
wavelength. Percent inhibition of lipid (linoleic acid) peroxidation was calcu-
lated using the following equation [41]: 

Inhibition of lipid peroxidation (%) = 100 − [(absorbance of sample)/(absorbance 
of control)] × 100% 

2.7. High Performance Liquid Chromatography (HPLC) Analysis 

HPLC was performed using a Shimadzu Prominence-i LC-2030C 3D to identify 
the phenolic acids present in the three different solvent extracts and their iso-
lates. Following the method reported by Abdelkhalek [42], the samples were se-
parated using an elution gradient with: 1) HPLC grade water 0.1% trifluoroacetic 
acid (v/v), and 2) HPLC grade methanol. The injection volume was 20 µL. Vari-
able wavelength detector (VWD) was set at 254 nm wavelength to identify the 
phenolic compounds present in the A. rigidula extract. To identify the phenolic 
acids present in the sample extracts, phenolic acid standards namely gallic acid, 
4-(diphenylhydroxymethyl) benzoic acid (43081-1G, Millipore Sigma), vanillic 
acid (94770-10G, Millipore Sigma), vanillin (V1104-100G, Millipore Sigma), 
caffeic acid (C0625-2G, Millipore Sigma), p-coumaric acid (C9008-1G, Millipore 
Sigma) and salicylic acid (247588-100G, Millipore Sigma) were used. The analy-
sis was performed in triplicates for all the A. rigidula extracts and the fractions. 

2.8. Statistical Analyses  

In this present study, the overall experimental design was in the form of a ran-
domized complete blocks design (RCBD) where all treatments were randomly 
allocated into each of the blocks. The RCBD for TPC and for TFC had two 
blocks and four treatments. For scavenging activity analysis (SA), the RCBD had 
four blocks and 11 treatments with an analysis of variance (or anova) and post- 
hoc test carried for each assay. For percent lipid peroxidation inhibition, the 
RCBD had three blocks and 24 treatments (each treatment represents an extract 
and concentration combination). All post-hoc tests were in the form of a Bon-
ferroni test. All test of hypothesis associated with each anova and the post-hoc 
tests were carried out using a 5% type-I error rate (or α = 0.05). SPSS 28 and SAS 
9.4 were the statistical software used to perform all statistical analyses. 

3. Results and Discussion  
3.1. The Optimum Solvent for Extraction of Total Phenolic Acid  

Content 

Previous studies have shown that solvents affect the extraction of plant sec-
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ondary metabolites [43] [44] [45]. This study aimed to identify the optimum 
solvent for extracting total phenolic acid content (TPC) from A. rigidula leaves. 
Table 1 shows mean TPC for the extracts produced from 50% ethanol (EE), 
1:1:3 water:acetone:methanol (WAME) and 80% methanol (ME). An anova on 
TPC revealed no significant differences among the solvent extracts (p > 0.05) 
(Anova table provided as supplementary material).  

In comparing this study’s results to those of previous studies, some of the 
most common solvents used for secondary metabolite extraction are: ethanol, 
methanol, ethyl acetate, acetone, and hexane [21] [46]. Currently, there is no 
standard method for the extraction of total phenolic acids from plant samples 
[47]. The solvent used is dependent on the desired chemical composition of the 
extract; indeed, there is large variability in the chemical composition of phenolic 
compounds in plants, ranging from simple phenolics (e.g., phenolic acids, fla-
vonoids, and anthocyanins) to complex polymers (e.g., tannins) [48]. The sol-
vent ethanol has been reported to be a good choice for polyphenolic extraction 
and it has the advantage of being safe for humans [49] [50]. In a study on leaves 
from Acacia nilotica (L.), ethanolic extracts were obtained by Soxhlet extraction 
with a reported TPC of 536.02 mg of GAE/g of extract [51]. Methanol is also one 
of the most commonly used solvents for the extraction of plant secondary me-
tabolites, especially smaller molecules such as simple polyphenols [48].  

The results of this study showed that there were no significant differences (p > 
0.05) in TPC among the different solvent (ethanol, water: acetone: methanol, 
methanol) extracts. In a study comparing TPC of Acacia senegal leaves, there 
were also no observed significant difference between the TPC of extracts pre-
pared by using acetone and methanol as solvents. The TPC from the acetone and 
the methanol extracts were 0.779 ± 0.313 and 0.842 ± 0.413 mg tannic acid 
equivalent/mL, respectively [22]. On the other hand, water:acetone:methanol 
solvent mixture was reported as the most effective solvent at extracting poly-
phenols like p-aminobenzoic acid, caffeic acid, rutin, and others [52]. In this 
study—although not statistically different, the WAME solvent mixture was the 
most effective solvent tested for the extraction of TPC (288.24 mg of GAE/g of 
extract), when compared to EE (248.37 mg of GAE/g of extract) and ME (279.21 
mg of GAE/g of extract). Based on these results, using ethanol as the extraction 
solvent for future research would be recommended, as it is the most cost effec-
tive and a relatively safer solvent compared to acetone and methanol [49] [50]. 
 
Table 1. Comparison of the total phenolic content of A. rigidula solvent extracts. 

Extract mg of GAE/mL of sample mg of GAE/g of sample Sig. 

EE 2.484 248.37 ns 

WAME 2.882 288.24 ns 

ME 2.792 279.21 ns 

Values are expressed as the means of four blocks; ns denotes not significant (p > 0.05). 
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3.2. Comparison of Antioxidant Activities of the Different Solvent  
Extracts 

The ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) assay is 
based on the reduction of the radical cation (ABTS•+) by the presence of anti-
oxidant compounds [53] [54]. In the ABTS assay, antioxidant compounds served 
as hydrogen providers or free-radical scavengers [53]. Figure 1(a) presents the 
ABTS scavenging activities (SA; %) of the A. rigidula extracts, EE, WAME, and 
ME at 50, 150, and 250 µg/mL. ABTS SA ranged from 49.85% - 62.53%. Results 
indicated no significant differences (p > 0.05) in scavenging activities (SA) 
among solvent extracts at all tested concentrations (p > 0.05). In addition, there 
were also no significant differences (p > 0.05) in SA among the three solvent ex-
tracts and the positive controls (34.20% for ascorbic acid at 100 µg/mL and 
65.56% for gallic acid at 100 µg/mL). 

Diphenyl-1-picrylhydrazyl assay is another assay that assesses the presence of 
antioxidant compounds. This assay uses the free radical, diphenyl-1-picrylhydrazyl 
(DPPH) while the antioxidant served as the hydrogen provider or free-radical 
scavenger [55]. DPPH scavenging activities (SA; %) in A. rigidula extracts are 
presented in Figure 1(b). The positive controls, ascorbic acid and gallic acid at 
100 µg/mL (48.99% and 48.46%, respectively) exhibited the highest activities but 
were not significantly different (p > 0.05) from EE at all levels of concentration 
(46.33% - 47.85%), WAME, and ME at 150 and 250 µg/mL (46.27% - 47.06%). 
ME and WAME at 50 µg/mL had the lowest SAs (45.17% - 45.22%) and were 
significantly lower than the positive controls (p < 0.05) Figure 1(b)). 

In general, it was observed that the scavenging activities (antioxidant activi-
ties) of solvent extracts (EE, WAME and ME) were similar to each other. Like-
wise, the TPC among solvent extracts were not significantly different (p > 0.05). 
It is likely that the TPC of the extracts contribute largely to the observed  
 

 
Figure 1. Comparison of the scavenging activities (SA) among A. rigidula solvent extracts using (a) ABTS and (b) DPPH assays. 
Anova performed on SA from the ABTS and the DPPH assays indicated significant differences among the various combinations of 
treatment and concentration (p < 0.05; Tables in SI). A Bonferroni post-hoc test was performed; bars indicate 95% confidence 
intervals. Means with different letters are significantly different (p < 0.05), means with same letters are not significantly different 
(p > 0.05). 
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antioxidant activity. The relationship between TPC and antioxidant activities has 
been reported in multiple works [55] [56] [57]. More specifically, in the work by 
Bordean et al. [58] where they have reported a high correlation (r = +0.959, p = 
0.0001) between TPC and the observed antioxidant activity of different Artemi-
sia species. Similar to the results from this study, the antioxidant activities of the 
different solvent extracts were not significantly different from each other (p > 
0.05). This is likely due to no significant differences in TPC among solvent ex-
tracts (p > 0.05). 

The similarities in scavenging activities among the solvent extracts and the 
positive controls (p > 0.05) in both the ABTS and DPPH assays provide evidence 
of the potential of A. rigidula extracts as a source of antioxidants. In addition, 
the observed similarity in the ABTS scavenging activities between the solvent 
extracts and the gallic acid suggests that phenolic acids are likely contributing to 
the observed antioxidant activity in A. rigidula extracts. Furthermore, the ob-
served scavenging activities of the positive controls suggest that phenolic com-
pounds such as gallic acid, have better scavenging potential against the ABTS 
radical than non-phenolic compounds like ascorbic acid. Similar to the study on 
the methanolic extracts of Vayasthapona rasayana, ascorbic acid (9% ± 0.5%) 
had significantly lower ABTS scavenging potential compared to the other posi-
tive control, Trolox (95% ± 0.05%) [59]. Another study by Boulebd et al. [60] 
comparing four well-known antioxidants (ascorbic acid, Trolox, BHT, and 
BHA) reported that ascorbic acid, when subjected to the ABTS assay, required 
the highest concentration to scavenge 50% of the ABTS radical (23.40 ± 1.06 
µM). Other Acacia species reported to have scavenging activities against ABTS 
and/or DPPH radical are A. nilotica (L). leaves, A. caven flowers and A. senegal 
leaves [23] [24] [50] [61]. 

The presence of antioxidant activity in A. rigidula extracts was also assessed 
using the ferric reducing antioxidant power (FRAP) assay. In this assay, the an-
tioxidants serve as electron-donors that result to the reduction in ferric iron 
(Fe3+) in the assay mixture with ferrous ion (Fe2+) [62] [63]. In this study, the 
FRAP assay results showed a ferric reducing antioxidant power or reducing po-
tential in A. rigidula extracts (Figure 2). An anova performed on the FRAP re-
sults showed no significant differences among the treatment by concentration 
interactions, but a significant difference among treatments (p < 0.05) as well as 
significant difference among concentrations (p < 0.001). Thus, pointing to the 
main effects of treatments and of concentrations and without any interaction ef-
fects (anova table provided as supplementary material). In this regard, the re-
ducing potential of EE, WAME and ME from all concentrations were pooled 
(Figure 2(a)). The highest reducing potential was observed in WAME (10.22 mg 
GAE/g sample) but was not significantly different from that of ME (9.781 mg 
GAE/g sample) (p > 0.05) (Figure 2(a)). On the other hand, the reducing poten-
tial of WAME was significantly higher than EE (9.259 mg GAE/g sample) (p < 
0.05). Statistically significant differences (p < 0.05) among all concentrations  
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(a) 

 
(b) 

Figure 2. Comparison of the FRAP scavenging activities (a) among solvent extracts (b) 
among concentrations. For (a), means were calculated across different levels of concen-
trations. For (b), means were calculated across treatments. A Bonferroni post-hoc test was 
performed; bars indicate 95% confidence intervals. Means with different letters are sig-
nificantly different (p < 0.05), means with same letters are not significantly different (p > 
0.05). 
 
with respect to their reducing ability were observed (Figure 2(b)). In comparing 
the mean reducing potential among six different concentrations, results as ex-
pected showed that reducing potential was concentration dependent. 

Other studies have also used the FRAP assay to test the reducing power of 
Acacia plant extracts. A study on Acacia jacquemontii leaves compared the TPC 
for methanol and ethanol extracts and found that methanol extract had the 
highest TPC (271.44 ± 4.41 mg GAE/g of sample) [64]. That study found that 
the methanol extract of A. jacquemontii leaves also produced the highest FRAP 
reducing power (453.18 ± 5.9 mg TE/g sample) using a 1 mg/mL concentration. 
In this present study, the concentration of TPC was highest in the WAME sol-
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vent extract (288.24 mg GAE/g of sample), as well as the highest reducing power 
(10.22 mg GAE/g sample). 

The ferric thiocyanate lipid peroxidation (LPO) assay measures the linoleic 
acid peroxidation inhibition. In the assay, the presence of antioxidants will result 
to an inhibition in the oxidization of ferrous chloride to ferric chloride brought 
about by the radicals produced from linoleic acid peroxidation. Figure 3 shows 
the lipid peroxidation inhibition activity of A. rigidula extracts, EE, WAME, and 
ME at 200 µg/mL. LPO inhibition activities were as follows: EE, 70.65% > 
WAME, 68.99% > ME, 66.64% > ascorbic acid, 62.70% > gallic acid, 52.09%. A. 
rigidula extracts performed similarly as the antioxidant, ascorbic acid (p > 0.05) 
and performed better than the antioxidant, gallic acid (p < 0.05) (Figure 3). 
Once again, these results provide evidence for the antioxidant activity A. rigidula 
extracts. 

Compared to this present study, Cavazos et al. [31] found lower LPO inhibi-
tion activities in A. rigidula extracts; A. rigidula acetone extract had the higher 
LPO inhibition activity of 42% while only a 25% was observed for their metha-
nolic A. rigidula extract. They also reported the LPO inhibition activity of A. 
berlandieri acetone and methanolic extracts to be at 19% and 13%, respectively. 
The observed antioxidant activity in their Acacia extracts was attributed to sec-
ondary metabolites namely flavonoids, terpenes, saponins, and tannins that were 
qualitatively determined to be present in the A. rigidula and A. berlandieri ex-
tracts. Whereby, solvent extracts (80% ethanol) from A. nilotica (L.) leaves, 
pods, and bark extracts at a concentration of 2000 µg/mL had LPO inhibition ac-
tivities of 87.39%, 83.72%, and 60.53%, respectively [22]. These extracts were 
tested at 10× higher concentration than the A. rigidula extracts. Based on the 
results of that study and this present study, A. rigidula extracts have higher LPO 
inhibition activity than A. nilotica extracts. 
 

 
Figure 3. Comparison of the lipid peroxidation inhibition activity of A. rigidula solvent 
extracts. A Bonferroni post-hoc test was performed; bars indicate 95% confidence inter-
vals. Means with different letters are significantly different (p < 0.05), means with same 
letters are not significantly different (p > 0.05). 
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A. rigidula extracts (EE, WAME, and ME) were subjected to two scavenging 
activity assays (ABTS, DPPH) and two iron reducing assays (FRAP, LPO inhibi-
tion) to determine and compare the antioxidant activities of the extracts. The 
results from all antioxidant assays provide evidence that A. rigidula leaf extracts 
exhibited antioxidant activities comparable to gallic acid and ascorbic acid. In 
general, there is no difference in antioxidant activities among EE, WAME, and 
ME extracts as well as in TPC. All extracts contained more than 200 mg GAE/g 
of sample. Phenolic compounds have been attributed as being powerful antioxi-
dants in vitro, greater than well-known antioxidants such as ascorbic acid and 
vitamin E [13] [65]. It is likely that phenolic compounds contribute greatly to 
the observed antioxidant activities in A. rigidula extracts.  

3.3. Isolation and Identification of Phenolic Acids  

The water: acetone: methanol (1:1:3 v/v/v) (WAME) extract yielded the highest 
TPC, thus WAME was used as the solvent in the extraction protocol. The isola-
tion of phenolic acids was done using Sephadex LH-20 column chromatography. 
In total, there were 38 individual fractions collected. These fractions were sub-
jected to the ferric chloride test to detect phenolic compounds. In this test, FeCl3 
forms a complex with the hydroxyl group attached to the benzene, creating a 
dark blue, black or brown coloration. Fractions that were positive in the ferric 
chloride test were subjected to thin layer chromatography (TLC). Fractions with 
similar Rf values and banding patterns were pooled together to form the main 
fractions. This pooling is based on the assumption that fractions with similar Rf 
values will have the same, or similar, compounds. Five main fractions were ob-
tained and with each of these subjected to High Performance Liquid Chromato-
graphy (HPLC) analysis in order to identify the phenolic acids present in the A. 
rigidula extracts.  

HPLC is commonly used to determine the phytochemicals present in plant 
extracts [61] [63] [66] [67]. Antioxidant phenolic compounds: benzoic acid, 
caffeic acid, p-coumaric acid, gallic acid, salicylic acid, vanillic acid and vanillin 
[21] [58] [68] frequently reported in plants (i.e., Acacia) were used as standards 
in this present study. Table 2 shows the retention time and area of each phenolic 
standard used in this study. 

Figure 4 shows the chromatograms for Fractions 1 - 5, with peaks labeled 
with their phenolic acid identities. Using the retention time obtained from the 
phenolic standards, gallic acid, caffeic acid, salicylic acid, vanillic acid, vanillin, 
and p-coumaric acid were identified in these fractions. A study by Mohammed 
et al. [63] also collected five main fractions in investigating the phenolic compo-
sition of Artemisia herba-alba. That study was able to identify hydroquinone, 
4-hydroxy benzoic acid, catechol, quercetin, gallic acid, cinnamic acid, and thy-
mol in its different fractions. Similar to this present study’s results, some phe-
nolic compounds were present in multiple fractions, while some compounds 
only appeared in one fraction. Gallic acid was present in all five fractions in this 
present study. Salicylic acid was present in Fractions 1 and 2 (Figure 4(a) and  
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(d) 

 
(e) 

Figure 4. HPLC chromatogram of Fractions 1 - 5. (a) Fraction 1; (b) Fraction 2; (c) fraction 3; (d) Fraction 4; (e) Fraction 5. GA = 
gallic acid, CA = caffeic acid, SA = salicylic acid, VN = vanillin, VA = vanillic acid, PCA = p-coumaric acid. Red asterisk denotes a 
peak with unidentifiable compound. 
 
Table 2. Standards of phenolic compounds and their retention times. 

Standards Retention Time (min) Concentration (ppm) Area 

4-(diphenylhydroxymethyl) benzoic acid 18.02 1000 55,292,075 

Caffeic acid 12.08 1000 68,926,704 

p-coumaric acid 13.08 1000 69,474,605 

Gallic acid 4.35 1000 121,965,654 

Salicylic acid 16.50 1000 2,128,743 

Vanillic acid 12.83 1000 75,722,335 

Vanillin 12.62 1000 63,944,221 

All phenolic standards were 1000 ppm. All fractions and standards were ran using a linear gradient of methanol (0% - 50% for 10 
min, 50% - 70% for 10 min, and 100% for 5 min) for the elution and identification of the chemical components. 
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Figure 4(b)). Vanillin was present in Fraction 2 only, and vanillic acid in 
Fraction 4 only. Caffeic acid was observed in both Fractions 1 and 4. The 
p-coumaric acid was only visible in Fraction 4, which was the fraction with the 
most identifiable compounds present (Figure 4(d)). Additionally, there were 
two peaks observed in all fractions, but were most intense in Fractions 3, 4, and 
5, with retention times averaging 14.69 and 21.24 min for these two peaks. These 
peaks did not fall within the range of any of the phenolic standards and hence 
remained unidentified. 

3.4. Comparison of Antioxidant Activities of Phenolic Fractions  
against the Crude Extract 

Comparing the antioxidant activities of the different fractions, it can be observed 
that Fractions 4 and 5 showed the highest antioxidant activities in all antioxidant 
assays performed (Table 3). More specifically, Fraction 4 had significantly high-
er ABTS scavenging activity as well as ferric reducing power (FRAP) than Frac-
tion 5 (p < 0.05). In terms of DPPH scavenging activity, Fractions 4 and 5 had 
no significant difference (p > 0.05). In comparison with the crude extract, both 
Fractions 4 and 5 has significantly higher (p < 0.05) ABTS scavenging activity 
than the crude extract but no significant difference (p > 0.05) in DPPH scaveng-
ing activity among Fraction 4, Fraction 5 and the crude extract (Table 3). On the 
other hand, a statistically higher (p < 0.05) reducing power was observed in the 
crude extract (23.61%) compared to Fraction 4 (22.26%) and Fraction 5 
(16.54%). Fractions 1, 2 and 3 showed lower antioxidant activities (with Fraction 
1 being the lowest) in all assays performed compared to Fractions 4, 5 and the 
crude extract. 
 
Table 3. Results of ABTS, DPPH, and FRAP assays for fractions and crude extracts. 

Sample ABTS DPPH FRAP 

(100 µg/mL) % Inhibition % Inhibition mg GAE/g of sample 

Fraction 1 25.27 ± 3.20i 51.66 ± 2.76b 6.61 ± 0.19h 

Fraction 2 46.16 ± 3.20e 53.98 ± 2.76b 10.60 ± 0.34f 

Fraction 3 59.24 ± 3.20c 53.36 ± 2.76b 10.91 ± 0.05f 

Fraction 4 69.49 ± 3.20a 55.12 ± 2.76a 22.26 ± 0.67b 

Fraction 5 63.61 ± 3.20b 55.59 ± 2.76a 16.52 ± 0.25c 

Crude Extract 60.19 ± 3.20c 55.64 ± 2.76a 23.61 ± 0.37a 

Gallic Acid 62.82 ± 3.20b 54.43 ± 2.76a - 

Ascorbic Acid 63.44 ± 3.20b 56.45 ± 2.76a - 

Values are expressed as mean ± 95% CI of three trials. A. bonferroni post hoc test was 
performed. Means in the same column with different letters are significantly different (p < 
0.05), means with same letters are not significantly different (p > 0.05). 

https://doi.org/10.4236/abb.2024.151002


A. Ochoa-Negrete et al. 
 

 

DOI: 10.4236/abb.2024.151002 31 Advances in Bioscience and Biotechnology 
 

Fraction 4 is the most interesting fraction given that among all fractions, Frac-
tion 4 had the significantly highest (p < 0.05) ABTS scavenging activity (69.49%) 
and an activity higher than the positive controls: gallic acid (62.82%) and ascor-
bic acid (63.44%) as well as with the crude extract (60.19%). In addition, in 
terms of the DPPH scavenging activity, Fraction 4 (55.12%) had no significant 
difference (p > 0.05) in scavenging activity when compared to gallic acid (54.43%), 
ascorbic acid (56.45%) and the crude extract (55.64%). The results from the 
antioxidant assays imply that there is a difference in the compounds extracted at 
different times during the column chromatography methanol gradient. The 
comparison of the antioxidant activities of the collected fractions implies that 
most of the compounds contributing to the antioxidant activity were isolated in 
Fraction 4 using a mostly 100% methanol solvent followed by Fraction 5 eluted 
with a mostly 80% methanol solvent. Based on these results, Fraction 4 had the 
best antioxidant activities when compared to the rest of the fractions for the 
ABTS, DPPH, and FRAP assays.  

Results from HPLC analysis (Table 4) showed that when compared to Frac-
tion 5, Fraction 4 had detectable presence of gallic acid, caffeic acid, vanillic acid, 
and coumaric acid while Fraction 5 contained gallic acid only. Gallic acid was 
also detectable in all fractions but was higher in Fractions 4 and 5. It is most 
likely that gallic acid contributed majorly to the antioxidant activities observed 
in all fractions especially to the higher activities observed in Fractions 4 and 5. 
Vanillic and p-coumaric acids were detected in Fraction 4 only. Thus it is likely 
that these phenolic acids contribute to the higher antioxidant activity observed 
in Fraction 4 compared to Fraction 5. Based on the combined results of the 
HPLC analysis and the antioxidant assays; the phenolic compounds in A. rigi-
dula extracts responsible for the antioxidant activities are: gallic acid > coumaric 
acid > vanillic acid > vanillin > salicylic acid > caffeic acid. 

Phenolic compounds have been reported to have high antioxidant activities 
[69] [70] [71]. High correlations between total phenolic content (TPC) values 
and antioxidant activities were reported in several studies i.e., Artesemia species, 
Western Australian honeys, A. chasmamtum, kiwi and cucumber, C. didymus 
[2] [18] [58] [70] [71]. Reports of the antioxidant activity in Acacia extracts have  
 
Table 4. Phenolic compounds identified in fractions 1 - 5. 

Fraction GA CA VA VN 4-BA PCA SA 

1 + +     + 

2 +   +   + 

3 +       

4 + + +   +  

5 +       

GA—gallic acid; CA—caffeic acid; VA—vanillic acid; VN—vanillin; 4-BA-4 (diphenylhy-
droxymethyl) benzoic acid; PCA—p-coumaric acid; SA—salicylic acid. 
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been reported by various studies which have been consolidated in a review by 
Batiha [21]. The investigation of an extract of A. hydaspica produced from ethyl 
acetate showed high concentrations of polyphenolic compounds exhibited great 
antioxidant activity in vivo [17]. Further studies on the antioxidant activity of 5 
different Acacia species (A. mangium, A. auriculiformis, A. crassicarpa, A. leu-
cophloea, and A. deccurens) showed that A. crassicarpa had the highest antioxi-
dant activity along with a high content of phenolic compounds present in the 
methanolic extract [72]. A correlation between TPC and antioxidant activity is 
further supported by the results of Prayogo et al. [72]. They observed lower an-
tioxidant activities in extracts of A. mangium and A. decurrrens with lower 
phenolic acid content.  

Phenolic compounds possess excellent antioxidant potential due to their high 
redox reactivity to reduce free radicals and prevent destructive cascade reactions 
[73] [74]. The antioxidant activity of the phenolic compounds is attributed to its 
reducing hydrogen and singlet oxygen quenching properties [74]. Furthermore, 
phenolic compounds have been identified to be excellent antioxidant com-
pounds due to their chemical structure. Phenolic compounds are composed of a 
6-membered phenyl ring where one or more double bonds could be present. 
Due to the large delocalization of electrons of the compound, phenolic acid and 
other phenolic compounds are able to donate electrons to free radicals [47] [74]. 
Furthermore, the resonance stabilized structures terminate the propagation of 
additional radical formation [73] [74]. Phenolic acids and other phenolic com-
pounds can also act as antioxidant compounds due to their ability to form chela-
tion complexes with metals. Transitional metals can remove or donate electrons 
resulting in the formation of free radicals. Phenolic acids with two or more hy-
droxyl groups can conjugate with metals thus limiting the formation harmful 
free radicals [73] [74].  

4. Conclusion 

This study demonstrated that Acacia rigidula leaves possess antioxidant activi-
ties. There were no significant differences in antioxidant activities among solvent 
extracts. It was observed that type of extraction solvent does not significantly 
impact TPC extraction. Based on the combined results of the HPLC analysis and 
the antioxidant assays; the phenolic compounds in A. rigidula extracts responsi-
ble for the antioxidant activities are: gallic acid > coumaric acid > vanillic acid > 
vanillin > salicylic acid > caffeic acid. The results of this present study provide 
evidence that A. rigidula leaves can be a potential and viable source of phenolic 
compounds with antioxidant activities, and a basis for the potential use of A. ri-
gidula leaves for pharmacological purposes.  
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