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Abstract 
The structure and biological function of circular RNAs (circRNAs) in regu-
lating gene expression in a cell is far from known. CircRNAs are unique mo-
lecules that contain potent regulatory elements. CircRNAs actively interact 
with miRNAs (sponging), affecting their regulation and functions. In addi-
tion, circRNAs have roles in transcriptional regulation, splicing, and peptide 
synthesis. With all these properties, circRNAs could play an essential role in 
diseases, especially Alzheimer’s. Their role in early diagnosis, previous to 
present symptoms, prognosis associated with neuropathological AD of spe-
cific circRNAs, and one of their primary functions is to act as a sponge for 
miRNAs, which could be a starting point for future gene therapy. This review 
aims to summarize the current knowledge of these exciting molecules and 
their potential use as new markers for AD risk. This article will focus on 
circRNAs deregulated in Alzheimer’s. 
 

Keywords 
CircRNA, Alzheimer’s Disease, miRNAs, Diagnosis, Therapy, Dementia 

 

1. Introduction 

Alzheimer’s disease (AD) is the most common type of dementia with no cure 
and affects over 50 million people worldwide [1] [2]. It affects 10% - 30% of the 
population older than 65 [3] [4], and about 1% - 5% of the cases have genetic 
causes and the symptoms present in the population younger than 65 years old 
[5]. The disease has a progressing neurodegenerative process associated with 
undetectable intraneural lesions [6] [7], occurring before cognitive symptoms 
[8]. After several decades, the patients show mild memory loss that gradually 
becomes a severe impairment of executive and cognitive functions [9]. 
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The major histopathological hallmarks of AD are senile plaques characterized 
by the accumulation of amyloid β (Aβ) peptides, resulting from cleavage of the 
transmembrane protein APP (amyloid precursor protein) and neurofibrillary 
tangles (NFTs), constituted of highly phosphorylated microtubule-associated 
protein Tau (MAPT), mainly present in the cytoplasm of neuronal axons, pre- 
and post-synaptic regions and the cerebrospinal fluid (CSF), both aggregates are 
founded in the neocortex, hippocampus, and other subcortical brain regions [10]. 

It has been difficult to explain how AD pathology arises. The general hypothe-
sis suggests that forming amyloid plaques leads to neuronal degeneration and 
death in AD patients [11]. However, this amyloid hypothesis cannot explain the 
onset and progression of AD. Recently, new information on the role of RNA has 
significantly impacted neurodegenerative diseases. 

This review will summarize the current evidence showing how circRNAs ex-
pression and function affect the biogenesis, expression, processing, and localiza-
tion of coding and noncoding RNAs (ncRNAs), highlighting the great potential 
as diagnostic and prognostic biomarkers conferred by the characteristics of 
circRNAs that have covalently closed ends that endow them with excellent sta-
bility in blood and other body fluids. Besides, circRNAs could be considered 
therapeutic agents by regulating the expression of miRNAs that regulate genes, 
directly the genes (transcriptional factor) or proteins (template to translate) in-
volved in the pathophysiology of AD. 

2. CircRNA 

First discovered in viruses, circRNAs have been reported in several species. Until 
2017, circRNAs were recognized as not noncoding RNAs [12], capable of regu-
lating gene expression through different mechanisms: working as miRNA 
sponging, interactions with RNA-binding proteins (RBPs), working as template 
protein and participating in the transcriptional complex it depended on its na-
ture, it has been argued that circRNAs are a by-product of splicing and may ori-
ginate from introns, exons, or both [12] [13]. The expression pattern of circRNAs 
is highly conserved. 80% of all efficiently expressed mouse neuronal circRNAs 
are also detected in the human brain [14]. These particular types of RNA are 
represented in physiological and pathological states. There are multiple studies 
related to diverse human diseases like neurological and neurodegenerative dis-
eases [15] [16] [17] [18], cancer [18] [19] [20] [21], immune response [22], and 
many other diseases. 

3. Backsplicing Mechanisms and CircRNA Biogenesis 

Backsplicing is the fundamental component of circRNA molecule synthesis [16] 
[23]. It consists of the direct ligation of the exonic downstream 5' donor site with 
the upstream 3' acceptor site, which results in the circularization of the RNA 
molecule and the absence of the two existing extremities at their linear coun-
terparts [24]-[29]. circRNAs are single-stranded RNA molecules presenting a 
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circular conformation catalyzed by RBPs [16] [24] [30]. These circular struc-
tures are derived from pre-mRNA, transcribed by RNA-polymerase II, and then 
processed by the spliceosome machinery [17] [26] [31] [32] [33] [34]. CircRNA 
is more resistant to exonuclease than the linear transcript and is, therefore, more 
stable in cells [35] [36], and inhibits the function of miRNA by acting as miRNA 
sponges [37]. CircRNAs are small molecules, conserved, and able to regulate 30% 
of protein-coding genes through multiple miRNA binding sites in their confor-
mation, allowing them to capture numerous miRNAs and indirectly control 
gene expression [38]. The backsplicing mechanism to produce distinct types of 
circRNAs can be induced by cis-elements (noncoding binding regions capable of 
regulating transcription), promoting a viable source of “exon shuffling”, result-
ing in alternative splicing [29]. Backsplicing is highly dependent on comple-
mentary sequences present in the flanking introns that are present in the circRNA 
and are exceptionally long [39]. The RBPs may serve as regulatory factors in the 
formation of circRNA molecules. miRNAs are short noncoding RNAs (21 - 24 
nt) implicated in many cellular processes, including proliferation, differentia-
tion, senescence, stress response, and apoptosis [4] [16] (Figure 1). 

4. CircRNA Expression 

Although circRNAs can be found in various organ systems such as the brain, 
heart, kidney, skin, lung, liver, and blood, they are highly abundant in the central  
 

 
Figure 1. circRNA Biogenesis. 
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nervous system (CNS) [4] [40] [41]. Several reasons could explain this pheno-
menon: 1) The levels of RBPs or splicing factors in the CNS are higher and may 
function as trans-acting factors to induce circRNA formation [42]. 2) The brain 
contains an abundance of neuronal genes that play roles in neurogenesis, neu-
rodevelopment, and neuronal differentiation [4] [27]. 3) Neuronal genes typi-
cally contain long (>10 kb) introns, facilitating the formation of circRNA [43]. 4) 
circRNAs show a relatively longer half-life than linear RNA [44]. The average 
half-life of circRNAs is higher than the corresponding linear isoforms [45]. In 
addition, 5) neurons had a slow division rate, and circRNAs may accumulate 
more in the brain than in other tissues [14] [46]. CircRNA levels are dynamically 
modulated in neurons, both during differentiation and following bursts of elec-
trical activity, and accumulate with age, and many of them are enriched in syn-
apses. The available data suggest that circRNAs have essential roles in synaptic 
plasticity and neuronal function [14]. Altered circRNAs in several neurodege-
nerative diseases are the primary RNA isoforms derived from some neuronal 
genes [47], particularly CDR1as/ciRS-7 [14] [48]. Interestingly, circRNAs are 
enriched in the brain and build up during aging and age-related diseases. These 
extraordinary peculiarities make circRNAs potentially suitable as promising 
molecular biomarkers, especially for aging and neurodegenerative diseases [49]. 
In addition, a recent study reported that exosomal circRNAs could cross the 
blood-brain barrier (BBB), making them perfect candidates as potential diagnos-
tic tools for neurodegenerative disease [50] [51]. 

5. Omics Approaches in CircRNA of Alzheimer’s Disease 

Bioinformatics is a powerful tool to identify miRNAs potentially regulated by 
AD-associated circRNAs and to predict miRNA-binding sites in circRNA se-
quences. It has been reported that over 70 miR-7 predicted binding sites were 
found in the circCDR1-AS sequence, and binding sites for several intriguing 
miRNAs in the other AD-associated circRNAs were also predicted. circHO-
MER1 contained five potential binding sites for miR-651, a miRNA predicted to 
target the AD-related genes Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2). Fi-
nally, circCORO1C, identified as coexpressing with the AD-related genes APP 
and SNCA, contains two predicted binding sites for miR-105, a miRNA pre-
dicted to target APP and SNCA42, and circCORO1C could have good potential 
to be counted as novel markers of AD risk and diagnosis and highly associated 
with neuropathological AD status vs. controls and other AD severity [52]. The 
validation using a quantitative polymerase chain reaction approach showed 
changes in the expression of 8 circRNAs (circHOMER1, circDOCK1, circFMN1, 
circKCNN2, circRTN4, circMAN2A1, circMAP7, and circPICALM). Average 
expression changes between patients with AD and controls followed the exact 
directions. They confirmed an exacerbated alteration in circRNA expression in 
the autosomal dominant AD (ADAD) group compared with sporadic AD. Two 
circRNAs (circHOMER1 and circKCNN2) also showed significant expression 
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alterations in the group of frontotemporal lobar degeneration with Tau pathol-
ogy (FTLD-tau) and TLD-TDP43 (TAR DNA-binding protein 43 (TDP-43)), a 
major pathological protein of sporadic and familial frontotemporal lobar dege-
neration, respectively [53]. A study with a 7-month-old senescence-accelerated 
mouse prone 8 (SAMP8) model brain through deep RNA sequencing showed 
235 significantly dysregulated circRNA transcripts, 30 significantly dysregulated 
miRNAs, and 1202 significantly dysregulated mRNAs and constructed networks 
with Go analysis. The results show the regulation of the development of AD 
from various angles, for instance, axon terminus, synapse, and involvement in 
the regulation of Aβ clearance (Hmgb2) and myelin function (Dio2) [37]. Li et 
al. 2020 [54] proposed that circ-AXL, circ-GPHN, and circ-PCCA hold clinical 
implications in AD patients. A circRNA expression profile via microarray re-
vealed that 112 circRNAs were upregulated and 51 circRNAs were downregu-
lated in AD patients compared with control subjects. These circRNAs were 
enriched in AD-related pathways such as the neurotrophin signaling pathway, 
the Natural Killer (NK) cell-mediated cytotoxicity, and cholinergic synapse. In 
AD patients, circ-AXL and circ-GPHN negatively correlate with the mini-mental 
state examination score, while circ-PCCA and circ-HAUS4 correlate positively; 
circ-AXL negatively correlated with Aβ42, while circ-PCCA, circ-HAUS4, and 
circ-KIF18B correlated positively; circ-AXL and circ-GPHN positively correlated 
with truncated Tau (t-Tau), whereas circ-HAUS4 correlated negatively; circ-AXL 
positively correlated with phosphorylated Tau (p-Tau), and it has been identified 
that circ-AXL, circ-GPHN, and circ-PCCA hold clinical implications for guiding 
disease management in AD patients [54]. Table 1 shows a list of CircRNA asso-
ciated with Alzheimer’s disease. 

Glial neuroinflammation plays a pivotal role in AD progression, contributing 
to neuronal injury [55]. Li et al. 2020 [54] obtained a circRNA expression profile 
with disease and risk progression from the CSF samples of AD and controls and 
discovered that circLPAR1, circAXL, and circGPHN could predict higher AD 
risk, whereas circPCCA, circHAUS4, circKIF18B, and circTTC39C could predict 
lower AD risk. These circRNAs can modulate the transcription of their originat-
ing genes negatively or positively, such as AXL receptor tyrosine kinase (AXL) or 
Tetratricopeptide Repeat Domain 39C (TTC39C), and increase AD susceptibility 
by dysregulating neuroinflammation and neuronal cell apoptosis. Besides, they 
are involved in AD pathogenesis, reducing the AD severity with its overexpres-
sion by sponging mir-138-5p and inhibiting Tau phosphorylation, a histopatho-
logical hallmark of AD [54]. The results of circRNAs from next-generation RNA 
sequencing data of Ma et al. 2019 [56] suggest that circTRPC6 and circNME7 
might be a biomarker for the early diagnosis of AD because they are involved in 
Aβ production and cognitive performance (circTRPC6) and neuronal differen-
tiation and development (circNME7) [56]. Transient receptor potential canoni-
cal 6 (TRPC6), which specifically interacts with APP leading to inhibition of its 
cleavage by g-secretase and reduction in Aβ production [30]. Furthermore, 
TRPC6 mRNA levels in the blood cells are remarkably reduced in AD.  
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Table 1. CircRNA in Alzheimer’s disease. 

CircRNA 
Sponge or 

mechanism 
of action 

Possible pathogenic role or 
mechanism 

Tissue or 
body fluid 

Potential 
biomarker 

References 

ciRS-7/circCDR1as miR-7 

β-Amyloid deposition, 
degradation, reduce UBE2A and 

inhibits NF-kB signaling pathway, 
reduction UCHL1, APP, BACE1 

generating accumulation Aβ. 

Brain 
 

[16] [18] [49] 
[64]-[69] [71] 
[72] [73] [97] 

circHOMER1 miR-651 

Postsynaptic regulation, 
as a miR-651 sponge, 

clinical severity, and Braak 
neuropathologic staging, 

AD diagnosis, target PSEN1, 
and PSEN2. 

Brain 
entorhinal 

cortex 
Yes [52] [53] [76] 

circCORO1C miR-105 
Coexpressed with 

APP and Sinuclein Alpha, 
target APP, SNCA. 

Brain Yes [52] [79] 

circHDAC9 
miR-142-5p 

Alleviated Aβ42-induced 
HN cell neurotoxicity 

via miR-142-5p. 
Serum 

 
[75] 

miR-138 Increase Aβ production, target Sirt1. Serum 
 

[85] 

circ_0000950 miR-103 
Enhance neuron apoptosis and 

promotes inflammatory response 
in AD through IL-2 and TNF-a. 

Cellular AD 
model  

[90] 

circRTN4 
 

Inhibits neuronal sprouting reduce 
Aβ deposition through BACE1. 

Brain Yes [52] [53] 

circDOCK1 
 

Axonal outgrowth, spine 
morphogenesis, 

neuroinflammation, 
clinical severity, and Braak 
neuropathologic staging. 

Brain, 
plasma 

Yes [52] [81] 

circKIF1B 
 

Axonal transport, vesicular traffic. 
Brain, 
plasma 

Yes [81] 

circAβ-a 
 

Translates into a novel 
Aβ175-containing Aβ polypeptide. 

Brain, 
culture cell 

Yes [81] [84] 

circDLG1 
 

Axonal transport, vesicular traffic. Brain, plasma Yes [81] 

circLPAR1 
Modulate 

transcription/ 
mir-212-3p 

Neuroinflammation, neuronal cell 
apoptosis/oxidative stress target 

PPAR1, ZNF217. 
CSF, blood Yes [54] [87] 

circAXL 
Modulate 

transcription 

Neuroinflammation, and 
neuronal cell apoptosis, Predict 

higher AD risk target AXL. 
CSF Yes [54] 

circPCCA mir-138-5p 
Inhibits Tau phosphorylation, 

Predict lower AD risk. 
CSF Yes [54] 

https://doi.org/10.4236/abb.2022.1312035


E. A. Cabrera-Reyes et al. 
 

 

DOI: 10.4236/abb.2022.1312035 513 Advances in Bioscience and Biotechnology 
 

Continued 

circGPHN 
Modulate 

transcription 

Neuroinflammation, neuronal 
cell apoptosis, Predict higher 

AD risk, target GPHN. 
CSF Yes [54] 

circ_0131235 
 

Target IGF2-receptor. Brain Yes [98] 

NF1-419 
 

Neuroinflammation, 
reduction of inflammatory 
mediators (IL-6, IFN-β). 

SAMP8 
mice  

[93] 

circKCNN2 
 

Clinical severity and Braak 
neuropathologic staging. 

Brain 
 

[53] 

circPAR1 
 

Predict higher AD risk. CSF Yes [54] 

circHAUS4 
 

Predict lower AD risk. CSF Yes [54] 

circKIF18B 
 

Predict lower AD risk. CSF Yes [54] 

circTTC39C 
 

Predict lower AD risk. CSF Yes [54] 

circTRPC6 
 

Regulate cognitive performance, 
reduction in Aβ production, 
Interacts with APP leading to 
inhibition of its cleavage by 
g-secretase, Early diagnosis. 

 
Yes [30] [56] 

circNME7 
 

Regulate neuronal differentiation 
and development, Early diagnosis.  

Yes [56] 

circAPOE 
  

Brain 
 

[54] 

circMAN2A1 
 

Clinical severity and Braak 
neuropathologic staging. 

Brain 
 

[53] [58] 

circFMN1 
 

Clinical severity and Braak 
neuropathologic staging. 

Brain 
 

[53] [58] 

circMAP7 
 

Clinical severity and Braak 
neuropathologic staging. 

Brain 
 

[53] [58] 

circTTLL7 
 

Clinical severity and Braak 
neuropathologic staging. 

Brain 
 

[53] [58] 

circPICALM 
 

Clinical severity and Braak 
neuropathologic staging. 

Brain 
 

[53] [58] 

circKIAA1586 
hsa-miR-29b, 
hsa-miR-15a, 
hsa-miR-101 

  
Yes [61] 

circ_0007556 
 

Encoding the new Aβ-175 
polypeptide variant called circAβ-a.   

[84] 

circCwc27 
 

Pur-α overexpression largely 
phenocopied circCwc27 

Knockdown in preventing Aβ 
deposition and cognitive decline. 

  
[86] 

mmu_circRNA_017963 
 

Associated with different 
autophagosome and vesicular 

transport pathways. 
  

[91] 
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Continued 

circNF1-419 
 

Thus, circNF1-419 increased 
autophagy, reducing the expression 
of Tau, p-Tau, Aβ1-42, and APOE, 
and ameliorated senile dementia by 

binding Dynamin-1 and AP2B1, 
influencing synapse in SAMP8 mice. 

SAMP8 
mice  

[93] 

hsa_circ_0003391 miR-574-5p 
Downregulated in the 

peripheral blood of AD patients. 
Blood 

 
[95] 

circPSEN1 
 

ADAD is more severe in 
magnitude than AD. 

Brain 
 

[52] 

mm10_circ_0027491 mmu-miR-122-5p Myelin function. 
SAMP8 mice 

cerebral 
cortex 

 
[37] 

mm10_circ_0027470 
 

Aβ clearance, 
target mmu-let-7g-3p, Hmgb2. 

SAMP8 mice 
cerebral 
cortex 

 
[37] 

 
patients [57]. One study compared circRNA expression measured by RNASeq in 
cerebral cortices of people with AD versus healthy control subjects (n = 291). 

The circRNA for APOE (circAPOE) is more highly expressed in frontal lobe 
samples with AD than in control samples, but the effect size is comparable with 
its full-length linear mRNA counterpart [17]. After examining the correlation of 
each circRNA with three traits (AD versus control, clinical severity, and Braak 
neuropathologic staging), nine circRNAs passed the stringent test: circHOMER1, 
circDOCK1, circKCNN2, circMAN2A1, circFMN1, circRTN4, circMAP7, 
circTTLL7, and circPICALM. Another study examined eight of the nine circRNAs 
identified by Maurano et al. 2012 [58] using qPCR in frontal cortices from 19 
sporadic AD, nine autosomal dominant AD, and 15 control brains [59], repli-
cating the results of [58] [60]. 

Finally, a meta-analysis from multiple-microarray showed consistent diffe-
rentially expressed genes (CDEGs) and differentially expressed miRNAs (DE-
miRs). The circRNA-associated competing endogenous RNA network (cirCe-
NET) was constructed based on the competing endogenous RNA “(ceRNA) 
hypothesis”. A total of 1872 CDEGs and 48 DEmiRs were screened across dif-
ferent datasets. By mapping CDEGs and DEmiRs into the cirCeNET, an AD- 
related circRNA-associated ceRNA network (ADcirCeNET) was constructed, 
including 3907 edges and 1407 nodes (276 circRNAs, 14 miRNAs, and 1117 
mRNAs). It is worth mentioning the circRNA KIAA1586 was AD risk circRNA- 
associated ceRNAs and functions as a ceRNA that operates by competitively 
binding hsa-miR-29b, hsa-miR-15a, and hsa-miR-101 AD-risk miRNAs. The 
circRNA KIAA1586 may be a key risk factor in AD pathogenesis [61]. 

6. CircRNA in Alzheimer’s Disease 

The roles of circRNAs in AD are the most studied in neurodegenerative diseases 

https://doi.org/10.4236/abb.2022.1312035


E. A. Cabrera-Reyes et al. 
 

 

DOI: 10.4236/abb.2022.1312035 515 Advances in Bioscience and Biotechnology 
 

and have revealed a potential link between AD and circRNA; most studies have 
focused on AD. Age is a significant risk factor for neurodegeneration. Interes-
tingly, age-related changes in alternative splicing patterns found in cognitively 
healthy adults are also observed in 95% of individuals with frontotemporal lobe 
dementia or AD patients, irrespective of age [62] [63]. 

In the brain tissue of AD patients, it has been demonstrated that ciRS-7 levels 
were significantly reduced in AD hippocampal CA1 samples versus age-matched 
healthy controls, which mediated sponge effect in miRNA-7, which can increase 
miRNA-7 in the neocortex and hippocampus. This increase in miRNA-7 ap-
pears to drive the selective down-regulation in the expression of the ubiquitin- 
conjugating enzyme E2A (UBE2A) [18] [49] [64]-[69]. UBE2A is an autophagic 
phagocytic protein, and it is essential for the brain in the clearance of amyloid 
peptides and other cytotoxic-related molecules produced by progressive degene-
rations of the human central nervous system [70] Figure 2. 

Through the nuclear factor-kB (NF-kB) cytosol localization, ciRS-7 inhibits 
NF-ΚB translation and induces its localization to the cytoplasm. They are re-
pressing the expression of ubiquitin C-Terminal Hydrolase L1 (UCHL1), which 
promotes the degradation of the cleavage of APP and b-site APP-cleaving en-
zyme 1 (BACE1), which has a significant function in the generation of amyloid β 
in AD [16] [18] [71] [72]. Lukiw et al. 2013 [66] reported that ciRS-7 acts as a 
competing endogenous miRNA sponge to inhibit miRNA-7 functions in the 
AD-affected brain. Furthermore, Zhao et al. 2016 [65] observed the network of  
 

 
Figure 2. circRNA functions in AD. 
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ciRS-7-miRNA-7-UBE2A in sporadic AD neocortex and hippocampal CA1. On 
the other hand, synaptic dysfunction and abnormal processing of amyloid pre-
cursor protein are early pathological features in AD. Early pathological features 
in AD are synaptic dysfunction and abnormal processing of APP [65]. Interes-
tingly, Shi et al. 2017 [73] proposed a neuroprotective role for the same circRNA 
by promoting APP and BACE1 protein degradation via the proteasome and ly-
sosome pathways. All of this evidence testifies to a potential regulatory role for 
ciRS-7 in the etiology of AD [73]. Similarly, for circHDAC9, a neuroprotective 
role is reported. Besides, in Aβ42-treated HN cells, circHDAC9 overexpression 
can promote cell viability and repress cell apoptosis and inflammation via spong-
ing miR-142-5p [74] [75]. 

The importance of circRNAs also lies in the genes from which they were 
spliced. The circRNA in the RTN4 gene inhibits neuronal sprouting and mod-
ulates AD by reducing the Aβ deposit through interaction with BACE1 and the 
circRNA in the Homer Scaffold Protein 1 (HOMER1) [52] [53] [76]. Both 
circRTN4 and circHOMER1 were significantly associated with AD diagnosis, 
clinical neurological staging, and dementia severity [52] [53]. In particular, cir-
cHOMER1 is very interesting considering that HOMER1 protein contributes to 
the postsynaptic density (PSD) by linking neural channels and receptors with 
which the Aβ protein in the AD brain can aberrantly combine [77] [78]. Cir-
cHOMER1 might be directly related to AD regulating PSEN1 and PSEN2 ex-
pression by binding its predicted sites for mir-651. Furthermore, circCORO1C 
co-expressed with APP and Sinuclein Alpha (SNCA) AD-related genes. This 
co-expression could be mediated through mir-105 and its predicted targets, the 
APP and SNCA genes [79]. 

The circRNA generated from the AD-associated gene Dedicator of Cytokine-
sis 1 (DOCK1) participated in axonal outgrowth, spine morphogenesis, and 
neuroinflammation and was identified as the best gene AD-related in astrocyte, 
language, and cognitive-specific modules of polygenic risk scores combined with 
brain expression profiles [52] [80]. Cochran’s analysis demonstrated differential 
circRNA expression in blood isolating circKIF1B and circDLG1, whose genes 
are implicated in vesicular trafficking, to be good biomarker candidates because 
they appeared in both brain and plasma samples [81]. Remarkably, the most 
intriguing characteristic of some circRNAs is that, as already pointed out, when 
they contain exonic regions, they can be translated into peptides [82] [83]. In 
this respect, circ_0007556, encoding the new Aβ-175 polypeptide variant called 
circAβ-a, seems to represent the most direct connection between circRNAs and 
AD pathogenesis. This circRNA is generated from the circularization of some 
exons of the APP transcript. Has been detected circAβ-a in the brains of AD pa-
tients and controls and demonstrated, using in vitro models, that circAβ-a was 
efficiently translated into an Aβ-related protein (Aβ-175) and was further 
cleaved into Aβ-peptides, a hallmark of AD [84]. CDR1as/ciRS-7 is also strongly 
misregulated in the hippocampal CA1 region of AD patients [66]. The expres-
sion of miR-7 is significantly increased in the brains of sporadic AD patients, 
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which may be related to the downregulation of circCdr1as expression [65]. In 
addition, circCdr1as can promote the degradation of APP and BACE1 via the 
proteasome and lysosome [73]. Furthermore, Dube et al. 2019 [52] showed that 
circCdr1as expression levels significantly correlate with neuropathological and 
clinical measures of AD severity.  

It is worth noting that an age-dependent elevation of miR-138 in APP/PS1 
(presenilin-1) mice. MiR-138 inhibited the expression of ADAM10 (a disintegrin 
and metalloproteinase domain-containing protein 10), promoted Aβ produc-
tion, and induced synaptic and learning/memory deficits in APP/PS1 mice. At 
the same time, its suppression alleviated the AD-like phenotype in these mice. 
Overexpression of sirtuin 1 (Sirt1), a target of miR-138, ameliorated the miR- 
138-induced inhibition of ADAM10 and elevation of Aβ in vitro. The circRNA 
HDAC9 (circHDAC9) was predicted to contain a miR-138 binding site in sev-
eral databases. Its expression correlated inversely with miR-138 in both Aβ- 
oligomer-treated N2a cells and APP/PS1 mice, and it colocalized with miR-138 
in the cytoplasm of N2a cells. CircHDAC9 acted as a miR-138 sponge, decreas-
ing miR-138 expression and reversing the Sirt1 suppression and excessive Aβ 
production induced by miR-138 in vitro. Moreover, circHDAC9 decreased in 
the serum of AD patients and individuals with mild cognitive impairment. It 
suggested that the circHDAC9/miR-138/Sirt1 pathway mediates synaptic func-
tion and APP processing in AD [85]. Recently, an alternative path of Aβ bioge-
nesis was revealed through a circRNA harboring the Aβ-encoding region of the 
APP gene, termed circAβ-a, which efficiently translates into a novel Aβ175- 
containing Aβ polypeptide (19.2 KDa) in both cultured cells and human brain 
[84].  

Song et al. 2022 [86] focused on the function of circRNA-RBP interaction in 
AD. CircCwc27 is a neuronal-enriched circRNA abundantly expressed in the 
brain and significantly upregulated in AD mice and patients. The Knockdown of 
circCwc27 markedly improved AD-related pathological traits and ameliorated 
cognitive dysfunctions. CircCwc27 directly bound to purine-rich element- 
binding protein A (Pur-α), increased retention of cytoplasmic Pur-α, and sup-
pressed Pur-α recruitment to the promoters of a cluster of AD genes, including 
APP, dopamine receptor D1 (Drd1), protein phosphatase 1, regulatory inhibitor 
subunit1B (Ppp1r1b), neurotrophic tyrosine kinase, receptor, type 1 (Ntrk1), 
and LIM homeobox 8 (Lhx8). Downregulation of circCwc27 enhanced the affin-
ity of Pur-α binding to these promoters, leading to altered transcription of Pur-α 
targets. Moreover, Pur-α overexpression largely phenocopied circCwc27 Knock- 
down in preventing Aβ deposition and cognitive decline [86]. 

The circLPAR1 was highly expressed in AD patients Wu et al. 2021 [87], and 
Li et al. 2020 [54] explored the underlying regulatory axis of circLPAR1, explain-
ing how circLPAR1 can promote Aβ-induced neuronal injury. The circLPAR1 
sponged on mir-212-3p led to the upregulation of its target ZNF217 and sped up 
apoptosis, inflammation, and oxidative stress triggered by Aβ25-35 in vitro. In-
deed, expression levels of mir-212-3p in AD patients decreased, whereas Zinc 
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Finger Protein 217 (ZNF217) expression increased [87]. Moreover, the regula-
tion of this zinc finger protein in AD was through the regulation of the lncRNA/ 
miRNA/ZNF217 axis modulated the Aβ-induced cell injury [88] [89]. In Yang et 
al. 2019 [90] study, the circ_0000950 appeared directly involved in neuroin-
flammation since by sponging mir-103, it led to the expression increase of a 
proinflammatory gene, prostaglandin-endoperoxide synthase 2 (PTGS2), in two 
different in vitro AD models [90] [91]. The circ_0000950 enhanced neuronal 
apoptosis and inflammation while it reduced neurite outgrowth in AD [90]. 

Autophagy dysfunction represents an early neuropathological feature of AD 
that can affect the metabolism of Aβ and the accumulation of protein Tau [92]. 
In SAMP8 mice, the mmu_circRNA_017963 was highly associated with different 
autophagosome and vesicular transport pathways [91]. Thus, circNF1-419 in-
creased autophagy, reducing the expression of AD markers such as Tau, p-Tau, 
Aβ1-42, and APOE, and ameliorated senile dementia by binding Dynamin-1 and 
Adaptor protein 2 B1 (AP2B1), influencing multiple signaling pathways, espe-
cially at the synapse in SAMP8 mice [93]. 

The brain exposed to oxidative damage affects the amyloidogenic pathway, 
exacerbating AD progression [94]. The involvement of circular RNA in oxidative 
stress AD-associated has only recently emerged [91]. mmu_circRNA_013636 
and mmu_circRNA_012180 were significantly upregulated and downregulated 
in SAMP8 untreated mice with Panax Notogingseng Saponins (PNS). This con-
dition was reverted under PNS treatment [91]. 

The circRNA, hsa_circ_0003391, which is specific and significantly downre-
gulated in the peripheral blood of patients with AD different from other types of 
dementia Liu et al. 2020 [95], found a potential relationship between hsa_circ_ 
0003391 and the clinical manifestation of AD. Furthermore, microRNA targeted 
by hsa_circ_0003391 was successfully detected, the miR-574-5p, which had an 
expected elevation in the AD groups, suggesting that miR-574-5p might be a 
potential microRNA target for hsa_circ_0003391m [95]. 

7. CircRNA in Autosomal Dominant Alzheimer’s Disease 

The expression changes in some circRNAs are a consistent phenomenon across 
cortical regions between AD and autosomal dominant AD (ADAD). ADAD is 
an early-onset AD caused by pathogenic mutations in APP, PSEN1, or PSEN237. 
Dube et al. 2019 [52] investigated whether changes in circRNA expression also 
occur in the context of ADAD using parietal cortex-derived, in a circular-tran- 
scriptome-wide (RNA-seq) analysis of circRNA differential expression between 
ADAD (n = 21) and dataset controls (n = 13), shown 236 ADAD-associated 
circRNAs. The authors performed a circRNA expression analysis between ADAD 
and AD (samples with available Braak score: nADAD = 17, nAD = 73) with a 
Braak score adjusted to determine if the more significant effect was related to the 
pathological severity in the ADAD brains. This analysis identified 77 signifi-
cantly differentially expressed circRNAs, and 59 were placed in the ADAD ver-
sus control analysis. When compared to sporadic AD and controls, the gene 
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counts of circPSEN1 in ADAD individuals presented a significant difference 
[15]. Altogether, these results demonstrate that changes in circRNA expression 
also occur in the context of ADAD and are more severe in magnitude, even 
when adjusting for neuropathological severity [52]. 

8. Therapeutic Advantage of CircRNAs  

circRNAs could be considered therapeutic agents. Covalently closed ends endow 
circRNAs with high stability in blood and other body fluids. Combined with 
controlling the expression of natural circRNAs in specific tissues and cells of the 
human body could reduce side effects compared to synthetic molecules, such as 
chemically modified drugs and RNA interference constructs, which would in-
crease the value of circRNAs [18] [68]. Moreover, it could be a starting point for 
future gene therapy. To our knowledge, a general phenomenon of circRNAs, one 
of their primary functions is to act as a sponge for miRNAs. Thus, artificial 
sponges can be designed and developed by studying the endogenous structures 
of circRNAs to ultimately regulate the function of miRNAs in diseases. Synthetic 
sponges constitute a new perspective in miRNA-targeted drug development [18] 
[68] [96]. The advantage of circRNA therapy is its low off-target effect, unlike 
miRNAs and siRNAs, which exhibit more significant off-target effects at their 
short length. In addition to their high stability, specificity, structure, and me-
chanisms of action, circRNAs are suitable biomarkers for diagnosis and disease 
progression. 

9. Conclusions  

Given the global increase in neurodegenerative diseases, sustained efforts are 
being made to search for diagnostic and prognostic RNA markers. circRNAs 
could represent reliable and affordable candidates. First, they show advantages 
over linear RNAs; circRNAs are more resistant to exonuclease than the linear 
transcript and are, therefore, more stable in cells. Their peculiar structure dis-
tinguishes them from linear RNAs. They accumulate, especially in the brain, in 
an age-dependent manner, making them even more attractive for neurodege-
nerative biomarker research. 

Furthermore, their ability to cross the BBB and their highly tissue-specific ex-
pression is unrelated to their cognate linear RNAs. In addition, high blood and 
other body fluids stability make them even more interesting for neurodegenera-
tive disease biomarker research and as targets for molecular therapies. Although 
the search for circRNA-specific biomarkers in neurodegenerative diseases is still 
in its early stages, the observation that circRNAs differentially expressed in the 
brain overlap with circRNAs in the plasma of patients affected by neurodege-
nerative diseases suggests an encouraging use as peripheral biomarkers. Not-
withstanding growing evidence highlighting the increased potency and potential 
of circRNAs, a deeper understanding of their molecular mechanisms under both 
physiological and pathological conditions is required. The fast advance in 
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next-generation RNA sequencing and bioinformatics allowed the discovery of 
thousands of circRNAs, challenging our understanding of gene expression regu-
lation.  
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