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Abstract 
A novel type of application for the exploration of enclosed or otherwise diffi-
cult to access environments requires large quantities of miniaturized sensor 
nodes to perform measurements while they traverse the environment in a “go 
with the flow” approach. Examples of these are the exploration of under-
ground cavities and the inspection of industrial pipelines or mixing tanks, all 
of which have in common that the environments are difficult to access and do 
not allow position determination using e.g. GPS or similar techniques. The 
sensor nodes need to be scaled down towards the millimetre range in order to 
physically fit through the narrowest of parts in the environments and should 
measure distances between each other in order to enable the reconstruction of 
their positions relative to each other in offline analysis. Reaching those levels 
of miniaturization and enabling reconstruction functionality requires: 1) nov-
el reconstruction algorithms that can deal with the specific measurement li-
mitations and imperfections of millimetre-sized nodes, and 2) improved un-
derstanding of the relation between the highly constraint hardware design 
space of the sensor nodes and the reconstruction algorithms. To this end, this 
work provides a novel and highly robust sensor swarm reconstruction algo-
rithm and studies the effect of hardware design trade-offs on its performance. 
Our findings based on extensive simulations, which push the reconstruction 
algorithm to its breaking point, provide important guidelines for the future 
development of millimetre-sized sensor nodes. 
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1. Introduction 
Automatic and detailed reconstruction of environments and objects from sensory 
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data is one of the success stories of modern signal processing. Still there are en-
vironments for which detailed reconstruction is not possible with current re-
mote or in situ sensing technologies. In this work, we focus on such environ-
ments and examples are: the interior of deep underground formations like (oil-) 
reservoirs, mines and geothermal sources, and industrial infrastructure like 
pipelines, mixing tanks and reactors. These environments are filled with a 
(semi-) liquid medium and typically are globally large but locally small (e.g. in 
diameter). Furthermore, they are difficult-to-access for in situ measurements 
and unsuitable for remote sensing methods. In this paper we consider a go with 
the flow approach that follows a sensor swarm paradigm, in which large quanti-
ties (e.g. hundreds or thousands) of highly miniaturized and redundant sensor 
nodes are gradually inserted into the environment [1] [2]. Carried by the flow of 
the medium, the swarm fills the environment and by reconstructing the node 
positions, and therewith the shape of the sensor swarm, the geometric structure 
and size of the environment can be inferred. Reconstruction of the sensor swarm 
is performed after nodes are extracted from the environment and their data 
read-out. This process is illustrated in Figure 1. 

The individual sensor node positions relative to each other can be 
reconstructed from sparse inter-node distance measurements [3] [4]. These 
distance measurements can be obtained using a ranging protocol as in e.g. [5]. 
As illustrated in Figure 2, reconstructing the positions of the nodes can be seen 
as a specific kind of graph problem, ( ),=   , where the vertices   are the 
sensor node positions and the edges   are the distances between them. 
Typically such a problem can be solved using non-linear optimization algorithms 
[28], however, after obtaining the measured distances (i.e. the edges   in graph 
 ), the challenge is to obtain a robust initial estimate of the node positions in 
order for non-linear graph optimization algorithms to succeed. In order to  
robustly obtain such an initial estimate, our offline1 reconstruction algorithm 
uses a Random Sampling Consensus (RANSAC) method applied to general 
lateration techniques [6] [7]. To the best of our knowledge, the novel 
reconstruction algorithm presented in this work, is one of the most robust 
algorithms that is able to perform 3-D reconstruction of large sensor swarms. 
Our applications require such a robust reconstruction algorithm since the 
distance measurements are performed under very adverse sensing conditions, as 
explained in Section 2. The details of our novel method are provided in Section 3 
and Section 4. 

We use this reconstruction algorithm to study trade-offs in the hardware 
design space, as many hardware challenges still need to be addressed before large 
swarms of millimetre-sized functional sensor nodes can be developed and 
deployed effectively. Trade-offs must be made in the hardware design with 
respect to sensing capabilities and size. Improved capabilities, e.g. larger  

 

 

1In this paper we use the term online to indicate the period where nodes are in the process of per-
forming measurements and while going through the environment, and the term offline for after the 
nodes are retrieved and data is extracted from the nodes. 
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Figure 1. A swarm of sensor nodes is inserted into the environment of interest; the 
sensor nodes traverse the environment using the flow of the medium. Once the 
sensor nodes are distributed in the environment, distance measurements between 
neighbouring sensor nodes are performed and stored locally within the nodes. 
Finally, the sensor nodes and their data are retrieved. All data is analysed offline to 
obtain the 3-D reconstruction of the sensor swarm from the inter-node distance 
measurements. 

 
communication radius or better signal-to-noise ratios, will improve reconstruction 
performance, but make cost-effective miniaturization of nodes more challenging. 
Therefore, in Section 5, we use extensive simulations with increasingly more 
limitations on the hardware capabilities to study their effect on the 
reconstruction performance. These limitations include increased noise in the 
measurements and not being able to uniquely identify other nodes. The 
assessment of the performance of the reconstruction depends on which 
information is favoured from the swarm and different performance metrics are  
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Figure 2. Reconstructing nodes within a swarm can be seen as a graph problem, 

( ),=   , with the node positions as vertices   (circles) and the distances 

between nodes the edges   (lines). The initial four node positions 
{ }1 2 3 4, , ,s s s s  are chosen to define the coordinate system to solve the global 

reflection and rotation ambiguity. Using general lateration techniques, additional 
nodes, like the candidate node in the figure, can be added when distances to at 
least four already reconstructed nodes are known. For clarity of the figure, not all 
(required) edges are drawn. 

 
introduced. 

The simulations in this work do not guarantee that robust reconstruction will 
work in reality, but as also discussed in Section 6, they do show that advances in 
offline reconstruction algorithms, can, to a large extent, compensate for severely 
limited hardware capabilities. Understanding the trade-offs between hardware 
design and the reconstruction performance can guide the hardware design of 
yet-to-be-developed highly miniaturized sensor nodes of future applications [2]. 

Several applications and research studies already exist that use a sensor swarm 
approaches where sensor nodes move with a flow through specific environments. 
In [8], 13 cm-sized sensor nodes were developed and deployed in the ocean to 
flow with the ocean currents and allows to study e.g. plankton behaviour. These 
nodes can actively change their density to adjust their depth while collecting a 
variety of sensor data. The nodes receive ultrasound ping signals from nearby 
buoys (at kilometre distance) such that afterwards their positions can be 
reconstructed using general lateration. The researchers in [9] developed 
millimetre-sized sensor nodes that can be injected into living fish to study how 
e.g. dams and ocean energy devices affect their behaviour. These sensor nodes 
measure temperature and emit a unique identifier using ultrasound such that 
they can be remotely tracked by an array of external hydrophones on the 
shoreline (within hundreds of metres distance). Both of the mentioned studies 
are characterized by the fact that external localization hardware (buoys or 
hydrophones with a known location) are used to reconstruct the node positions. 

In our earlier work, targeting enclosed and difficult to access environments, 
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we developed 4 cm-sized sensor nodes that measure the node’s inertial data (i.e. 
linear acceleration and rotation) and measure the local magnetic field. These 
nodes with variable density have been used e.g. to explore and inspect an 
underground pipeline of 15 centimetre in diameter and 260 metre in length [10] 
and to study the dynamics of multi-phase fluids in a mixing tank of several cubic 
metres [11]. Another of our attempts to work towards the mentioned future 
applications is described in [1]. It describes a field test that uses dummy 
(non-functional) sensor nodes to explore a deep underground sandstone 
oil-reservoir. This field test revealed that in order for the sensor nodes to pass 
through the 300 metre sandstone oil-reservoir, the size of sensor nodes cannot 
exceed 9 mm as the local dimensions are not larger than that. 

The mentioned studies show that a go with the flow sensor approach can yield 
valuable insights into yet undiscovered environments and dynamics. They also 
show that some applications have clear constraints on e.g. the allowed maximum 
size of the used sensor nodes in order to pass through the environment. The 
objective of this paper is to see how far we can limit the capabilities of sensor 
nodes and how far they can be scaled down while still getting good 
reconstruction performance. In the following section (Section 2) we discuss the 
implications of scaling down sensor nodes to the millimetre size and operating 
them in enclosed and difficult to access environments. 

Even though the used constraints in this paper represent a very challenging 
application scenario and might seem excessive in light of current applications, 
we believe they are valid constraints for future miniaturized nodes [2]. We think 
that providing a solution to the swarm reconstruction problem under these 
adverse sensing conditions can also be beneficial for current applications and 
problems. To summarize our contributions: 1) a novel and robust reconstruction 
algorithms is developed that deals with severe sensing conditions and 
imperfections, even including non-unique identification of distance measurements; 
2) sensor node system design principles are derived from extensive simulations 
by sweeping input parameters until the reconstruction algorithm fails to 
reconstruct the sensor swarm; 3) different methods on how to assess the 
performance of the swarm reconstruction are provided, depending on which 
information is favoured from the swarm. 

2. The Implications of Application Constraints 

This section discusses existing work and shows that the applications which we 
target pose specific challenges that have not been addressed earlier in a holistic 
manner. Reconstructing the position of nodes in (wireless) sensor and robot 
networks has been subject of study for an extensive period of time [3] [4]. 
Obtaining simultaneously the location of nodes as well as obtaining the map of 
the yet-unknown environment, is often referred to as Simultaneous Localization 
and Mapping (SLAM) [12]. Our research also falls under this denominator but 
has to deal with several distinctive constraints relative to other work. These 
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constraints will be discussed in this section and can be summarized as:  
1) no data is communicated between nodes (other than needed for distance 

measurements), measurements are stored in memory for offline analysis;  
2) sparse connectivity in a large swarm;  
3) not depending on external communication to e.g. fixed beacons;  
4) using solely distance measurements, i.e. no direction information or 

additional sensor information, like bearing, odometry or inertia;  
5) nodes are not identified uniquely.  
Constraints 1, 3, and 4 are hard constraints and depending on the choice of 

applications, these either exist or not and make the reconstruction problem 
harder. Constraint 2 and 5 are soft constraints and can vary in severity, depending 
on e.g. parameter choices that can be tweaked. For example, considering 
constraint 2: the connectivity between nodes depends on the transmission 
power, the distance between nodes and signal-to-noise ratio at the receiving side. 
Considering constraint 5: the identifiability of nodes depends on the number of 
identifiers chosen relative to the number of nodes used. Increasing the severity 
of these soft constraints makes the reconstruction problem gradually harder. 
Therefore, in our study, the parameters influencing connectivity and identifiability 
are swept over a large enough range in order to study the consequences of this 
on the reconstruction performance and therewith also to find the limits of 
current reconstruction algorithms. 

Although each separate constraint has been considered earlier; this work is, to 
the best of our knowledge, the first to research reconstruction of sensor swarms 
when considering all mentioned constraints together and under realistic 
conditions. 

2.1. Power Consumption 

Probably the most significant and overarching constraint of highly miniaturized 
sensor nodes is their power limitation. Due to volume and weight constraints in 
the small sensor nodes, battery capacity will be extremely limited and this 
influences all other design choices related to sensing, computation, and 
communication. In fact, we envision levels of miniaturization in which nodes 
have just enough energy to perform only a single inter-node distance 
measurement. 

Furthermore, communication requires relatively large amounts of energy and 
is therefore only used to realize the inter-node distance measurements, but for 
example not for online distributed processing of the measurements (hence 
constraint 1). Instead of distributing the measured data or sending it to a central 
sink node, we use an approach in which the measured data is stored locally in 
the sensor nodes, and afterwards retrieved and processed centrally when power 
consumption is no longer a limitation. 

Communication transmission power and the signal to noise ratio of receiving 
electronics are limited, reducing the communication range between nodes. 
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Therefore, the inter-node connectivity between sensor nodes, by means of 
inter-node distance measurements, will be sparse (hence constraint 2) and 
dependent on the energy budget. 

To the best of our knowledge, there is no other research that aims to perform 
swarm reconstruction under such extreme low-power conditions. 

2.2. Beacons and Landmarks 

A distinction that can be made in SLAM related research is whether or not 
beacons are being used, that is, fixed points in space that serve as reference 
points where individual nodes can relate to. In our applications, we can not rely 
on the presence of beacons, as opposed to e.g. [13] [14] and the earlier 
mentioned work in [8] [9]. In our applications the environments are generally 
difficult-to-access and block long-range communication signals (hence 
constraint 3). 

In applications with a static environment, the environment could potentially 
be used as a continuum of beacons, or in this case better described as landmarks. 
Opposed to the research mentioned in e.g. [15] where high-end cameras and/or 
laser range-finders are used, measuring clear fixed landmarks is infeasible as 
such detection devices have a high power consumption and need continuous 
measuring; it is something that doesn’t scale well to miniaturized nodes. 
Furthermore, detection of the environment using such sensors as e.g. in [15] 
[16] would require clear line-of-sight in a transparent medium, which cannot be 
guaranteed in our applications. 

Efforts to map node positions and the environments based on acoustic 
reflections can be found e.g. in [17] [18]. This, however, requires constraints on 
e.g. the node positions or the environment shape (e.g. straight walls), both of 
which cannot be guaranteed in our applications. 

Given the aforementioned, the nodes are forced to cooperate with each other 
in order to obtain information on their positions, this also called cooperative 
localization [3]. 

2.3. Distance Measurements 

A common method for cooperative localization is to reconstruct node positions 
based on distance measurements between the nodes. Often such methods are 
amended with e.g. inertial, bearing, or odometric information from the nodes, 
like in e.g. [19] [20]. In our research however, we explicitly rely only on 
inter-node distance measurements, as adding such devices or sensors would add 
significantly to the size and energy budget (hence constraint 4). For example, an 
inertial sensor would need to be active continuously to track the absolute 
position and orientation. Furthermore, current miniaturized inertial sensors are 
not accurate enough for absolute position determination for longer than e.g. one 
second. Alternatively, the absolute orientation of the node could be estimated 
using e.g. small and low-budget sensors that measure the Earth magnetic field 
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and the Earth gravitational field. But unfortunately, in our applications, no 
guarantees can be given on the external fields as the unknown environment can 
block or distort these. 

Although one can argue that, in the future, advances in sensors will lift some 
of the mentioned limitations, we show that with only inter-node distance 
measurements, the reconstruction of the sensor swarm is possible. 

2.4. Communication and Identification 

Nodes with (sub-)centimetre dimensions only fit antennas that effectively 
produce EM radiation at frequencies that have a large absorption in the liquid 
media. The (liquid) media can have a high salinity and are also not guaranteed 
to be clear enough for the use of (visible) light communication. This effectively 
prevents EM communication for distances larger than e.g. a centimetre. 

Ultrasound transducers at these scales do provide larger communication 
ranges within the boundaries of the environments, but yield other challenges for 
stable and fast communication between dynamic nodes in enclosed 
environments [21]. The information that can be communicated in a unit of time 
is therefore very limited, typically in the order of kilobytes per second or less. 

Furthermore, the relatively slow speed of sound, in combination with the 
relatively small bandwidth, reflective environments and the fact that nodes are 
non-static, leads to highly time-varying communication channels [5] [22]. 
Distance measurements based on round-trip time of flight need to be completed 
within just a tiny fraction of a second as otherwise the nodes may have moved 
significantly relative to each other, invalidating the measured distance. 

The low data rate and the need to perform distance measurements in a short 
period of time creates the incentive to reduce the content of the messages used 
for distance measurements (i.e. reducing the number of bits in the message). For 
example, in the ranging protocol as studied in [5] [22], at a data rate of 40 
kbit/sec, the transmission of every additional bit for the identifiers to indicate 
the sender and receiver of the message adds 3 percent to the measurement noise 
caused by the movement of the nodes. This effect becomes larger when 
considering lower data rates. Furthermore, increasing the message length 
increases the probability of overlapping messages due to (time-varying) 
multi-path, thereby making it harder to correctly decode the messages. 

In applications where many sensor nodes are used, ideally each node has a 
unique identifier by which it can unambiguously communicate with other 
nodes. However, for the envisioned application cases mentioned in this paper, it 
is worthwhile to explore the possibility of reducing the number of identifying 
bits as they make up the majority of the ultrasound messages (hence constraint 
5). Reducing the number of identifying bits, and thus only having non-unique 
identification makes communication ambiguous. The inter-node distance 
measurements then also become ambiguous, but can be resolved using the 
robust reconstruction algorithm presented in this paper. Non-unique identification 
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of distance measurements makes most existing reconstruction efforts not 
applicable as they depend on well-defined, non-ambiguous identifications [23] 
[24] [25]. Earlier efforts to first resolve these ambiguities before the reconstruction 
of node positions can be found in [26], but does not include actual 
reconstruction results. 

Our reconstruction algorithm is, to the best our knowledge, the first that can 
successfully cope with identification ambiguities and with all the other 
mentioned hardware constraints. 

3. Problem Description 

In this section we discuss the specific problem formulation and introduce our 
notation. All symbols used in this paper are summarized in Table 1. In this 
paper, whenever we use the bar-indicator, e.g. d , it is to stress the true value of 
the parameter, to differentiate it from an estimated or measured value, e.g. d . 
 

Table 1. Legend of symbols used throughout the paper. 

Symbol Description 

N Number of nodes in swarm 

CIDn  Number of communication identifiers in use 

commn  Number of nodes within communication radius 

commr  Communication radius of nodes 

( ),    Graph with reconstructed nodes indicating positions as vertex   and distance between nodes as edges   

,i j  
Unique (hardware) identification number (UID) of nodes i and j, other letters are also  

used to indicate other nodes. An additional bar in the indication  
stresses these are the true values (opposed to measured or hypothesised) 

( )CID i  Communication identification number (CID) used by node i 

,i jd  
Distance between node i and node j. Additional bars in the indication  

stress that these are true values (opposed to measured of hypothesised). 

is  Position of node i 

  Consistency function used for associating measured distances from two nodes into a mutual connection 

r  Threshold value for maximum allowed distance deviation in consistency condition   

,i jh  Set of hypothesised distances between node i and j 

I  Number of additional identity ambiguities 

D  Number of additional distance ambiguities 

, ,a b c∈ ∈ ∈    Individual nodes (small letter) in a set of nodes (capital) selected  
based on some criteria in reconstruction algorithm 

( ), b   Cliques in already reconstructed graph 

, ,X Y Z  Recall percentages of nodes that have been reconstructed; Y and Z  
have an additional condition on the accuracy of the reconstruction 

abs glob loc, ,    Error metrics of a reconstruction indicating the mean absolute squared error of the reconstructed positions 

rel  Error metric of a reconstruction indicating the relative error of the reconstructed distances 

ν  Different noise parameters of distance measurements, expressed in percentages. Index indicates type of noise. 
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As mentioned in the introduction, the reconstruction of the node positions 
can be seen as a graph-optimization problem where ( ),=   , in which the 
vertices   are the sensor node positions and the edges   are the distances 
between them. This is also visualized in Figure 2. However, the edges of this 
graph can only be based on the measured distances that are noisy representations 
of the actual distances. In order to estimate an accurate graph of the nodes’ 
positions we attempt to reduce the least squares error:  

( )3

2

,arg min i j i j∈
− −∑


                         (1) 

Solving these kind of problems is often performed using non-linear 
optimization methods like e.g. a Levenberg-Marquardt algorithm or a 
Gauss-Newton algorithm. As with most non-linear optimization problems the 
key is to provide a proper initial estimate, in this case an initial estimate of the 
node positions. This initial estimate is then further refined using non-linear 
optimization. Obtaining the initial estimate for the node positions is performed 
by our novel robust reconstruction algorithm that is discussed in Section 4. 

This section will first discuss the method on how to measure distances 
between the nodes (i.e. the edges  ) and the difficulties herein. In Section 3.1 
we discuss how the distance measurements are performed. Section 3.2 discusses 
the different types of measurement noise to be expected in these measurements 
and the issues related to identification are discussed in Section 3.3. The 
consequences of these on the reconstruction algorithm are discussed in Section 
3.4. 

3.1. Distance Measurement Protocol 

Following the operational procedure as depicted in Figure 1, once the nodes are 
well distributed within the environment of interest, the nodes perform a single 
distance measurement to neighbouring nodes. This distribution can be achieved 
by e.g. gradually inserting new nodes into the environment until a steady 
outflow of nodes is reached. How the actual measurements are performed is 
defined by the ranging protocol that is used. Many of these protocols already 
exist and the one that is designed specifically for our applications is described in 
[5] [22]. 

Omnidirectional emission and reception is considered (as opposed to 
directional), because there is no a priori or online knowledge of the positions of 
neighbouring nodes. Whether or not messages are received by neighbouring 
nodes is dependent on the transmitted power and, among other factors, the 
received signal-to-noise ratio. 

For convenience, but without loss of generality, in this paper we assume that 
distances can and are measured between all neighbouring nodes that are in 
line-of-sight and are within a fixed and known communication radius, commr . 

Details of these protocols, as e.g. discussed in [22], are outside the scope of 
this paper, however, it is important to know that the messages that are 
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transmitted and received between the nodes for measuring the distance between 
them need to contain identifiers. The identifiers are used to identify the sender 
of the message, and depending on the protocol also to verify whether the 
message is actually addressed to the receiving nodes. These identifiers make up 
the largest part (in bits) of the message. 

The result of the ranging protocol is a set of measurements where every node i 
measures the distance ,i jd  to every neighbouring node j, and node j having 
measured the distance ,j id  to node i. This is visualized in Figure 3(a). The 
measurements are individually stored in the nodes’ memory. 

3.2. Distance Uncertainty 

The measured distance between nodes will be affected by different imperfections 
in the system. As the dynamics of the nodes and the environment they are in are 
unknown, a range of possible imperfections should be accounted for as we do 
not know the effect on the reconstruction result. To simulate the measured 
distances, in this paper we consider a single snapshot of the actual distances and 
introduce all types of measurement noise to account for the existing imperfections. 
The types of noise in the distance measurements that we are modelling can be 
divided in inlier-type noise and outlier-type noise. The inlier-type measurement 
noise being:  
• additive Gaussian noise a ; to account for e.g. offset in ranging timer or 

variable delay in electronics, and also to account for the errors due to 
movement of the nodes while performing the ranging measurements,  

• multiplicative Gaussian noise m ; to account for e.g. different clock  
 

 
Figure 3. Mutual connections from distance measurements 
(indicated with arrows) with unique and non-unique 
identification. Distance measurements ,i jd  as measured 

by node i and distance measurement ,j id  as measured by 

node j using unique identification can unambiguously be 
associated with each other. Distance measurements ( ),CIDi jd  

as measured by node i and distance measurement ( ),CIDj id  

as measured by node j using non-unique identification can 
not be unambiguously associated with each other as more 
nodes use the same CID. 
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frequencies or inhomogeneous medium,  
And the outlier-type measurement noise being:  

• identification noise; to account for erroneous detection of identifiers,  
• outlier noise; to account for burst-like/spiky/intermittent measurement 

noise.  
The environment also gives rise to additional outlier-types of noise that can 

influence the reconstruction:  
• obstruction of signal paths,  
• reflection of signals,  
• loss of nodes or inability to retrieve them.  

How exactly these are simulated is described later, in Section 5.2. 

3.3. Identification Uncertainty 

Due to the constraints described in Section 2, the identifiers used in the ranging 
messages are reduced to non-unique identifiers, similar to the research in [5]. 
Each of the N nodes has a unique (hardware) identification number, UID, and is 
assigned a non-unique communication identifier, cid, that is used in the ranging 
message to identify the sender and addressee of the message. The number of 
available cids is indicated with CIDn  and can be set as desired, CIDn N≤ . The 
available cids are distributed uniformly among the nodes. 

Now, instead of every node i measuring distance ji,d  to node j and vice 
versa, node i is measuring distance ( ),CIDi jd  to a node that has a communication 
identifier ( )CID j . And vice versa, node j measures distance ( ),CIDj id . This is 
illustrated in Figure 3(b). The mapping from UID to CID is known and well 
defined, however, the mapping from CID to UID is ambiguous as more nodes 
share the same cid. 

3.4. Mutual Connections 

When the nodes are retrieved after the experiment and their data read out, 
offline analysis can be performed. Normally, with unique identification, mutual 
connections can be established by associating measurements ,i jd  and ,j id  with 
each other (Figure 3(a)). These mutual connections can be used as consistency 
check of the individual measurements and quantify the uncertainty of the 
measured distance. When the two individual measurements differ less than a 
specific threshold, the measurements can be considered inliers and a mutual 
agreed-upon distance can be established, otherwise they are considered outliers 
and cannot be used to establish a mutual connection. 

However, in the case of non-unique identification, measurement ( ),CIDi jd  
(Figure 3(b)) can only be used correctly when the measured non-unique 
identifier ( )CID j  is associated with node j. Obtaining the mutual connection 
where ( ),CIDi jd  and ( ),CIDj id  are associated with the correct nodes j and i, 
respectively (similar to Figure 3(a)), is not trivial as the mapping from CID to 
UID is ambiguous. 
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Mutual connections, where ( ),CIDi jd  is associated with ( ),CIDj id , are obtained 
by applying a consistency check on each of the possible node pairs that have cids 
consistent with the measurements. A mutual connection is hypothesised when 
two distance measurements agree on two grounds: 1) the measured cids agree 
with the CID of the other, and; 2) the corresponding measured distance is 
approximately similar to the other (i.e. inlier measurement). The exact 
implementation is described in Section 4.1. 

This consistency check is affected by the different types of measurement noise 
in the individual measurements, specifically the outlier-type of noise that 
prevent finding the correct mutual connections. Figure 4 illustrates how the  
 

 
Figure 4. An example of (a) fully connected graph with five nodes; (b) 
outlier noise for two measurements; (c) obstruction between two nodes; (d) 
loss of one nodes; and (e) reduction of communication radius. 
Identification noise can be seen as outlier noise but on identification instead 
of distance. Explanation: Nodes are indicated as dark circles; a line indicates 
a distance measurement between two nodes. A too long/short line indicates 
a measurement with outlier noise. A dashed line indicates the distance 
measurement has never existed (obstruction) or this data is not retrieved 
(loss). 
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different types of outlier-type noise affect finding correct mutual connections. 
Figure 4(a) shows a fully connected reference graph in which all mutual 
connections are present and correct. Outlier noise in the distance measurements, 
as shown in Figure 4(b), leads to a set of ( ),CIDi jd  and ( ),CIDj id  measurements 
that cannot be associated with each other as the difference in measured distance 
is larger than the inlier threshold. Identification noise can be seen in a similar 
way with the difference being that instead of erroneously measured distances the 
identifier CID is decoded erroneously. Obstruction of signal paths (Figure 4(c)) 
and the inability to retrieve nodes (Figure 4(d)) also prevents establishing 
mutual connections. From a reconstruction perspective, not being able to 
establish mutual connections due to the presence of noise can to some extend be 
compared to reducing the number of neighbouring nodes (reducing the 
communication radius), which is visualized in Figure 4(e). 

4. Swarm Reconstruction Algorithm 

In this section we will describe the novel reconstruction algorithm. It reconstructs 
node positions based on inter-node distances with significant measurement 
imperfections and the ambiguities introduced by using non-unique identifiers. 

The reconstruction algorithm can be summarized as follows:  
1) Hypothesise mutual connections based on the consistency (distance and 

identity) between all distance measurements, obtained from all retrieved nodes 
(Section 4.1);  

2) Find initial four nodes to fix coordinate reference system (Section 4.2);  
3) Robustly add additional nodes to the graph using a guided-RANSAC 

algorithm and general lateration, exploiting the geometric consistency between 
true neighbouring nodes (Section 4.3);  

4) Perform non-linear optimization to reduce build-up of errors from 
previous step; go back to step 3 (Section 4.4);  

5) Loop closing, if needed (Section 4.5).  
An overview of the algorithmic steps of the reconstruction method is provided 

in Appendix A. 

4.1. Identity and Consistency Check 

Before the reconstruction process, mutual connections should be established 
between nodes. The decoded non-unique communication identifier, cid, from 
every received ranging message should be associated with a unique (hardware) 
identification number, UID. Initially, this can be approached using a combinatoric 
method in which all possible nodes are considered that use the respective cid. 
The range of options can be narrowed down, as the distance measurement 

( ),CIDi jd  of node i to node j, when performed correctly and without noise, should 
be similar to the reverse distance measurement ( ),CIDj id  of node j to node i. This 
means that searching the measured data for the consistency where ( ),CIDi jd  is 
similar to ( ),CIDj id  should give most of the times an unambiguous mutual 
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correct connection, since it is unlikely that another set of nodes with similar CID 
pair have the same matching distance. 

However, the distance measurements are imperfect and noisy. Consequently, 
the distance measurements and the “reverse” distance measurement will not be 
equal. Therefore, potential mutual connections are hypothesised when the 
measured distances lie within a specific threshold value r  of each other and 
the measured identifiers are consistent with each others cid. This condition, 
denoted with , ,a b c dd d , then becomes:  

( ) ( )
( ) ( )

, ,

, , when CID CID

CID CID

a b c d r

a b c d

d d

d d a d

b c

 − ≤
 =
 =





                 (2) 

For all pairs that are considered consistent with each other, i.e. , ,a b c dd d , a 
mutual connection is hypothesised and the average distance is taken as mutually 
agreed upon distance between them. All other pairs are not considered a mutual 
connection. The final consistency function   is expressed as:  

( )
, ,

, ,
, ,

when, 2
otherwise

a b c d
a b c d

a b c d

d d
d dd d

+
= 
∅



               (3) 

where ∅  indicates that no mutual connection is considered, i.e. an empty 
entry. 

Threshold value r  is the maximum allowed difference in distance 
measurement for which two measurements are considered inliers. This 
threshold should be related to the noise. It can e.g. be obtained using trial and 
error if the error model is unknown. Note that due to the measurement noise, 
the threshold, and the non-unique identification not all pairs that are considered 
consistent are correct, they are only hypothesised as being correct connections. 

The obtained mutual connections between node i  and node j and their 
hypothesised distance is not unambiguous. As illustrated in Figure 5, the 
hypothesised mutual connections ,i jh  for measurement ( ),CIDi jd  can consist of 
three types of contributions: 

( )
( )
( )

, ,

, ,,

,,

, (a)

, (b)

, (c)

i j j i

i j p qi j

j mi k

d d
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                       (4) 

1) the measurement between the real nodes i  and j ;  
2) identity ambiguity: a mutual connection to a node p which is believed to be 

at similar distance as node j  but not necessarily within communication radius 
of i  (see Figure 5);  

3) distance ambiguity: a mutual connection with the correct node j  but 
with a distance belonging to the measured distance to another node k within its 
communication radius (see Figure 5). 
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Figure 5. Nodes with { }UID , , , , ,i j k m p q=  using only two distinct cids 

(indicated by ○  and □ ) cause ambiguities in the consistency check. 
Identity ambiguity arises due to similar distance between pairs with similar 
CID in the swarm (Equation (2)). Distance ambiguities arise due to a 
plurality of nodes with similar cids within communication radius. 

 
The identity ambiguities are based on the statistical likelihood that somewhere 

in the swarm, a node pair with similar cids and distance is present such that the 
measurement pair obeys Equation (2). Assuming a uniform spatial distribution 
of the nodes, the average number of identity ambiguities in ,i jh  scales with 

2
comm CIDI rn N n∝  . Equally, the distance ambiguities are based on the 

statistical likelihood that neighbouring nodes give rise to confusion. The average 
number of distance ambiguities per ( ),CIDi jd  then scales with 

2 2
comm CIDD rn N n∝  . 

Both type of ambiguities, I  and D , increase with an increasing number 
of neighbouring nodes commn  and a lower CIDn , leading to a more challenging 
task deciding which are correct mutual connections and which are false 
connections. These ambiguities are resolved in our RANSAC graph-growing 
algorithm as detailed in Section 4.3. 

4.2. Initial Seed Selection 

In this work we solve the reconstruction problem by incrementally growing the 
graph using a robust RANSAC-based method based on general lateration 
principles. Given an initial graph  , new nodes can be added as illustrated in 
Figure 2 and detailed in [6]. In an ideal case (without noise), every candidate 
node, c, of which the distances to four non-coplanar nodes with known positions 

1 2 3 4, , ,s s s s  are known, can be added to the graph with as position the 
intersection of the spheres with radii 1, 2, 3, 4,, , ,c c c cd d d d  and centers at 

1 2 3 4, , ,s s s s . Here ,n cd  denotes the true distance from node { }1,2,3, 4n =  to 
node c. 

Since the graph growing is performed in 3  and the distance measurements 
are performed in   and without external beacons acting as fixed reference 
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points in space, first a coordinate reference system has to be defined. The initial 
four node positions are chosen such that they define the coordinate system, 
therewith resolving the general reflection and rotation ambiguity. Their 
positions, 1 2 3 4, , ,s s s s , define the coordinate system as follows, and also 
illustrated in Figure 2: { }1 0,0,0s ∈ , { }2 ,0,0s +∈  , { }3 , ,0s +∈    and 

{ }4 , ,s +∈    . These nodes are selected based on their connectivity and the 
stability of their geometric configuration which is obtained by general lateration 
techniques. 

Since ,i jh  contains ambiguities, the initial seed selection is conditional until 
the graph growing has successfully added several nodes to the graph  . If this is 
not possible, a new initial seed is selected and the process is repeated. 

4.3. RANSAC Graph Growing 

After the initial seed is chosen, additional nodes can be added to the graph when 
the nodes have at least four connections to already reconstructed nodes. The set 
of candidate nodes that have at least four connections to already reconstructed 
nodes is denoted as  . Ideally,   only consists of nodes that are true 
neighbouring nodes, but due to the ambiguities in the hypothesised connections 

,i jh  this is not the case. Figure 6 illustrates a simplified 2-D situation in which a 
candidate node c∈  has connections to its true neighbouring nodes in  , 
but also false connections to nodes somewhere else in the graph due to identity 
ambiguities. Whether the connections are true or false is not known at this 
point. 
 

 
Figure 6. RANSAC graph growing algorithm uses an inlier-outlier voting system to filter 
out outlier distance measurements and proposes a position for candidate nodes to add to 
the graph. Using cliques of nodes in the graph that are within twice the communication 
radius helps in reducing the probability that nodes are positioned based on false 
connections. 

https://doi.org/10.4236/wsn.2018.101001


E. H. A. Duisterwinkel et al. 
 

 

DOI: 10.4236/wsn.2018.101001 18 Wireless Sensor Network 
 

A Random Sampling Consensus (RANSAC) method is used to attempt to 
correctly position the candidate nodes. RANSAC is a general robust estimation 
technique, for more details we refer to [27]. RANSAC attempts to fit a model on 
data points that contain both inliers (points that satisfy the model) and outliers 
(points that do not satisfy the model). It does this by randomly selecting a small 
set of data points, estimating a model based on this small set, and counting the 
number of other data points that agree with this model. This process is repeated 
until a model is found that has maximum or sufficient support in the whole set 
of data points. We developed a specific RANSAC algorithm to solve the task of 
graph-growing under severe outlier noise and identification ambiguity. An 
overview of the RANSAC algorithm is provided in Appendix B. 

When a candidate node c is considered, all nodes that are already 
reconstructed in the graph and that are connected with this c are selected. This 
set of nodes is denoted with { },: , a cA a a h= ∈ ≠ ∅ . A subset of three of these 
nodes is selected, { }p pA a A= ∈ , to propose—using general lateration—a 
position for c up to a reflection ambiguity (three nodes are always coplanar). 
However, no guarantees can be given whether the entries in ,pa ch  are correct 
connections and the proposed positions do not need to be viable or close to the 
true position. Therefore, each of the other connected nodes  

( ) ( ){ }: ,v v v p v pA a A A A a a= = =∅   are used to vote for the proposed 
position. Consensus is reached when the majority of the voting nodes, including 
the three proposing nodes, have at least a 50% majority. The reflection 
ambiguity is resolved by choosing which of the two positions received more 
supporting votes. When consensus is reached, the number of supporting votes is 
called the RANSAC-score for the specific proposal. 

This step in the RANSAC algorithm is repeated with each time a different set 
of three proposers pa , until all possibilities are exhausted or until a proposal 
received a specific threshold in RANSAC-score. In the latter case it is then 
considered sufficiently supported and is added to the graph. When no 
“sufficiently supported” condition is reached, the RANSAC procedure is 
repeated for a next candidate node until all candidates are considered or a 
sufficiently supported condition is found for a specific candidate. The candidate 
with the highest RANSAC-score is added to the graph in   with edges (  ) 
only to the supporting nodes and corresponding ,a ch  entry. 

The “sufficiently supported” condition for the RANSAC can be based on the 
expected percentage of outlier measurements or can be chosen heuristically by 
trial-and-error, as is done in this work. 

Guiding RANSAC 
The number of false connections from the candidate nodes to the already 
reconstructed nodes, grows on average linearly with the number of nodes 
already in the graph, due to I , as explained in Section 4.1. Consequently, 
when a candidate node is considered that does not have enough true 
neighbouring nodes in the graph yet but does have a large number of false 
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connections to nodes already in the graph, this candidate node might receive a 
large RANSAC-score but based on only false connections. The true neighbouring 
nodes have in that case not enough voting power over the number of false 
neighbouring nodes. 

To reduce the probability of this to happen, the sampling procedure of the 
candidate nodes is guided using a sorting order of candidate nodes before the 
RANSAC algorithm is performed on them. The sorting is based on the 
likelihood that candidate nodes have enough true neighbouring nodes already in 
the graph. As such, candidate nodes that are more prone to be reconstructed 
based on false connections, are considered later. This gives the probability that 
more of its true neighbouring nodes will be added to the graph first. The 
algorithm is provided in Appendix C and described next. 

For each candidate node { }:b b∈ , a list is made of connected nodes that 
have already been reconstructed in the graph { },: , a ba a h∈ ≠∅ . A new graph 

( )( ),a=    is made with nodes a as vertices. These vertices are connected 
with edges ′  when their positions are less than twice the communication 
radius, comm2r , apart. In this new graph, maximal cliques are listed as ( )b , 
and indicate the groups of nodes that are potentially within the communication 
radius of a proposed candidate node position. This means that on geometrical 
reasons, all of these nodes can potentially agree on candidate node position. In 
other words, nodes from outside this clique could never agree with all nodes 
within the clique on a candidate node position. The example in Figure 6 shows 
these cliques in coloured oval areas. The number of nodes in these cliques are 
registered and are used as sorting order in which RANSAC is performed. Nodes 
with larger sized cliques in ( )b  are more likely to have more connections 
with true neighbouring nodes in the graph. 

This sorting has two effects on the reconstruction, it guides the RANSAC 
procedure and has as a result that: 1) it increases the probability that a 
“sufficiently supported” candidate is found quickly, and 2) it increases the 
probabilitys that from all “sufficiently supported” candidates, the best one is 
chosen for addition to the graph. 

Guiding the RANSAC procedure with this sorting requires additional 
computational power (calculating the cliques), relative to unguided RANSAC. 
This increase in required computational power is compensated for by the 
quicker finding of a “sufficiently supported” candidate. The reconstruction can 
roughly take between 0.1 - 10 seconds per node, depending mainly on the 
connectivity and ambiguities. 

4.4. Robust Non-Linear Refinement 

The stepwise addition of new nodes to the graph introduces build-up of errors. 
These errors in positions can prevent other nodes from being added. In order to 
reduce this error build-up, a global non-linear optimizer algorithm is executed 
as described in [6] to minimize the cost function Equation (1). 
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For this we use the efficient general graph optimization software package g2o 
[28]. It uses sparse methods to solve the normal equations at the core of the 
non-linear optimization techniques like Levenberg-Marquardt or a Gauss-Newton. 
It can easily solve graph problems consisting of thousands of nodes and edges. 

In our algorithm, after every m newly added nodes, or failure to add a new 
node this non-linear optimization is performed. There is a clear trade-off 
between m and the processing time required for the reconstruction algorithm. In 
our work, m is chosen arbitrarily to 10. In future work, this can e.g. be adjusted 
dynamically based on uncertainty of previously added nodes. 

4.5. Loop Closing 

The algorithm described above only considers edges between nodes in   when 
the specific connections supported the winning proposal in the RANSAC voting. 
As can later be seen in the results section, Section 5, this is effective against any 
type of outlier noise. But when considering loops in the environment, these 
loops might not be closed due to the previously mentioned error build-up, as 
schematically illustrated in Figure 7. 

Nodes that are supposed to connect both ends of the loop, will only be placed 
at one of both ends, depending on which has the largest number of supporters.  
 

 
Figure 7. A 2-D example of an environment with a loop (ground truth). Due to error 
build-up in the RANSAC graph growing, loops are not closed (reconstruction withouth 
loop closing). Loop closing candidates can be detected by comparing local geometric 
consistency of excluded connections with reconstructed positions. After detection, the 
loop can be closed (reconstruction with loop closing). 
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Placement on the other end of the loop could also have yielded successful 
reconstruction, however, the node will not automatically be added to both ends 
to close the loop. An additional step should be performed in order to detect such 
loops and optimize the whole graph such that the loop is closed. This section 
describes the method how these loops are detected and closed. 

Conceptually, the detection of loops is performed by searching for a set of 
nodes that could have been reconstructed in two different, distant, positions in 
the graph. This starts by looking at all hypothesised connections between nodes 
that are not used in the reconstruction: i.e. all connections ,i jh  that did not 
support a winning RANSAC proposal, we call these excluded connections. The 
connections that did get included are called included connections. 

Let node i have excluded connections to nodes ex
ik  and included connections 

to reconstructed neighbouring nodes in
ij , as illustrated in Figure 7. In order to 

successfully detect and close a loop, sufficient connectivity should exist between 
nodes in

ij  and ex
ik . 

After the reconstruction has stopped or halted, for every node i it is checked 
how many connections are excluded from the reconstruction, and how many of 
the neighbouring nodes in

ij  also have excluded connections to nodes ex
ik . 

When several neighbouring nodes agree that nodes are excluded, the node is 
said to be commonly excluded. Nodes ex

ik  that are commonly excluded by 
nodes in

ij  are likely to be on an other end of a loop than nodes in
ij . 

Final determination of the loop closing can be performed by redoing the 
RANSAC graph-growing on this set of connections by forcing the nodes to be 
added to the graph on the other side of the loop. When this yields a successful 
reconstruction, and the local relative positions of the considered nodes is 
equivalent to the local relative positions on the original side of the loop; then the 
loop can be closed. The loop closing itself can be performed by including the 
specific loop-closing edges that were initially excluded to the original graph and 
running the non-linear graph optimizer on the newly obtained graph. 

5. Numerical Simulations 

In this section we will use numerical simulations to study the performance of the 
reconstruction algorithm, as well as how the different soft constraints 
(connectivity and identification ambiguity) influence this performance. The 
simulations are performed using two vastly different environment geometries, 
nodes are given a position in a pipeline environment and in a spherical 
environment (Section 5.1). The distance measurements are generated based on 
the distances between these positions and a variety of noise types is added to 
account for different measurement imperfections (Section 5.2). These different 
noise types can influence the distance measurements such that the number of 
neighbouring nodes to which inlier measurements are available is reduced 
(Section 5.3). Assessing the performance of the reconstruction algorithm can be 
performed in different ways, depending on which qualities are favoured of the 
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reconstruction. Therefore, several performance metrics are introduced to 
address these different qualities (Section 5.4). All parameters related to the soft 
constraints are swept over a broad range until the reconstruction algorithm will 
fail to reconstruct the node positions (Section 5.5). Knowing the failure point of 
our reconstruction algorithm and understanding the trade-offs between the 
underlying constraints helps in guiding the hardware design for the 
development of future miniaturized nodes. The findings are summed up by 
plotting the performance against the calculated effective number of neighbouring 
nodes to see the most important trade-off (Section 5.6). In the last part, 
examples are given to show the loop closing detection and actual closing in 
environments that require this (Section 5.7). 

5.1. Environment Model 

The envisioned node swarms can be deployed in a variety of environments. In 
this paper we will work with two types of environments as schematically 
illustrated in Figure 8. One resembles in abstract terms a mixing tank as the 
environmental dimensions are approximately the same in all directions. For 
convenience, the tank-like environment is chosen to be a bounded spherical 
environment. The second environment is a long pipeline, where the diameter of 
the pipeline is still large enough such that nodes can be positioned all around 
one another (as opposed to in one line along the pipe axis). The smooth pipeline 
has a fixed diameter of 8 cm and 400 nodes are placed in a section of 4 m 
pipe-length. The pipeline environment will be considered in both a loop and a 
loop-less fashion. 

In the spherical environment, 400 nodes are given a random position within 
the boundary based on a uniform probability density function. The positions in 
the pipeline environment are chosen such that the nodes are spread out 
uniformly over the axis of the pipeline and the off-axis positions are chosen 
randomly based on a uniform probability density function over the cross-section. 
A total of 50 different spherical and 50 different pipeline environments are 
generated for the simulations. Examples can be seen in Figure 9. 
 

 
Figure 8. A 2-D interpretation of the 3-D spherical environment and 3-D pipeline 
environment. The lines between the nodes indicate connectivity for two different nodes. 
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Figure 9. The ground truth positions of 400 nodes in several different experiments of randomly generated environments that are 
used for the simulations. Five pipeline environments, and one tank-like (spherical) environment. 

 
In both environments, the communication radius commr  of the nodes is 

chosen such that each node has on average commn  neighbouring nodes. This 
parameter commn  is one of the parameters that will be swept. The nodes 
communication radius commr , in which ranging measurements are possible, is 
for all nodes within the swarm the same and ranges throughout the experiments 
from comm10 cm 15 cmr≤ ≤  (corresponding to comm16 28n≤ ≤ ). 

5.2. Distance Measurement Generation 

Distance measurements are generated based on the generated node positions. 
The distances between all nodes i and j as measured by nodes i are indicated by 

,i jd  and are modelled by the true distances between the nodes ,i jd  (the bar 
indicating true values). 

Additive and multiplicative Gaussian are added to ,i jd  according to:  

m a, , ,i j i j i jd d d= + +                       (5) 

where m  and a  being perturbations from the zero-mean Gaussian 
distributions ( )2

m0,σ  and ( )2
a0,σ  respectively. 

Furthermore, a variety of operations are executed on the measurements to 
account for different outlier noise types, each with their own statistical 
likelihood, ν , for this type of noise to happen to the measurement. 

( )( )( )( )identification outlier obstruction loss, ,i j i jd d=                 (6) 

with  

( ) ( )identification , , identificationd when identification noise probabilitya b a kd ν=  

( ) ( )outlier , outlierd when outlier noise probabilitya b ν=   

( ) ( )obstruction , obstructiond when obstruction probabilitya b ν=∅  

( ) ( )loss , lossd when node is lost probabilitya b a ν=∅  

and all operations return ( ), ,a b a bd d=  when the specific types of noise do not 
occur. Identification and outlier noise occur randomly to each measurement, 
independently of each other. Obstruction and loss results in non-existing 
measurements, indicated with ∅ . Obstruction happens to both ,i jd  and ,j id  
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simultaneously; and loss happens to individual nodes, independently of each 
other. 

Identification noise results in an erroneously decoded identifier, i.e. node j is 
measured as being node k. Outlier noise   is chosen to be randomly drawn 
from a uniform distribution in the range ( ]comm0, r . 

Additionally, signal multipath can result in additional measurements of 
specific node pairs: besides the distance based on the direct signal path, also 
distances based on reflected, longer, signal paths. In order to account for this we 
add an additional distance measurement ,i jd ′  to the measurement dataset:  

, ,i j i jd d′ = +                           (7) 

with   a perturbation drawn from a uniform distribution in the range 
( )comm0, r . The probability of this reflection happening is defined as reflectionν . 
For this reflection to be measured by node i, this distance should fall within the 
communication radius commr . A similar entry ,j id ′  is added to account for the 
inverse measurement. Any reflection ,i jd ′  will also be subject to other discussed 
noise types. 

This elaborate process generates realistic distance measurements and is 
significantly more extensive than that of previous research [6] [26] [29]. 

5.3. Effective Connectivity 

The discussed noise not only affects the accuracy of the distance measurements 
but also determines whether correct mutual connections can be estimated 
(Section 3.4). Due to noise, the effective number of neighbouring nodes to which 
correct distance measurements are made is therefore lower than the number of 
neighbouring nodes commn  that are within communication radius. 

The effective connectivity, EC, between nodes is defined by the number of 
neighbouring nodes to which inlier measurements (and thus correct mutual 
connections) are available for the reconstruction algorithm. An estimation of the 
effective number of neighbouring nodes can be made based on the theoretical 
likelihood that inlier measurements can be established in the presence of the 
mentioned outlier noise types:  

( ) ( ) ( )( )2 2
comm outlier id loss obstructionEC 1 1 1 1n ν ν ν ν= − − − −           (8) 

with ν  indicating the probability that the specific outlier-type of noise are 
present in the individual measurements as defined in Section 5.2. The terms for 
outlier and identification noise are squared as these are effects happening to ,i jd  
and ,j id  independently from each other but both influence the ability to 
establish a correct bidirectional measurement. 

The reconstruction algorithm is developed to be able to robustly filter out 
different noise types by relying on the geometric consistency between true 
neighbouring nodes and their measured distances to each other. The more inlier 
measurements that are available, the more robust the algorithm is. The effective 
connectivity EC is a predictor of the number of inlier measurements and 
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therefore can be used as predictor of reconstruction performance. The usage of 
EC as such a predictor is verified in Section 5.6. 

5.4. Reconstruction Performance Analysis 

In our applications, or more in general for swarm operations like these, it is not 
established what is the best method to assess the performance of the reconstruction 
algorithm, i.e. to assess the quality of the reconstructed swarm. It is highly 
dependent on what information is favoured from such a swarm. Conventional 
metrics might not be suitable as the goal of the applications might be different. 
When exploring a yet unknown and difficult-to-access environment, initially 
one might want to know the overall structure of the environment: e.g. a rough 
estimation of the local geometry and the overall shape of the total environment. 
Later, e.g. when also adding additional sensor information, one might be more 
interested in fine-grained local geometry where the absolute error over the entire 
swarm is less relevant. We therefore present different performance metrics that 
serve different goals. 

5.4.1. Absolute Error 
The absolute error is the mean squared absolute error of all reconstructed node 
positions relative to their ground truth positions. It is calculated as 

2
abs ˆN

i ii s s N= −∑ , the sum over all N nodes where ŝ  is the reconstructed 
position of the node and s  its ground truth position. In order to compare the 
ground truth positions with the reconstructed positions, a linear fit between the 
3-D positions of the initial four seed nodes and their ground truth positions is 
performed to resolve the general rotation and reflection ambiguity. 

The mean squared absolute error is a commonly used performance metric in 
reconstruction studies. A disadvantage of this metric is that when a 
reconstructed swarm exhibits error build-up, the absolute error between one 
side of the swarm and the other can be large, while the local errors can actually 
be small. In swarm reconstruction studies like this, this metric should therefore 
not be used as the only metric to assess reconstruction performance. 

5.4.2. Relative Error 
The relative error is the mean squared relative error of the reconstructed 
distances between nodes, relative to the ground truth distances. It is calculated as 

2

rel , ,,
ˆM

i j i ji j d d M= −∑ , the sum over all M reconstructed distances, where 
d̂  is the reconstructed distance and d  the ground truth distance. 

Unlike abs , the metric rel  is not affected by build-up of errors. It assesses 
the reconstruction performance only on a local and relative scale. 

5.4.3. Global Error 
The global error glob  is defined similar as abs , but includes the performing 
of a rigid transform (transformation and rotation) of the entire reconstructed 
swarm such that abs  is minimized. 

This metric illustrates the reconstruction performance of the swarm better 
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than abs  as it is not based on a specific chosen seed from which everything is 
built on. However, it is still sensitive to error build-up. 

5.4.4. Local Error 
The local error loc  is defined as mean squared absolute error, but only after 
performing a rigid transform of all subsections of 20 connected nodes with their 
ground truth positions. 

This heuristically chosen performance metric considers only the local errors, 
but other than rel , it does focus on the (absolute) reconstructed positions of 
the nodes rather than the (relative) distances between them. 

5.4.5. Recall 
The recall,  , is the percentage of nodes reconstructed by the reconstruction 
algorithm. As this does not take into account whether or not these nodes are 
reconstructed correctly, we introduce the adjusted recall   and  . These are 
the percentages of nodes that are reconstructed within a specified error 
condition that is heuristically chosen. For  , this condition is when at least 
80% of the node’s reconstructed distances (or edges in  ) have a relative error 
<10%; or when more than 50% of the nodes reconstructed distances have a 
relative error of <1%. The adjusted recall   is similar to  , but includes the 
condition that the neighbouring nodes to which the relative error suffices this 
condition, should also fall in the category of  . Note that this categorization of 
recall into  ,   and   is based on a heuristic, subjective interpretation of 
the reconstruction result. 

Examples of reconstructions are shown in Figure 10 and the corresponding 
performance metrics are listed in Table 2. The distribution of the relative errors 
of the reconstructed distances is indicated with a boxplot on the right of each 
reconstruction. Only Figure 10(d) and Figure 10(a) show reconstructions with 
a very low 2

abs 1.4 4 me≤ −  and visually seem like a perfect reconstruction. All 
others seem to exhibit their own erroneous characteristics, but non of them are 
completely wrong. Figure 10(e) has a fairly high abs  but 2

glob 4.7 4 me= −  
with the same order of magnitude as abs  in Figure 10(d). The reconstruction 
only seems to suffer slight error build-up that leads to large absolute errors at the 
pipe end but for the rest has an accurate reconstruction. For the majority of the 
swarm in Figure 10(f), the positions are accurately reconstructed. Only at the 
ends of the pipe the reconstruction algorithm seems to have created large errors. 
In Figure 10(h) and Figure 10(g) the reconstructions also seems correct on the 
local scale (e.g. seen in the relative low loc ) but exhibits some local errors that 
cause the reconstructed graph to deviate from the original axis of the pipeline. 
These differences illustrate the importance of having different error metrics as 
the assessment should happen based on which information is favoured from the 
swarm. As an extreme, even in Figure 10(i) the diameter of the pipe can still be 
estimated from the reconstruction while the shape of the swarm is very 
inaccurate. 
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Figure 10. Reconstructions of node swarms in a spherical environment (a)-(c) and in a pipeline environment (d)-(i) with different 
parameter sets. Blue circles are the ground truth positions of the nodes and red crosses the reconstructed positions. The recall 
metrics , ,    and the error metrics abs rel glob loc, , ,     are assess the performance of the reconstruction are listed in Table 2. 

 
Deciding whether a reconstruction gives satisfactory results or not is therefore 

not trivial and depends on the application goals. The adjusted recall parameters 
are an attempt to quantify these goals. In this paper, on the basis of subjectively 
interpreting how well the shape of the swarms in Figure 10 are reconstructed, 
recall parameter   can be seen as a reasonable metric to assess the 
performance of the reconstructions. We can define a satisfactory reconstruction 
to be one with e.g. 80%> . 
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Table 2. Performance metrics of reconstructions shown in Figure 10. 

 ( )%  ( )%  ( )%  ( )2
abs m  

rel  ( )2
glob m  ( )2

loc m  

Figure 10(a) 97 97 97 55 10−×  53 10−×  53 10−×  55 10−×  

Figure 10(b) 95 93 93 21 10−×  22 10−×  21 10−×  22 10−×  

Figure 10(c) 88 64 0 19 10−×  26 10−×  15 10−×  27 10−×  

Figure 10(d) 100 100 100 41 10−×  52 10−×  55 10−×  74 10−×  

Figure 10(e) 99 99 99 22 10−×  41 10−×  45 10−×  74 10−×  

Figure 10(f) 99 94 94 36 10−×  35 10−×  34 10−×  42 10−×  

Figure 10(g) 99 59 0 22 10−×  21 10−×  22 10−×  46 10−×  

Figure 10(h) 100 20 0 13 10−×  25 10−×  12 10−×  31 10−×  

Figure 10(i) 99 0 0 01 10−×  13 10−×  12 10−×  35 10−×  

5.5. Parameter Sweeps and Breaking Points 

In this section we study the performance of the reconstruction algorithm while 
sweeping the parameters related to the soft constraints. These parameters are the 
ones involved with measurement noise as described in Section 3.2, the number 

CIDn  of non-unique identifiers cid, and the number of neighbouring nodes 
within communication radius commn . In order to change the number of 
neighbouring nodes we actually change the sensing radius commr  such that on 
average, nodes have commn  neighbouring nodes. 

For each set of parameters, 50 different experiments are performed, each with 
randomly generated node positions (but following the environment geometry 
constraints as defined in Section 5.1). All experiments are performed with a total 
number of 400N =  nodes. For similar work with a smaller and larger number 
of nodes, the reader is referred to our earlier work [6] and [7]. 

The Gaussian noise components in ,i jd  are together summarized as gaussianν , 
as standard deviation of ( ), ,i j i jd d− . This value is expressed as percentage of a 
fixed communication radius2: 

( )
[ ]

2

, ,
,

gaussian
comm comm

1
1 20

M

i j i j
i j

d d

M r n
ν

−
=

− =

∑
            (9) 

Figure 11(a) shows for a spherical environment the recall ( , ,   ) and the 
different error metrics abs rel glob loc, , ,     while sweeping the input 
parameters. The median values of these metrics of all 50 experiments is 
visualized. It can clearly be seen that when increasing the measurement noise 
(Gaussian, outlier, identification, obstruction and loss), the recall drops and the 
error metrics increase. 

Figure 11(b) shows the performance metrics using similar input parameters, 
but in a pipeline environment. It can be seen that the recall metrics in this case 
are much higher than in the spherical environment. This is due to a different  

 

 

2The average communication radius when comm 20n = . 
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Figure 11. Median of the recall result , ,    on the left and error metrics abs rel glob loc, , ,     on the right. Indicated 

parameters on the x-axis are swept while keeping other parameters on a fixed value (encircled). From top to bottom these are: 

{ }CID gaussian identification loss comm outlier onstruction reflection, , , , , , ,n nν ν ν ν ν ν . 
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distribution of connectivity among the nodes, as explained next in Section 5.6. 
Furthermore, the error metrics in the pipeline environment show significantly 

more differences among them than in the spherical case. The local error is 
orders of magnitude lower than for example the absolute and global error. The 
environment stretches across larger distances and has smaller local dimensions 
compared to the spherical case; errors build up easier and cause a larger absolute 
error, even in cases where the local geometry is reconstructed correctly. This can 
clearly be seen in e.g. Figure 10(e) and Figure 10(h). 

The observed dip in recall in the spherical environment in Figure 11(a) when 
reducing the number of identifiers to CID 10n =  is mainly due to a self-imposed 
time constraint in the reconstruction algorithm (when average time per 
reconstructed node exceeds 10 seconds). The ambiguities in this dataset are 
around total 200%= . Reducing the number of identifiers further can still yield 
successful reconstruction but drastically increases the number of ambiguities 
and therewith the time required to calculate cliques as described in Section 4. 

The lines in Figure 11(a) and Figure 11(b) only show the trend of the 
parameter sweep and due to the nature of the reconstruction process show 
statistical quirks. The standard deviation between all 50 experiments of the same 
input parameter sets are large and not shown to preserve readability of graphs. 
For example, in cases where the majority of experiments yield high recall 
(e.g. >90%), it is not uncommon that in one or more experiments of the same 
parameter set the recall does not surpass 10%. 

The general trend of these lines clearly show there is a dependency of the 
input parameters on the reconstruction performance. The reconstruction 
exhibits graceful degradation when the soft constraints increase in severity up to 
the point where the recall drops and error increases. 

5.6. Effective Number of Neighbours 

The recall result   of our experiments is plotted against the meta-parameter 
EC in Figure 12. For both environments, a clear trend is visible that the recall is 
dependent on the effective number of neighbouring nodes. A minimum number 
of inlier measurements is required that can be used for the RANSAC voting to 
guarantee satisfactory reconstruction of the nodes’ positions. A minimum 
(effective) connectivity of around EC = 20 - 22 is required in order to 
reconstruct the swarm with an adjusted recall 80%> . 

Even though the average number of neighbouring nodes are chosen to be 
similar in both the spherical and the pipeline by setting connr  for all nodes, the 
variability in the per-node connectivity in the spherical environment is much 
larger than in the pipeline environment. Figure 13 shows the histogram of the 
per-node connectivity, averaged over all experiments. The chosen commn  for 
each of the experiments is indicated using a red line, this is the average value of 
the histogram. The nodes with a lower connectivity are much less likely to be 
reconstructed (correctly) and will influence the recall result of the entire swarm. 
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Figure 12. Adjusted recall result   versus the meta-parameter EC, the effective number 
of neighbours. (a) Spherical environment; (b) pipeline environment. 
 

 
Figure 13. Histogram of real neighbouring nodes within 
communication radius. The average number of neighbours, 

commn , is indicated with a red line. From top to bottom 

{ }comm 28, 24, 20,16n = ; left the spherical environment right 

the pipeline environment. 
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It should be noted that the results in Figure 11 and Figure 12 show the 
median values over 50 experiments, each time with a different swarm topology 
and node positions. The findings presented here concern the reconstruction of 
the full swarm in a single reconstruction experiment. Smaller sub-swarms can be 
reconstructed using lower connectivity. 

5.7. Loop Closing 

Many environments will contain one or multiple loops; therefore it is important 
that the reconstruction algorithm can deal with closing these loops. Our loop 
closing method as described in Section 4.5 is evaluated in this section. 

Examples of reconstructed swarms that require loop closing, and the iterative 
loop closing in the non-linear optimization process are shown in Figure 14. 
Build-up of error has caused the two ends of the loop(s) to not end up at the 
same position. Figure 15 shows the result of the loop closing detection 
algorithm (Section 4.5) of the dataset shown in Figure 14(b). The commonly  
 

 
Figure 14. Several steps of the loop closing phase using non-linear optimization. Blue is ground truth positions and red is 
reconstructed positions. 
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Figure 15. This connection matrix shows reconstructed connections ( ⋅ ) and 
excluded connections ( × ). It indicates excluded connections that are 
excluded by a plurality of neighbouring nodes (  ) as well as those with a 
distance comm2r>  (□ ). Loop closing candidates can easily be observed using 
this categorization. The linear ordering of the nodes’ UID along the pipe axis 
is solely used for illustrative purposes. It is not used in the reconstruction as 
only cids are available from measurements. 

 
excluded connections of which the reconstructed distance is larger than comm2r  
are depicted with red squares and clearly indicate that the two ends of the 
reconstructed swarm are supposed to be connected. The nodes that are 
reconstructed at the loop-ends do not receive support from nodes on the other 
side of the loop in the RANSAC voting algorithm. To close the loop, these 
detected connections that are originally excluded from the graph are now 
included in the graph. Performing the non-linear optimization using these new 
connections, now closes the loop as seen in the consecutive steps in Figure 14. 

As seen in Figure 14(b), loop closing can distort the reconstructed swarm 
when the loop-ends are too far from each other. Closing the loop using this 
non-linear graph optimization then forces a different swarm geometry in such 
cases. 

These experiments shows that our method can perform loop closing. Multiple 
loops can be dealt with simultaneously or individually, as seen in Figure 14(c). 

6. Discussion and Future Work 

The results show that the reconstruction algorithm can robustly deal with a large 
set of different types of measurement noise. Each measurement imperfection has 
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a different influence on the established mutual connections and on the 
reconstruction. The inlier-type of measurement noise are present in all 
measurements and only affect the accuracy of the reconstructed positions. The 
outlier-type of noise prevents establishing correct mutual connections and on 
top of that also create false and ambiguous connections due to the non-unique 
identification. Using the geometric consistency of the positions of true 
neighbouring nodes, the reconstruction algorithm can robustly filter out the false 
connections and prevent them from negatively influencing the reconstruction. 
Reducing the quantity of available cids significantly increases the ambiguities in 
establishing mutual connections. However, it is found that due to the robust 
nature of the reconstruction algorithm, these ambiguities could be resolved 
when enough inlier measurements are available. 

The robustness of our novel algorithm allows us to see that the key parameter 
for successful reconstruction is the number of inlier node connections that are 
available for reconstruction. Initially, the total number of distance measurements 
is determined by the communication range and the density of the nodes in the 
swarm. It is due to the outlier-type of measurement noises that not all node 
connections will be inlier measurements and hence can not be used for 
reconstruction. The effective connectivity can be predicted by our Equation (8) 
and is an important predictor for the reconstruction performance. We can 
therefore conclude that in the sensor node hardware design for these 
applications, resources should be focussed on increasing the communication 
radius to increase connectivity and to prevent outlier-types of noise from 
reducing the effective connectivity. Achieving this can for example go at the cost 
of (unique) identification. 

Depending on which information is favoured from the swarm, the error 
metrics can be used to study the performance of the reconstruction. There is no 
single error metric that can summarize the reconstruction performance for all 
application goals. Using different error metrics and the heuristically chosen 
adjusted recall metrics   and   we showed that the subjective interpretation 
of the quality of the reconstruction can be partially quantified. When the sensor 
nodes need to be designed for specific applications, a performance condition 
can be set up, e.g. 80%> , to assess under which input conditions the 
reconstruction is most likely to achieve the requested performance. 

7. Conclusions 

This work evaluated the feasibility of using sensor swarms, consisting of many 
highly miniaturized and severely resource limited sensor nodes, to reconstruct 
difficult-to-access environments. For this, a novel Guided Random Sample 
Consensus algorithm together with non-linear graph optimization is proposed. 
Its main contribution is that the algorithm can handle severe and different 
types of measurement errors as well as the use of ambiguous non-unique 
communication identifiers. 
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Extensive and realistic simulations show that sensor node connectivity is to be 
favoured over unique identification of nodes. When the number of used 
communication identifiers is only 2.5% of the total number of nodes ( CID 10n = ,

400N = ), the entire sensor swarm can still be reconstructed successfully. 
Thereby allowing less identification information to be used, i.e. shorter 
communication bursts, to trade-off for larger emission power per burst. This, in 
turn, allows for improved sensor node connectivity, as more nodes can be 
reached with a single burst. On the contrary, simulations show that when swarm 
connectivity drops below 20 inter-node connections per node, reliable sensor 
swarm reconstruction is hampered for this algorithm. Therefore, favouring 
connectivity over identification, is a pivotal finding of our work, as it can and 
will guide future developments of highly miniaturized sensor nodes. 
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Appendix A. Algorithm: Overview 

 
Algorithm 1. Reconstruction. 

Appendix B. Algorithm: RANSAC 

 
Algorithm 2. RANSAC. 
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Appendix C. Algorithm: Guiding RANSAC 

 
Algorithm 3. Guiding RANSAC by sorting the candidate nodes. 
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