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Abstract 
 
In many applications continuous aggregation of sensed data is usually required. The existing aggregation 
schemes usually compute every aggregation result in a continuous aggregation either by a complete aggregation 
procedure or by partial data update at each epoch. To further reduce the energy cost, we propose a sam-
pling-based approach with time window based linear regression for approximate continuous aggregation. We 
analyze the approximation error of the aggregation results and discuss the determinations of parameters in 
our approach. Simulation results verify the effectiveness of our approach. 
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1. Introduction 
 
Wireless sensor networks (WSNs) offer a powerful and 
efficient approach for monitoring and collecting infor-
mation in a physical environment. To extract the sum-
mary information about the monitored environment, the 
aggregations of sensed data, such as sum and average, 
are common interesting queries for users. Therefore, a lot 
of algorithms and protocols for aggregate query processing 
in WSNs are proposed [1-8]. 

The existing works addressed two types of aggregate 
queries which include exact and approximate aggregate 
queries. The exact aggregate query requires all the 
sensed data to be involved in aggregation computation to 
obtain the exact aggregation results [1,2]. However, the 
exact aggregate query processing often incurs great energy 
consumption and is also very sensitive to the packet loss 
and node failure during the data aggregation. Considering 
the approximate aggregation results would be enough to 
reflect the information of the environment, approximate 
aggregate query processing is addressed to save energy 
and achieve robustness against the failure of the links 
and nodes [3-8]. In the research of the approximate  
aggregate query processing in WSNs, sampling is widely 
used as a powerful and energy-efficient technique to ob-
tain the statistical information of the environment. A 
number of sampling based schemes have been proposed 
for approximate query processing in WSNs [8-10]. 

In the applications of WSNs such as monitoring air 

pollution and water quality, the users are often interested 
in understanding how the environment changes over time 
and observing data trend in a time window. In such cases, 
continuous aggregation of sensed data is usually required. 
In a continuous aggregation, the query aggregation pe-
riod is divided into epochs and one aggregate answer is 
provided at each epoch. The existing aggregation 
schemes usually compute every aggregation result in a 
continuous aggregation either by a complete aggregation 
procedure [1,2-4,7] or by partial data update [8] at each 
epoch. However, the users, who are interested in the 
time-evolving characteristic of aggregation results, are 
more concerned about the data trend rather than each 
individual accurate aggregation result. On the other hand, 
the communication cost of the existing schemes could be 
substantial, especially for continuous query with a short 
epoch and a long period. Motivated by such circum-
stances, we propose a sampling-based approach with 
time window based compression for approximate con-
tinuous aggregation. 

Our approach leverages the batch-based design to 
compute a period of aggregation results at one time. 
While giving a series of good approximate aggregation 
results to provide accurate data trend information, it 
achieves greater energy-savings than the existing ap-
proaches by avoiding individual computation cost of 
every epoch. In our approach, the combination of data 
compression and sampling techniques is exploited. A 
small portion of sensor nodes transmit to the base station 
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(BS) a compact description of their sensor readings dur-
ing a time window. The BS computes approximation 
aggregation results of every epoch in this time window. 
In this paper, linear regression modeling is adopted by 
sensor nodes to compress their sensor data in a time 
window. We analyze the approximation error of the 
aggregation results and discuss the determinations of 
parameters in our approach. 

The rest of the paper is organized as follows. We pre-
sent our approach and approximation error analysis in 
Section 2. We discuss the determination of parameters in 
our approach in Section 3. Simulation results are pre-
sented in Section 4. Finally, we conclude this paper in 
Section 5. 
 
2 Approximate Continuous Aggregations 
 
2.1 System Model and Time Window Based 

Framework 
We assume a multi-hop sensor network with N number 
of sensor nodes. The BS knows N. All the sensor nodes 
and the base station are loosely time synchronized. Each 
node has the same communication radius Rc. We assume 
a continuous querying environment for sensor networks. 
For a continuous aggregation query, the base station 
initially disseminates a query into the network, consisting 
of the epoch duration, the lifetime of the query evalua-
tion and a sampling ratio . 

During the period of a continuous aggregation query, 
aggregation computation is conducted at time intervals. 
Each time interval consists of l number of successive 
epochs. The BS computes the aggregation result of every 
epoch in a time interval at one time. Such a time interval 
is referred to as time window and represented by 
[ 1 ]t t l   . l is the time window size. Let 1 …t t lAg Ag    
denote the aggregation results from l successive epochs 

1,...t t l   . 
In the network, the aggregation computation involves 

sampling sensor nodes that participate in answering the 
aggregation query, and collecting a compressed repre-
sentation of sensor readings within a time window from 
each sampled node. 

After receiving the query from the BS, each sensor 
node u generates a random number rnu in the range of [0, 
1). If urn   , u is sampled for the aggregation query, 
otherwise u is not sampled. Let { 1 }iS s i m     ( m  
is the sample size) be the set of sampled nodes. At the 
end of a time window [ 1 ]t t l   , each node is S  
generates a compressed representation iM  of its sens-
ing readings 1 2{ }i t i t i t lr r r        that contributes to the 
aggregation in the time window[ 1 ]t t l   . The genera-
tion of iM  depends on the specific data compression 
method we adopted. After that, is  transmits iM  to the 

BS. The BS reconstructs the sensor readings of every 
sampled node is  by iM , denoted by 

1 2{ , }i t i t i t lr r r         , and computes an approximation 
answer  ( 1 )

k
t k t lAg      for a specific aggregation 

query. 
Definition 1. ( ( )  -approximation aggregation ): Let 

kA  be a true aggregation result of epoch k , 
kAg  is 

called as ( )  -approximation of kA , if 
Pr( )kk

AAg      . 
 
2.2. Modeling Sensor Data with Error  

Constraint 
 
In our framework, a sample is not a single sensor reading 
but a compressed representation of the sensor readings, 
which enables a sensor node to transmit its sensing read-
ings in a time window with less communication cost. It 
can be built by either lossy or lossless compression 
methods. 

Considering the inherent redundancy of sensor data 
and the fundamental limit of lossless compression in 
information theory, we use a data modeling approach, 
linear regression, to achieve a lossy compression of sensor 
readings. Linear regression has been widely used to 
characterize data in sensor networks and answer aggrega-
tion queries [11-13]. On this basis, lossless compression 
methods always can be used for any possible further size 
reduction. Nevertheless, we note that our framework 
does not depend on any particular compression method. 
However, data compression with linear regression model-
ing would introduce errors in the reconstructed data. 
Therefore, we put error constraints on the modeling 
process in our approach. If sampled nodes find that the 
variance of error incurred by modeling exceeds some 
threshold 2

T , referred to as error constraint, they choose 
to transmit their original data. Otherwise, model pa-
rameters including error variance are transmitted. 
 
2.2.1. Linear Regression Model 
Regarding the sensor readings 1t t lr r   of a node in 
each time window [ 1 ]t t l    as a function of the se-
quence number from 1  to l , a linear regression model 
[14] for these sensor readings is built in the following 
form  

 R X                 (1) 

where 1( ... )T
t t lr r   R , 0 1( ... )T

p       ,  

0 1

0 1

0 1

(1) (1) ... (1) 1 1 ... 1

(2) (2) ... (2) 1 2 ... 2

( ) ( ) ... ( ) 1 ...

p

p
p

p
p

h h h

h h h

h l h l h l l l

 
 
 
 
 
 
 
 
  
 

 
 
    
  
 

X
       

 

1( ... )T
t t l      . 
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In the model, { ( ) ( ) 0 }i
i ih x h x x i p      are the set of 

basis functions, 0 1 … p      are regression coefficients, 
and   is a random error vector. Besides, the time win-
dow size l  is larger than 1p  . According to 
Gauss-Markov conditions [14], we also have ( ) 0iE   , 

2( )iVar    and ( ) 0i jCov     where i j  , 
{ 1 ... }i j t t l      . 

By the least square estimate, the estimation of regres-
sion coefficients, denoted by    

0 1( ... )p       , can be 
computed by solving the following matrix equation, us-
ing, for example, Gaussian elimination:  

 A b                     (2) 

where TA X X , Tb X R  . 
Once determining l  and p , we can see that the ma-

trices X  and A  do not change with R , so they just 
need to be computed only once for an aggregation query. 
 
2.2.2. Error Variance and Data Reconstruction 
Besides computing regression coefficients  , each sam-
pled node also needs to estimate the variance of the er-
rors, denoted by 2 , to decide whether to transmit 
original data or regression coefficients. 

Under Gauss-Markov conditions [14], an unbiased es-
timator of error variance 2  can be computed by  


 

2 ( ) ( )

1

T

l p
   


 

R X R X
            (3) 

Given an error constraint 2
T , if  2 2

T  , the node 
transmits 1p   number of regression coefficients 
   

0 1( ... )p        and  2
  to the base station. Other-

wise, it transmits l  number of original sensor readings. 
By the regression coefficients of   received from a 

sampled node, the BS can reconstruct its sensor readings 


1( ... )t t lr r   R    in the time window by 

  R X                   (4) 

where X  can be pre-computed by the BS with l  and 
p . 

In the rest of this paper, we regard both the original 
readings and the regression coefficients as model pa-
rameters and do not distinguish them. A sample trans-
mitted by a sampled node is  is denoted 
by   2( )i i iM   . When ( 0)i iM   , iM  represents 
the original sensor readings. 
 
2.3. Approximate Aggregation 
 
2.3.1. Aggregation Estimation 
At the end of each time window, the BS waits for the 
arrivals of all samples for some time wt . The waiting 
time wt  should be larger than the maximum time 
needed for the message delivery from the samples node 

to the BS. 
After reconstructing sensor readings { 1 }i k i mr      

of sampled nodes { 1 }is i m    at epoch k  in a time 
window [ 1 ]t t l    by Formula (4), the approximation 
aggregation result 

kAg  of epoch k  ( 1t k t l    ) 
can be obtained by 


1 2( ... )k k m kk

FAg r r r                    (5) 

where F is the estimator function of aggregation results. 
Now we specifically discuss how to estimate the results 
of aggregation queries including Average and Sum re-
spectively. 
Average Average aggregation is estimated by  


1

1 ma
k i k

i

A rm 


                   (6) 

Sum Sum aggregation is estimated by  

 
1

ma a
k k i k

i

N
A N A rm 



                (7) 

2.3.2. Approximation Error Analysis 

Let  i k i ki k r r      . If the estimator function F  is a 
linear function, Formula (5) can be rewrote as 

   

  
1 21 2

1 2 1 2

( ... )

( ... ) ( ... )

k k m kk k m kk

k k m k k k m k

F r r rAg

F r r r F

  

  

    

     

      

       
     (8) 

where i kr   is the original data of epoch k  and  i k   is 
the residual in the linear regression model (1) of node 

is . 
Then, the approximation error of 

kAg  to the exact 
aggregation result kA  of epoch k is  



  

  
1 2 1 2

1 2 1 2

( ... ) ( ... )

( ... ) ( ... )

sampling estimation error modeling estimation error

kk

k k m k k k k m k

k k m k k k k m k

AAg

F r r r A F

F r r r A F

  

  

     

     

  

         

             

 (9) 

where 1( ... )k m k kF r r A       is the estimation error with 
original data samples, referred to as sampling estimation 
error, and  

1( ... )k m kF        is referred to as modeling 
estimation error. The above result indicates the ap-
proximation error consists of two types of errors includ-
ing sampling estimation error and modeling estimation 
error. Because these two errors separately rely on different 
factors such as the sample size or the number of regres-
sion coefficients, we regard them as two independent 
random variables. 

Now we specifically analyze the approximate error of 
Average and Sum. Let a

kA  and s
kA  be the exact aver-

age and sum result of epoch k  ( 1t k t l    ) respec- 
tively, i.e., 1

1

Na
k i kN i

A r 
   and 

1

Ns
k i ki

A r 
  . By 

Formula (8), we have 
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 
1 1

1 1m ma
k i k i k

i i

A r
m m  

 

    

As we can see, 
a
kA  is a linear combination of two 

random variables kR  and kZ , 1
1

m

k i km i
R r 

   and 
1

1

m

k i km i
Z  

  . 
According to the linear regression theory, under 

Gauss-Markov conditions, the residual  i k   follows a 
normal distribution 2(0 (1 ))i k kN p     where 2

i  is 
the error variance in the linear model at node is , 
k k t    and k kp    is the k  -th element on the prin-
cipal diagonal of matrix 1( )T T

XP X X X X . Consider-
ing that 

2

i  in iM  is an unbiased estimator of 2
i , we 

have 

 2

2
1

1
(0 )

m
k k

ik
i

p
Z N

m
 




            (10) 

Since kR  is the mean of original data samples, ac-
cording to the general results in the sampling theory [15], 
we have the following results 

( ) a
k kE R A  

2

( ) (1 )k
k

S m
Var R

m N
   

2 2

1

1
( )

1

N
a

k i k k
i

S r A
N 



 
   

Confidence Interval: 

2 2

1 1
Pr 1a

k k k k k

f f
R s A R s

m m
   

 
 
 
  
 

 
         (11) 

where f m N  , 
2
  is the upper 2   point on the 

standard normal distribution, 2 21
1 1

( )
m

k i k km i
s r R 

   
is the (unbiased) sample variance and is an unbiased 
estimator of the population MSE(Mean Square Error) 

2
kS . 
By the above discussions, we have the following results 

Lemma 1. Under Gauss-Markov conditions,  

 E(r 
,, 2

0,                    
( )

(1 )   
j ki k

i k k

i j
E r

p i j


  

 
 

  

Proof. If i j , since the samples i kr   and j kr   are 
assumed to be independent random variables in the sam-
pling theory, i kr   and  j k   are independent and we 
have 

 ( ) ( ) ( ) 0i k i kj k j kE r E r E     . 

If i j , according to the linear regression theory, we 
know  i k   and  i x   ( 0 x p  ) are independent, thus 
   ( ) ( ) ( ) 0i x i k i x i kE E E        . Then, we have 

      



2
0 1 2

2 2

( ) [( ... ) ]

( ) (1 )

p
i k i k i i i i p i k i k

i k ki k

E r E k k k

E p

      



       

 

      

  
 

Theorem 1. Let 2 21
1 1

( )
am
ki kk m i

As r  
    and 

k k t   . Then  

2 2 2

1

1
( )

N
k k

k ik
i

p
E Ss N

 




            (12) 

Proof. It can be easily shown that  

2 2

1 1

2

1 1

1
( )

( 1)

1 ( )
2 ( 1)

m m

i k j kk
i j

i j

m m

i k j k
i j

i j

s r rm m

r rm m

 
 



 
 



 


 






  

 

 

2 2

1 1

2

1 1

1
( )

( 1)

1 ( )
2 ( 1)

N N

k i k j k
i j

i j

N N

i k j k
i j

i j

S r r
N N

r r
N N

 
 



 
 



 


 





 

For each pair ( )i k j kr r    ( i j , 1 i j N   ), the 
probability that they are both being reconstructed due to 
the corresponding nodes ( i , j ) being sampled, is 
m(m-1)/(N(N-1)). Then, with Lemma 1, we have 

 

2 2

1 1

2

1 1

2

1 1

2 22

1 1

2

1

1
( ) ( ( ) )

2 ( 1)

1 ( 1)
(( ) )

2 ( 1) ( 1)

1
(( ) )

2 ( 1)

1
(( ) ( ) ( ))

2 ( 1)

1

m m

i k j kk
i j

i j

N N

i k j k
i j

i j

N N

i k j k
i j

i j

N N

i k j k i k j k
i j

i j

k
i

E Es r rm m

m m
E r rm m N N

E r rN N

r r E E
N N

S
N

 

 
 



 
 



 
 



   
 





 



 

 

 


   


 









  

 

 

 2 2 2

1

1
( )

N N
k k

k ii k
i

p
E S

N


 





  

 

By replacing 2
kS  by 2

ks , 2( )kE s  by 2

ks , and 2
i  by 

 2

i  in Formula (13),  we can estimate 2
ks  by  

12
2

1
k kp

k N

N
iis  

  . However,  2

1

N

ii   can not be  

obtained since sampling all nodes is prohibitive in our 
approach. Thus, we use an upper bound of 2

ks , denoted 
by 2( )ks , and estimate it by 2 2(1 )k k Tk ps     due to 
 2 2

Ti   .  
Theorem 2.  

 
2 2

2

1

1 1
Pr (1 )

(1 )(1 )

r z

m
a a

k k k kk i
i

r z

f
A s pA m m

   

 

 
    
  


    

  

    (13) 

where m
Nf  , 2 2(1 )k k k Tks ps 

    , 
2
r  and 

2
z  

are respectively the upper 2r  , 2z   point on the 
standard normal distribution. 
Proof. Define the events A , B  and C  respectively as 
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

  



 







 



    


   

   





 

Because 
2 2

kk ss  , by Formula (12) we have  

2

1Pr( ) Pr( ) 1
r

fa
k k k rmB R A s        

Since 
2

21

1

(0 )k k
m

p
ik m

i

Z N  



  ,  


2

2

1

1
Pr (1 ) 1

z

m

ik k k z
i

Z p
m

  
 
 
   
  

      

By Formula (9), we have  a a a
k k k k kA A R A Z        . 

When inequalities B  and C  are satisfied, A  must 
hold. Because sampling and modeling errors are inde-
pendent random variables, so B  and C  are inde-
pendent events. Then, we have 

Pr( ) Pr( ) Pr( ) Pr( ) (1 )(1 )r zA BC B C        

Let 
2 2

2

1

1 1
(1 )

r z

m

k k k k i
i

f
s p

m m
    


 




    .  

Since  s a
k kk kN NR NZA A   , we can easily derive the 

following results from the above analysis of average: 

Pr (1 )(1 )s s
k k r zk A NA    

 
 
          (14) 

Here Formulas (13) and (14) give the approximation 
error k  ( kN ) of Average (Sum) aggregation with the 
probability guarantee (1 )(1 )r z   . 
 
3. Parameter Determination 
 
From Formulas (13) and (14) we can see that with given 
the probability guarantee, i.e., r  and z , the approxi-
mation error depends on the error constraint 2

T  and the 
sample size m . In this section we discuss the selection 
of their values with the desired error bound for k  by 
users, denoted by T . 
 
3.1. Error Constraint 2

T  
 
As shown in Formula (3),  i  indicates the average er-
ror for the data reconstructed in a time window. Thus, 

T  specifies the maximum degree of the average error 
that the user can tolerate for the reconstructed data. A 
larger T  would allow larger errors in the reconstructed 
data and may enlarge the approximation error. On the 
other hand, a larger T  gives the sampled nodes more 

chances to transmit their model parameters instead of 
their original data and further reduce the communication 
cost. Thus, the trade-off exists between communication 
cost and approximation error. 

Here we provide one possible solution to determine 2
T . 

During the first time window of aggregation, all sampled 
nodes transmit their original data to the BS. The BS fits 
the specified model to these data and computes the mod-
eling errors 2ˆ{ |1 }i i m    for all sampled nodes. A 
histogram is computed to count the number of error val-
ues falling into each bin, which reflects the quality of 
data modeling for the sensor network. According to this 
frequency distribution, the user can select a value of 2

T  
as large as possible while ensuring an acceptable ap-
proximation error. Finally, the BS broadcasts 2

T  to the 
sensor network and each sensor node works on the new 
error variance constraint. This procedure could be con-
ducted reactively when substantial sampled nodes start to 
continuously transmit their original data, which indicates 
the changes of the nature of data in the sensor network. 

In our experiments on real data set, we show linear re-
gression well characterizes the sensor data and incur few 
original data transmissions even with a small error vari-
ance constrain. 
 
3.2. Sampling Ratio   
 
From Formulas (13) and (14), a larger sample size m  
enables a smaller approximation error. 

It is easily shown that we can relax k  to  

2 2

1 1
r z

f
k k Tm m

s       

without changing the inequality relationship with the 
probability guarantee (1 )(1 )r z    in Formulas (13) 
and (14). We consider the least sample size to satisfy 

k T   for any k  in [ 1 ]t t l   . With an approxima-
tion of / 0f m N   (for relative small sample size 
and large population), we have 

2 2

1 1
r zk T Tm m
s        

which should hold for any k  in [ 1 ]t t l   . Then, we 
can obtain the least sample size km  required by epoch k 
in the time window [ 1 ]t t l    to ensure k  is less 
than a threshold T  

2 2 2( ) ,   1
r zk T

k
T

s
m t k t l

   



 
          (15) 

For each epoch k  in [ 1 ]t t l   , if the BS finds 

km m , it can issue another sampling request to obtain 

km m  samples. However, ks  cannot be obtained be-
fore sampling, we give the following estimation if the 
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upper bound rmax and lower bond rmin of sensor readings 
are known 

* 2max min

1

1
( )

1 2

m

k
i

r r
s

m 




         (16) 

We can obtain an estimation of the required sample 
size, denoted by mr, for all epochs in the time window 
[ 1 ]t t l    by inserting Formula (15) into Formula (16). 
The sampling ratio   is set to be not less than mr/N. 
 
3.3. Time Window Size l 
 
When all sampled nodes transmit their original data, the 
approximation error includes only the sampling estima-
tion error and no modeling estimation error. Thus, the 
aggregation computation with original data needs a less 
sample size than with the compressed data by modeling 
to achieve the same approximation error. Let om  be the 
sample size needed to obtain ( )T  -approximation 
aggregation by collecting the original data, then 

2

1 o

o

f
k Tms    where om

o Nf  . With the approxima-
tion of / 0o of m N  , 

2

2 2( )o k Tm s    

On the other hand, we have  

2 2

1 (1 )(1 )
rr z r                 

As above, we also have 
2 2

z   . 

According to the above discussion on sampling ratio, 
we have 

2 2 2 2
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2 2 2

2 2 2

2
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      (17) 

Without data modeling compression, the aggregation 
requires ( 1)om l   original data transmissions for a time 
window to achieve the approximation error T . With 
the data modeling compression, our scheme requires 

( 2)m p   data transmissions to achieve the approxima-
tion error T . To achieve energy savings, we should 
have ( 1) / ( 2) 1o tm l m p   , then  

21 ( 2) ( 2)(1 )t T

o k

m
l p p

m s


       

In the case of T kS  , 1 2T

ks

  , we could set 
1 4( 2)l p   . 

4. Simulation Evaluation 
 
To measure the performance of our secure aggregation 
scheme, we simulate a sensor network based on the data 
from a real world deployment with 54 sensor nodes (ID 
from 1 -54) in the Intel Research lab, which includes a 
trace of sensor readings collected between February and 
April,2004 , node location and network connectivity in-
formation. The sensors collected time-stamped humidity, 
temperature and voltage values in 31 second intervals. 
We use the first 2000 epochs of the data set in the day 
03/08 with the largest size among all days and assume a 
continuous aggregation query on the temperature attribute 
during this period. The periodic aggregation is conducted 
on it with a time window size 40l  , i.e., 50 time win-
dows. In the linear regression model, we let 3p  . 

To show the performance of linear regression model 
for describing sensor data, we investigate the distribution 
of error variance and its impact on data transmission for 
all sensor nodes.  

Figure 1 shows temperature readings (in degrees Cel-
sius) of 52 sensor nodes in 2000 successive epochs, 
which are used for our simulation. Figure 2 shows the 
error variance of linear regression model in every time 
window for all sensor nodes. For all time windows, all 
the sensor nodes have error variances less than 0.2. Fig-
ure 3 shows under different choice of error constraint 

2
T , the number of sensor nodes which has a larger mod-

eling error variance than 2
T  in each time window. We 

can conclude most of sensor nodes at most of time win-
dows are consistent with variance constraint. 
When 2 0 07T   , less than 10%  of sensor nodes ex-
ceed 2

T ; when 2 0 1T   , the number decreases to 
2% .Our experiment indicates only a small portion of 
sampled node will transmit their original data. 
 

 

Figure 1. Temperature readings (in degrees Celsius) of 52 
sensor nodes in 2000 successive epochs (excluding two 
nodes with incomplete data and one node with abnormal 
data). 
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Figure 2. The error variances of linear regression model in 
all sensor nodes for each time window. 
 
 

 

Figure 3. the number of sensor nodes with error variance 
2
T  in each time window. 

 
Assuming� = 0.4 and 2 0 2T   , Figure 4 shows the 

difference between the average aggregation result esti-
mated by sampling with time window based compression 
and the aggregation result estimated by sampling with 
original data transmission in every epoch. As we can see, 
the difference is in [-0.2, 0.25]. It indicates that our 
approach with data compression can obtain the estima-
tion of average aggregations close to those obtained by 
the approach without data compression, even when the 
sample size is the same. It also indicates our approach 
achieves the energy efficiency while obtaining the ap-
proximate estimations, since in each time window only 
five numbers are sent from each sampled node. 

 

 
Figure 4. The difference between two average aggregation 
results respectively estimated by the approaches with and 
without data compression in every epoch. 

5. Conclusions 
 
In this paper we propose a sampling-based approach with 
time window based linear regression for approximate 
continuous aggregation. The approximation error of the 
aggregation results is analyzed. The determination of 
parameters in our approach is also discussed. By simula-
tion results on real data set we verify the effectiveness of 
our approach. 
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