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Abstract 
 
A new recursive algorithm, called the Gaussian convolution filter (GCF), is proposed for nonlinear dynamic 
state space models. Based on the convolution filter (CF) and similar to the Gaussian filters, the GCF ap-
proximates the posterior density of the states by Gaussian distribution. The analytical results show the ability 
to deal with complex observation model and small observation noise of the GCF over the Gaussian particle 
filter (GPF) and the lower complexity, more amenable for parallel implementation than the CF. The Simula-
tion in the Tracking domain demonstrates the good performance of the GCF. 
 
Keywords: Signal Processing, Tracking, Nonlinear Estimation 
 
 
1.  Introduction 

To estimate the dynamic state from the history of noisy 
observations is the main objective of filtering, which 
arise in many fields including statistics, economics and 
engineering such as tracking and navigation. Based on 
the difference of the dynamic state space models, usually 
filtering can be divided into two categories: linear and 
nonlinear, which correspond to the linear Gaussian mod-
els and nonlinear and/or non-Gaussian models respec-
tively. For linear filtering, Kalman filter (KF) [1] usually 
gives the optimal results. For nonlinear filtering, the ex-
tended Kalman filter (EKF) [2] is most popular. How-
ever, the linearization process of the EKF is liable to 
large errors threatening the convergence of the algorithm, 
particularly for models with high nonlinearity. A re-
cently-popularized technique for numerical approxima-
tion, termed as the particle filter (PF) [3-5], offers a gen-
eral tool for the state estimation of nonlinear 
non-Gaussian systems. The core idea behind the PF is to 
use samples (particles) to approximate the concerned 
distributions. Usually the PF gives better results than the 
EKF and the unscented Kalman filter (UKF) [6]. How-
ever, it also has drawbacks. Firstly, the algorithm is 
complex and difficult to parallel implementation [7]. 
Secondly it is prone to divergence when the observation 
noise is too small [8]. Thirdly, it does not work when the 

likelihood function can not be obtained analytically [8]. 
The first drawback has been overcome by the Gaussian 
particle filter (GPF) [7], which approximates the poste-
rior distributions by single Gaussians, and avoid the re-
sampling step, which reduces the complexity and is more 
amenable for fully parallel implementation in VLSI. 
However the second and third shortages are still within 
the GPF. The convolution filter (CF) [8] has circum-
vented the second and third drawbacks by using convo-
lution kernels, however, the first one still remains. 

In this paper, we propose a new algorithm, namely the 
Gaussian convolution filter (GCF), which can overcome all 
the three drawbacks above. The GCF is based on the con-
volution filtering concept, and it approximates the posterior 
distributions by single Gaussians. It is shown that the GCF 
is asymptotically optimal in the number of particle under 
the Gaussianity assumption. The Simulation results in the 
Tracking demonstrate the performance of the GCF when 
the observation noise is too small and the GPF fails. 

2.  Background 

In this section, we first describe the problem formulation. 
The convolution filter is then recalled. 

2.1.  Problem Formulation 

Let the following general model of a state space system 
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)

be considered [3]: 

1( ,t t t tx f x                  (1) 

( , )t t t ty h x                    (2) 

where t and t  denote the known independent process 

and measurement noise respectively, {xt} the state of the 
system complying with the Markov process, {yt} the 
measurements of the system, and both ft and ht are 
known nonlinear or linear functions. Again, let 

 1, ,  1,t t t tX x x Y y y  

1

, and p(x0|x-1) = p(x0) be 

the initial density. Here, the purpose is supposed to esti-
mate the posterior probability density function (pdf) 
p(xt|Yt) by the Bayes recursion 

     1 1 1 1t t t t t t tp x |Y p x | x p x |Y dx       (3) 

            ttttttttttt dx|Yxp|xyp|Yxp|xyp|Yxp 11
 (4) 

2.2.  The Convolution Filter 

Usually in PF scheme, the weight of each particle is 
given by the likelihood function. The observations thus 
operate the filter through the likelihood function which is 
assumed to exist and to be known. This assumption is 
rather restricting in practice. Moreover it rules out the 
non-noisy case and will also cause trouble when the ob-
servation noise is too small and also when the noise is 
non-additive as in the general system (1) and (2). These 
drawbacks can be circumvented by using convolution 
kernels to weight the particles in the CF [8]. We can ap-
proximate the weights consistently by simulating the 
observations, and use this approximation in place of the 
true function in the PF, i.e. 

      |i i z
t t t hn tw p y x K y y   i

t           (5) 

where  denote particle weights,  i
tw z

hnK  is Par-

zen-Rosenblatt kernel of appropriate dimensions (A Par-
zen-Rosenblatt kernel is a bounded positive and symmet-

ric function for which , where 1Kd    is the 

Lebesgue measure, and  lim 0
d

x K x   as x  , 

where d is the dimension of variable y and   denotes 

the squared norm), hn is called the kernel bandwidth, and 
 ˆ i
ty  are the samples from observation. Then we can get 

the estimation as 

        
1 1

ˆ|
n i ix

t t t hn t t ti i
p x Y w K x x w

 
   n i   (6) 

A brief description of the resampled CF (RCF) is 
given in Table 1. 

Table 1. The RCF algorithm. 

For 0t   
Given p0 be the probability density of the initial state distribu-

tion 
For  1t 

(1) resample:   1 11
~

n
i

t ti
x p 

 

(2) evolving:        
1~ ( , ), ~ ( , )i i i i

t t t t t tx f x y h x   ,  1, ,i n 

(3) estimation: 

 
     

  
1

1

|

n i iy x
hn t t hn t ti

t t t n iy
hn t ti

K y y K x x
p x Y

K y y




 







. 

3.  The Gaussian Convolution Filter 

In this section, we present the main results of the paper, 
the GCF recursion. The main idea behind the GCF is to 
estimate the posterior distributions by CF, and then ap-
proximate them by Gaussians. 

3.1.  The Measurement Update 

Assume the density of prediction is approximated by a 
Gaussian [7], i.e., 

  1 ; ,t t t t tp x |Y x               (7) 

where  ; ,x    denotes the Gaussian distribution 

with the mean   and covariance . Take (7) as the 

importance density and get samples from it, i.e., 



   ~ ; , , 1, ,i
t t t tx x i    N       (8) 

Obtain the observations 

   ~ ( , ), 1, ,i i
t t ty h x i N             (9) 

and the particle weights 

      ˆ |i i z
t t t hn tw p y x K y y   i

t         (10) 

By substituting (7) into (4) we get 

     ; ,t t t t t t t tp x |Y m p y | x x          (11) 

where  

   11t t t t tm p y | x p x |Y d  tx          (12) 

We approximate (11) by a Gaussian, i.e., 

   ; ,t t t t tp x |Y x                (13) 

where  
     

         

1 1

1

N Ni i i
t t t ti i

TN i i i i
t t t t t t ti

w x w

w x x w



 

 





   

 


   (14) 
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where TA  denotes the transpose of matrix A. We now 
give the corollary to verify the convergence of the algo-
rithm above. Let us note that the form of corollary here is 
similar to that in GPF [7], however the difference is that 
the one here is based on the CF. 

Corollary 1: Assume that at time t, the prediction dis-

tribution is Gaussian, i.e.    1 ; ,t t t t tp x |Y x     . 

The GCF measurement updates the filtering distribution 
by the algorithm above. Then, t  computed in (14) 
converges to the MMSE estimate of xt almost surely as 

, and the MMSE estimate given by t  in (14) 
converges to the true MMSE estimate almost surely as 

. 

N 

N 



Proof: 1) mean 

 
   

 

    
  

       
   

   
   
   

 
 

1

11

1 1

~ |
1

1

1

1

1

1

ˆ |
ˆ |

ˆ |

ˆ | |

ˆ | |

| |

| |

| |

|

| |

i
t t t

N i iN i i
t t tt t ii

t t t N Ni i
t t ti i

x p x Y
t t t t t t

t t t t t

t t t t t t

t t t t t

t t t t t t

t t

t t t t t

x p y xx w
E x Y

w p y

x p y x p x Y dx

p y x p x Y dx

x p y x p x Y dx

p y x p x Y dx

x p y x p x Y dx

p y Y

x p x Y dx E x Y







 













  







 


 








  t

x

. 

(15) 

2) covariance 

      
       

 

        
  

   

     
   

   
       

1

1

1

1

1

~ |
1

1

ˆ ˆ ˆ| | |

ˆ |

ˆ |

| |

ˆ | |

ˆ | |

| | | |

i
t t t

T

t t t t t t t t

TN i i i
t t t t ti

N i
ti

TN i i i
t t t t t ti

N i
t ti

T

t t t t t t

x p x Y
t t t t t

t t t t t

T

t t t t t t t t t

E x E x Y x E x Y Y

x x w

w

x x p y x

p y x

x E x Y x E x Y

p y x p x Y dx

p y x p x Y dx

x E x Y x E x Y p y x p x

 

 















   

 


 


 




 











 

   
         

 
       
      

1

1

1

1

| |

| | | |

|

| | |

| | |

t t

t t t t t

T

t t t t t t t t t t t

t t

T

t t t t t t t t t

T

t t t t t t t

Y dx

p y x p x Y dx

x E x Y x E x Y p y x p x Y dx

p y Y

x E x Y x E x Y p x Y dx

E x E x Y x E x Y Y









 


  

  







  

(16) 

3.2.  The Time Update 

By substituting (13) to (3) we have 

     1 1t t t t t tp x |Y p x | x p x |Y dx   t  

    1 ; ,t t t t t tp x | x x dx           (17) 

Draw samples 

   ~ ; , , 1, ,i
t t t tx x i    N       (18) 

and then a Monte Carlo approximation of the predictive 
distribution is given by 

   1 11

1 N i
t t t ti

p x |Y p x | x
N 

        (19) 

Obtain samples at time t+1 from the process model by 

   
1 1~ ( ,i

t t tx f x  )i              (20) 

from which the mean and covariance of  are 
computed as 

 1t tp x |Y

 

     
1 11

1 1 1 11

1

1

N i
t ti

N i i
t t t ti

x
M

x x 1tM



 

 

   



   



 

     (21) 

Recall that the prediction distribution is approximated 
as a Gaussian, we have 

  1 1 1 1; ,t t t t tp x |Y x               (22) 

3.3.  Summary of the GCF 

We summarize the algorithm above in Table 2. 
The GCF does away with the need of resampling step, 

this means that the GCF is more amenable for fully paral-
lel implementation in VLSI than the CF. Moreover, be-
cause of the use of convolution kernels the GCF can deal 
with scenarios that the observation noise is too small or 
the likelihood function can not be obtained analytically. 

4.  Tracking Simulation Results 

An example: Consider the problem of tracking a maneu-
vering target [9], whose position and velocity at instant t 
are given by a continuous random vector x2t ∈ Rn-1, 
and where the maneuver/regime of the target is repre-
sented by the discrete random variable x1k ∈ R. The 
state to be estimated is xt ={x1t ; x2t}. The model is as 
follows: 

X2t = Fx2t-1 + Bx1t + wt ;  

Zt = Cx2t + et 
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Table 2. The GCF algorithm. 

For  0t 
Given     0 0 0 0; ,p x x   

For  1t 
(1) Time update  

(i) Draw samples from posterior density 

    1 1 1 1~ ; , , 1, ,i
t t t tx x i       N  

(ii) Draw samples from the process model 

    
1~ ( , ), 1, ,i i

t t tx f x i N      

(iii) Compute the mean and covariance 

 

 

     

11

1

1

1

N i
t ti

TN i i
t t t ti

x
M

x x
M



t 







   




 

(2) Measurement update 
(i) Draw samples from importance density 

    ~ ; , , 1, ,i
t t t tx x i    N  

(ii) Draw samples from the observation model 
   ~ ( , )i i
t t ty h x   

(iii) Compute and normalized the weights 

 
    
     

1

ˆi iz
t hn t t

Ni i i
t t ti

w K y y

w w w


 

 
 

(iv) Compute the mean and covariance 

 
   

       
1

1

N i i
t t ti

N i i i
t t t t t ti

w x

w x x



 






   




 

 
Additionally, given 

 2
1 1 1 1 1( | ) 0.01 , 0 10t t t t tp x x x t ~ Ν ,     . 

tw  and  are zero mean Gaussian noises, with co-

variance matrices Q and R. Since given X1t, the dynam-
ics of x2t are linear-Gaussian. In our model, we use  
x2t=[xt yt xt’ yt’]

T where (x; y) is the position of the target 
in a cartesian plane. We take : 

te

F=[1,0,0.3,0;0,1,0,0.3;0,0,1,0;0,0,0,1]T,  

B=[1.25;-1.25;0.25;-0.25]T,  

C=[1,0,0,0;0,1,0,0].  

We use the simulation data as follows: 

    0 0.01,0;0,0.01 , 0 ,t
tω ~ Ν , e ~ Ν ,R 01ˆ |x  (20, 

30, 0.5, 0.5)T where the measurement noise variance var-
ies during simulation. Both GCF and GPF are adopted in 
the simulation. Figure 1 shows the absolute value of er-
rors of the state estimates given by the GPF (denoted by 
asterisk-solid line) and GCF (denoted by dashed line) 
respectively when the observation noise variance R=5. In 
this case both the GPF and the GCF works well, also 
shown in Table 3. However, when R is reduced, e.g. 
R=0.1, the GPF diverges while the proposed GCF still 
works well, as shown in Table 3, where   means the 

divergence of the results as shown in [8], and the RMSE 

 
Figure 1. Absolute value of estimated error (R=5). 

 
Table 3. Detailed simulation results. 

 
meth-
ods 

R x position 
RMSE 

y position 
RMSE 

x velocity 
RMSE 

y velocity 
RMSE 

10 8.691727 9.132639 43.681761 42.659641

1 0.936217 0.898894 4.448537 5.993423 

 
 
GPF 

0.1         

10 8.777454 9.123733 46.752717 47.554381
1 0.951737 0.901504 3.882222 5.185661 

 
 
GCF 0.1 0.189300 0.198540 1.274176 1.247551 

is calculated according to 

 2

1

ˆ
t

i i
i

x x N


 , 

where ˆix  and ix  are the estimated and true values 

respectively, N denotes the total estimation times. 

5.  Conclusions 

The proposed Gaussian convolution filter (GCF) over-
comes the drawbacks of the existing GPF, which is lim-
ited in the applications to scenarios that have non-noisy 
or near non-noisy observations or lack the knowledge of 
the likelihood function. Moreover the parallelizability of 
the GCF and the absence of resampling step makes it 
more convenient for VLSI implementation and, hence, 
feasible for practical real-time applications than the ex-
isting CF. Simulation results are also presented to dem-
onstrate the performance of the GCF when the observa-
tion noise is small and the GPF fails. 
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