Dynamic Programming to Identification Problems

Nina N. Subbotina¹, Evgeniy A. Krupennikov²

¹Krasovskii Institute of Mathematics and Mechanics, Ekaterinburg, Russia
²Ural Federal University, Ekaterinburg, Russia
Email: subb@uran.ru, krupennikov@imm.uran.ru

Abstract
An identification problem is considered as inaccurate measurements of dynamics on a time interval are given. The model has the form of ordinary differential equations which are linear with respect to unknown parameters. A new approach is presented to solve the identification problem in the framework of the optimal control theory. A numerical algorithm based on the dynamic programming method is suggested to identify the unknown parameters. Results of simulations are exposed.

Keywords
Nonlinear System, Optimal Control, Identification, Discrepancy, Dynamic Programming

1. Introduction
Mathematical models described by ordinary differential equations are considered. The equations are linear with respect to unknown constant parameters. Inaccurate measurements of the basic trajectory of the model are given with known restrictions on admissible small errors.

The history of study of identification problems is rich and wide. See, for example, [1] [2]. Nevertheless, the problems stay to be actual.

In the paper a new approach is suggested to solve them. The identification problems are reduced to auxiliary optimal control problems where unknown parameters take the place of controls. The integral discrepancy cost functionals with a small regularization parameter are implemented. It is obtained that applications of dynamic programming to the optimal control problems provide approximations of the solution of the identification problem.

See [3] [4] to compare different close approaches to the considered problems.
2. Statement

We consider a mathematical model of the form

\[
\frac{dx(t)}{dt} = F(t) + G(t, x(t))k, \quad t \in [t_0, T],
\]

where \(x \in R^n \) is the state vector, \(k \in R^m, \) \(m \geq n \) is the vector of unknown parameters satisfying the restrictions

\[
K \leq |k_i| \leq K, \quad i = 1, \ldots, m.
\]

Let the symbol \(||k|| \) denote the Euclidean norm of the vector \(k = (k_1, \ldots, k_m) \).

It is assumed that a measurement \(y^\delta(\cdot) : [t_0, T] \to R^n \) of a realized (basic) solution \(x_\delta(t), t \in [0, T] \) of Equation (1) is known, and

\[
|| y(t) - x_\delta(t) || \leq \delta, \quad \forall t \in [0, T].
\]

We consider the problem assuming that the elements \(g_{ij}(t, x), i = 1, \ldots, n, \quad j = 1, \ldots, m, \) of the \(n \times m \) matrix \(G(t, x) \) are twice continuously differentiable functions in \(R^{n+1} \). The coordinates \(y_i^\delta(\cdot), i = 1, \ldots, n, \) of the measurement \(y^\delta(\cdot) \) are twice continuously differentiable functions in \([0, T]\), too. The coordinates \(f_i(t), i = 1, \ldots, n \) of the vector-function \(F(t) \) are continuous functions on the interval \([0, T]\).

We assume also that the following conditions are satisfied

A.1 There exists such constants \(\bar{Y} > 0 \) and \(\delta_0 > 0 \) that for all \(\delta \leq \delta_0 \) the inequalities

\[
|y_i^\delta(t)| \leq \bar{Y}, \quad \left| \frac{dy_i^\delta(t)}{dt} \right| \leq \bar{Y}, \quad \left| \frac{d^2y_i^\delta(t)}{dt^2} \right| \leq \bar{Y}, \quad \forall i = 1, \ldots, n, t \in [t_0, T]
\]

are true.

A.2 There exist such constant \(r > 2\delta_0 \) (\(\delta_0 \) from A.1) and such compact set \(\Omega \in [0, T] \times R^n \) that for any \(0 < \delta \leq \delta_0 \) the following conditions are held

\[
\{(t, y) : ||y - y_i^\delta(t)|| \leq r, \quad t \in [0, T]\} \in \Omega; \quad s^TQ(t, x)s > 0, \quad \text{as } s \neq 0, \quad (t, x) \in \Omega.
\]

Here \(Q(t, x) = G(t, x)G^T(t, x) = (q_{ij}(t, x)), \quad i = 1, \ldots, n, \quad j = 1, \ldots, m. \)

The identification problem is to create parameters \(k^\delta \) such, that

\[
|| x^\delta(\cdot) - x_\delta(\cdot) || = \max_{t \in [0, T]} || x^\delta(t) - x_\delta(t) || \to 0, \quad \text{as } \delta \to 0,
\]

where \(x^\delta(\cdot) \) is the solution of Equation (1), as \(k = k^\delta \).

3. Solution

3.1. An Auxiliary Optimal Control Problem

Let us introduce the following auxiliary optimal control problem for the system

\[
\frac{dx(t)}{dt} = F(t) + G(t, x(t))u, \quad t \in [t_0, T],
\]

where \(u \in R^w \) is a control parameter satisfying the restrictions
for a large constant $K > 0$.

Admissible controls are all measurable functions $u(\cdot)$. For any initial state $(t_0, x_0) \in [0, T] \times \mathbb{R}^n$, the goal of the optimal control problem is to reach the state $(T, y(T))$ and minimize the integral discrepancy cost functional

$$I_{t_0, x_0}(u(\cdot)) = \int_{t_0}^{T} \left[-\frac{\| x(t) - y(t) \|^2}{2} + \frac{\alpha^2}{2} \| u(t) \|^2 \right] dt. \quad (8)$$

Here $y(t) = y^\delta(t)$ is the given measurement; α^2 is a small regularization parameter, $x(t) = x(t; t_0, x_0, u(\cdot))$ is the trajectory of the system (6), (7) generated under an admissible control $u(\cdot)$ out the initial point x_0. The sign minus in the integrand allows to get solutions which are stable to perturbations of the input data.

Note 1. A solution $u^{\delta, \alpha}(\cdot)$ of the optimal control problem (6), (7), (8) allows us to construct the averaging value $k(\delta, \alpha)$

$$k(\delta, \alpha) = \frac{1}{T - t_0} \int_{t_0}^{T} u^{\delta, \alpha}(t) dt \quad (9)$$

which can be considered as an approximation of the solution of the identification problem (1), (2).

3.2. Necessary Optimality Conditions: The Hamiltonian

Recall necessary optimality conditions to problem (6), (7), (8) in terms of the hamiltonian system [5] [6].

It is known that the Hamiltonian $H^\alpha(t, x, s)$ to problem (6), (7), (8) has the form

$$H^\alpha(t, x, s) = \min_{u \in U} s^T G(t, x) u + \frac{\alpha^2}{2} \| u \|^2 - \frac{\| x - y(t) \|^2}{2} + s^T F(t),$$

where $s \in \mathbb{R}^n$ is an adjoint variable, the symbol T denotes the transpose operation.

It is not difficult to get

$$H^\alpha(t, x, s) = [s^T G(t, x) u^{\alpha, \delta} + \frac{\alpha^2}{2} \| u^{\alpha, \delta} \|^2] - \frac{\| x - y(t) \|^2}{2} + s^T F(t).$$

where $u^{\alpha, \delta} = (u^{\alpha, \delta}_i(t, x, s), i = 1, \ldots, m)$:

$$u^{\alpha, \delta}_i(t, x, s) = \begin{cases} -K, & \text{if } r^\alpha_i(t, x, s) \leq -K, \\ r^\alpha_i(t, x, s), & \text{if } r^\alpha_i(t, x, s) \in [-K, K], \\ K, & \text{if } r^\alpha_i(t, x, s) \geq K. \end{cases}$$

Here the vector-column $r^\alpha(t, x, s) = (r^\alpha_i(t, x, s), i = 1, \ldots, m)$ has the form

$$r^\alpha(t, x, s) = -\frac{1}{\alpha^2} G^T(t, x)s. \quad (10)$$

3.3. The Hamiltonian System

Necessary optimality conditions can be expressed in the hamiltonian form. An optimal trajectory $x^\delta(t)$ generating by an optimal admissible control $u^\delta(t)$ in problem (6),
(7), (8) have to satisfy the hamiltonian system of differential inclusions

\[
\frac{dx_i}{dt} \in \partial H_{i_1}^\alpha(t,x,s), \quad \frac{ds_i}{dt} \in -\partial H_{i_1}^\alpha(t,x,s), \quad i = 1, \ldots, n, \quad t \in [t_0, T],
\]

and the boundary conditions

\[
x_i(T, \xi) = y_i(T), \quad s_i(T, \xi) = \xi, \quad i = 1, \ldots, n.
\]

where symbols \(\partial H_{i_1}^\alpha(t,x,s), \partial H_{i_1}^\alpha(t,x,s) \) denote Clarke’s subdifferentials [7] and \(s^\alpha(t) = x(t, \xi), \ u^\alpha(t) = u^\alpha(t, x(t, \xi), s(t, \xi)). \)

Parameters \(\xi_i \) belong to the intervals \(S_{i_1, \delta} = [s_{i, \text{min}}, s_{i, \text{max}}] \) where values \(s_{i, \text{min}} \) and \(s_{i, \text{max}} \) are chosen from the conditions

\[
\frac{dx_i(T)}{dt} - \frac{dy_i(T)}{dt} \leq \delta, \quad i = 1, \ldots, n.
\]

We introduce the last important assumption.

A.3 There exists a constant \(0 < \bar{S} = \bar{S}(\delta_0) \) such that restrictions on controls in problem (6), (7), (8) satisfy the relations

\[
r_i^\alpha(t, x, s) \in [-K, K], \quad i = 1, \ldots, m,
\]

\[
\forall (t, x) \in \Omega, \quad \forall |s_j| \leq 2\alpha^2 \bar{S}, \quad \alpha^2 \in (0, 1), \quad j = 1, \ldots, n,
\]

where \(r_i^\alpha(t, x, s), i = 1, \ldots, m \) are from (10).

Note 2. Using definition (10) one can check that constant \(K \), satisfying assumption A.3, \(K \) can be taken as

\[
K = 2\overline{G}(\overline{Q} + \overline{F} + \delta_0),
\]

where

\[
\overline{F} = \max \{|F_i(t)| : t \in [0, T], \quad i = 1, \ldots, n\},
\]

\[
\overline{G} = \max \{|g_{i,j}(t, x) : (t, x) \in \Omega, \quad i = 1, \ldots, n, \quad j = 1, \ldots, m\},
\]

\[
\overline{Q} = \max \{|\tilde{q}_{i,j}(t, x) : (t, x) \in \Omega, \quad i = 1, \ldots, n, \quad j = 1, \ldots, m\}.
\]

Here \(g_{i,j}(t, x), i = 1, \ldots, n, j = 1, \ldots, m \) are components of matrix \(G(t, x) \) and \(\tilde{q}_{i,j}(t, x), i = 1, \ldots, n, j = 1, \ldots, m \) are components of matrix \(Q^{-1}(t, x) \).

If \((t, x) \in \Omega \) and \(|s_j| \leq 2\alpha^2 \bar{S}, \alpha^2 \in (0, 1), \quad j = 1, \ldots, n \) the Hamiltonian has the simple form

\[
H^\alpha(t, x, s) = -\frac{1}{2\alpha^2}[s^T G(t, x)G^T(t, x)s] - \frac{||x - y(t)||^2}{2} + s^T F(t)
\]

and the differential inclusions (11) transform into the ODEs.

\[
\frac{dx_i}{dt} = \frac{\partial H^\alpha(t, x, s)}{\partial x_i}, \quad \frac{ds_i}{dt} = -\frac{\partial H^\alpha(t, x, s)}{\partial x_i}, \quad i = 1, \ldots, n, \quad t \in [t_0, T],
\]

Let us introduce the discrepancies \(z(t) = x(t) - y(t) \), and obtain from (15) the following equations

\[
\dot{z}(t) = F(t) - \frac{1}{\alpha} Q(t, x(t))s(t) - \dot{y}(t),
\]

\[
\dot{s}_i(t) = z_i(t) + \frac{1}{\alpha} s^T(t) \frac{\partial q_{i,j}(t, x(t))}{\partial x_i} s(t), \quad i = 1, \ldots, n,
\]
and the boundary conditions
\[z_i(T) = 0, \quad s_i(T) = \xi_i, \quad i = 1, \ldots, n, \]
(17)
where \(\xi \) satisfy (13).

3.4. Main Result: Dynamic Programming

Using skims of proof for similar results in papers [8] [9] [10] we have provided the following assertion.

Theorem 1 Let assumptions \(A.1 - A.3 \) be satisfied and the concordance of parameters \(\alpha, \delta \): \(\lim_{\delta, \alpha \to 0} \delta / \alpha^2 = 0 \) takes place, then solutions of problem (11), (12), (13) \(x^{\delta, \alpha}(t, \xi), s^{\delta, \alpha}(t, \xi) \) are extendable and unique on \([0, T]\) for any \(\xi \) satisfying (13) and

\[\lim_{\delta, \alpha \to 0} \| x^{\delta, \alpha}(t, \xi) - x_*(t) \|_{C} = 0. \]
(18)

It follows from theorem 1, that the average values \(k(\delta, \alpha) \) (9) obtained with the help of dynamic programming satisfy the desired relation

\[k(\delta, \alpha) \to k_*, \quad \text{as} \quad \delta \to 0, \quad \alpha \to 0. \]
(19)

4. Numerical Example

A series of numerical experiments, realizing suggested method, has been carried out. As an example a simple mechanical model has been taken into consideration.

This simplified model describes a vertical rocket launch after engines depletion. The dynamics are described as

\[\ddot{x}(t) = -k_0(t) - g, \quad t \in [0, 4], \]
(20)
where \(x(t) \) is a vertical coordinate of the rocket, \(k \) is an unknown windage coefficient and \(g = 9.8 \) is a free fall acceleration.

A function \(y(t) \) is known and satisfies assumption \(A.1 \). This function was obtained by random perturbing of the basic solution \(x(t) \) for \(k_0 = 0.3 \).

The suggested method is applied to solve the identification problem for \(k_0 = 0.3 \).

We introduce new variables \(x_1(t) = x(t), x_2(t) = \dot{x}(t) = \ddot{x}(t) \) and transform Equation (20) into

\[\dot{x}_1(t) = x_2(t)u(t), \quad \dot{x}_2(t) = -u_2(t)x_1(t) - g, \quad t \in [0, 4], \]
(21)
where \(u_2(t) = k(t) \) and \(u(t) \) is a fictitious control, which was introduced in order to get \(m \times n \) matrix \(G(t, x(t)) \) in (1) satisfying dimensions restriction \(m \geq n \).

We put \(y_2(t) = \dot{y}_1(t) \).

The corresponding hamiltonian system (16) for problem (21), (8) has the form

\[\dot{x}_1(t) = -s_1(t)x_2^2(t) / \alpha^2, \quad \dot{x}_2(t) = -s_2(t)x_1^2(t) / \alpha^2 - g, \]
\[\dot{s}_1(t) = s_2^2(t)x_1(t) / \alpha^2 + (x_1(t) - y_1(t)), \quad \dot{s}_2(t) = s_2(t)x_2(t) / \alpha^2 + (x_1(t) - y_2(t)) \]
(22)
with initial conditions

\[x_1(T) = y_1(T), \quad x_2(T) = y_2(T), \quad s_1(T) = 0, \quad s_2(T) = -\alpha^2 (\dot{y}_2(T) + g) / y_1^2(T). \]
(23)

The solutions were obtained numerically. On the **Figure 1** and **Figure 2** the graphs
of functions $u_2(t) = k(t)$ are exposed. The graphs illustrate convergence of the suggested method. The calculated corresponding average values (9) are exposed as well.

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (projects no. 14-01-00168 and 14-01-00486) and by the Ural Branch of the Russian Academy of Sciences (project No. 15-16-1-11).

References

York.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact wjet@scirp.org