
World Journal of Engineering and Technology, 2015, 3, 119-124
Published Online October 2015 in SciRes. http://www.scirp.org/journal/wjet
http://dx.doi.org/10.4236/wjet.2015.33C018

How to cite this paper: Ye, Z.Q., Li, Y.M., Lu, H.Q. and Zhou, X. (2015) Cost Edge-Coloring of a Cactus. World Journal of En-
gineering and Technology, 3, 119-124. http://dx.doi.org/10.4236/wjet.2015.33C018

Cost Edge-Coloring of a Cactus
Zhiqian Ye1, Yiming Li2, Huiqiang Lu3, Xiao Zhou4
1Zhejiang University, Hanzhou, China
2Wenzhou University, Wenzhou, China
3Zhejiang University of Technology, Hangzhou, China
4Tohoku University, Sendai, Japan
Email: yezhiqian@zju.edu.cn, ymli@wzu.edu.cn, lhq@zjut.edu.cn, zhou@ecei.tohoku.ac.jp

Received 11 August 2015; accepted 15 October 2015; published 22 October 2015

Abstract
Let C be a set of colors, and let c()ω be an integer cost assigned to a color c in C. An edge-coloring
of a graph G V E(,)= is assigning a color in C to each edge e E∈ so that any two edges having
end-vertex in common have different colors. The cost f()ω of an edge-coloring f of G is the sum
of costs f e(())ω of colors f e() assigned to all edges e in G. An edge-coloring f of G is optimal if

f()ω is minimum among all edge-colorings of G. A cactus is a connected graph in which every
block is either an edge or a cycle. In this paper, we give an algorithm to find an optimal edge-
coloring of a cactus in polynomial time. In our best knowledge, this is the first polynomial-time
algorithm to find an optimal edge-coloring of a cactus.

Keywords
Cactus, Cost Edge-Coloring, Minimum Cost Maximum Flow Problem

1. Introduction
Let (,)G V E= be a graph with vertex set V and edge set E, and let C be a set of colors. An edge-coloring of
G is to color all the edges in E so that any two adjacent edges are colored with different colors in C. The
minimum number of colors required for edge-colorings of G is called the chromatic index, and is denoted by

()Gχ′ . It is well-known that () () () 1G G Gχ′∆ ≤ ≤ ∆ + for every simple graph G and that () ()G Gχ′ = ∆ for
every bipartite (multi)graph G, where ()G∆ is the maximum degree of G [1]. The ordinary edge-coloring
problem is to compute the chromatic index ()Gχ′ of a given graph G and find an edge-coloring of G using

()Gχ′ colors. Let ω be a cost function which assigns an integer ()cω to each color c C∈ , then the cost
edge-coloring problem is to find an optimal edge-coloring of G, that is, an edge-coloring f such that (())e E f eω

∈∑
is minimum among all edge-colorings of G. An optimal edge-coloring does not always use the minimum
number ()Gχ′ of colors. For example, suppose that 1() 1cω = and () 2icω = for each index 2i ≥ , then the
graph G with () 3Gχ′ = in Figure 1(a) can be uniquely colored with the three cheapest colors 1c , 2c and 3c
as in Figure 1(a), but this edge-coloring is not optimal; an optimal edge-coloring of G uses the four cheapest
colors 1c , 2c , 3c and 4c , as illustrated in Figure 1(b). However, every simple graph G has an edge-coloring

http://www.scirp.org/journal/wjet
http://dx.doi.org/10.4236/wjet.2015.33C018
http://dx.doi.org/10.4236/wjet.2015.33C018
http://www.scirp.org
mailto:yezhiqian@zju.edu.cn
mailto:ymli@wzu.edu.cn
mailto:lhq@zjut.edu.cn
mailto:zhou@ecei.tohoku.ac.jp

Z. Q. Ye et al.

120

(a) (b)

Figure 1. (a) An edge-coloring using () 3Gχ′ = colors, and (b) an optimal edge-coloring
using () 1 4Gχ′ + = colors, where 1() 1cω = and 2 3 4() () () 2c c cω ω ω= = = .

using ()G∆ or () 1G∆ + colors [2] [3]. The edge-chromatic sum problem, introduced by Giaro and Kubale
[4], is merely the cost edge-coloring problem for the special case where ()ic iω = for each integer 1i ≥ .

The cost edge-coloring problem has a natural application for scheduling [5]. Consider the scheduling of
biprocessor tasks of unit execution time on dedicated machines. An example of such tasks is the file transfer
problem in a computer network in which each file engages two corresponding nodes, sender and receiver,
simultaneously [6]. Another example is the biprocessor diagnostic problem in which links execute concurrently
the same test for a fault tolerant multiprocessor system [7]. These problems can be modeled by a graph G in
which machines correspond to the vertices and tasks correspond to the edges. An edge-coloring of G cor-
responds to a schedule, where the edges colored with color ic C∈ represent the collection of tasks that are
executed in the ith time slot. Suppose that a task executed in the ith time slot takes the cost ()icω . Then the
goal is to find a schedule that minimizes the total cost, and hence this corresponds to the cost edge-coloring
problem.

The cost edge-coloring problem is APX-hard even for bipartite graphs [8], and hence there is no polynomial-
time approximation scheme (PTAS) for the problem unless P NP= . On the other hand, Zhou and Nishizeki
gave an algorithm to solve the cost edge-coloring problem for trees T in time 1.5(log())O n nNω∆ , where n is the
number of vertices in T, ∆ is the maximum degree of T, and Nω is the maximum absolute cost | () |cω of
colors c in C [5]. The algorithm is based on a dynamic programming (DP) approach, and computes a DP table
for each vertex of a given tree T from the leaves to the root of T. In this paper, we give a polynomial-time
algorithm to solve the cost edge-coloring problem for cacti. In our best knowledge, this is the first polynomial-
time algorithm to find an optimal edge-coloring of a cactus.

2. Preliminaries
In this section, we define some basic terms.

Let (,)G V E= be a graph with a set V of vertices and a set E of edges. We sometimes denote by ()V G
and ()E G the vertex set and the edge set of G, respectively. We denote by ()n G and ()m G , respectively, or
simply by n and m, the number of vertices and edges in G, that is, () | |n G V= and () | |m G E= . The degree

()d v of a vertex v is the number of edges in E incident to v. We denote the maximum degree of G by ()G∆ or
simply by ∆ . A cactus G can be represented by an under tree T, which is a rooted tree. In the underlay tree T of
G, each node represents a block which is either a bridge (edge) of G or an elementary cycle of G. If there is an
edge between nodes 1b and 2b of T, then bridges or cycles of G represented by 1b and 2b share exactly
one vertex in G. Each node b of T corresponds to a subgraph bG of G induced by all bridges and cycles
represented by the nodes that are descendants of b in T. Figure 2(a) depicts the subgraph

1b
G for the child 1b

of the root r of T. Clearly rG G= and bG is a cactus for each node b of T. One can easily find an underlay
tree T of a given cactus G in linear time, and hence one may assume that an underlay tree of G is given. We
denote by ch()b the number of edges joining a node b and its children in T. Then, ch() ()r d r= , and
ch() () 1b d b= − for every vertex \{ }b V r∈ .

Let C be a set of colors. An edge-coloring :f E C→ of a graph G is to color all edges of G by colors in C
so that any two adjacent edges are colored with different colors. Let : Cω +→  , where + is the set of real
numbers. One may assume with loss of generality that ω is non-decreasing, that is, 1() ()i ic cω ω +≤ for any

Z. Q. Ye et al.

121

(a) (b)

Figure 2. (a) A cactus; and (b) its under tree.

index i, 1 | |i C≤ ≤ . Since trivially any graph G has an optimal edge-coloring using colors at most 2 () 1G∆ − ,
we assume for the sake of convenience that | | 2 () 1C G= ∆ − , and we write 1 2 2 1{ , , , }C c c c ∆−=  . The cost

()fω of an edge-coloring f of a graph (,)G V E= is defined as follows:

() (()).
e E

f f eω ω
∈

= ∑

An edge-coloring f of G is called an optimal one if ()fω is minimum among all edge-colorings of G. The
cost edge-coloring problem is to find an optimal edge-coloring of a given graph G. The cost of an optimal
edge-coloring of G is called the minimum cost of G, and is denoted by ()Gω .

Let f be an edge-coloring of a graph G. For each vertex v of G, let (,)fC G v be the set of all colors that are
assigned to edges incident to v, that is,

(,) { () | is an edge incident to in }.fC G v f e e v G=

We say that a color c C∈ is missing at v if (,)c C f v∈/ . Let Miss(,)f v be the set of all colors missing at
v, that is, Miss(,) \ (,)f v C C f v= .

3. Algorithm
In this section we prove the following theorem.

Theorem 1. An optimal edge-coloring of a cactus can be found in polynomial time.
As a proof of Theorem 1, we give a dynamic programming algorithm in the remainder of this section to

compute the minimum cost ()Gω of a given cactus G. Our algorithm can be easily modified so that it actually
finds an optimal edge-coloring f of G with () ()f Gω ω= .

A dynamic programming method is a standard one to solve a combinatorial problem on graphs with tree-
construction. We also use it, and compute the minimum cost ()Gω of a cactus G with an under tree T by the
bottom-up tree computation.

3.1. Ideas and Definitions
Let b be a node of T with its parent b′ , and let v be the vertex on both two blocks b and b′ . Let 1 2 ch(), , , bb b b
be the children of b in T. Then one can observe that the minimum cost ()bGω of the subgraph bG rooted at b
cannot be computed directly from the minimum costs ()

jbGω of all the subgraphs
jbG , 1 ch()j b≤ ≤ . Our

idea is to introduce a new parameter 1 2(, ,)bG i iω defined for each node b of T and each pair of colors
1 2
,i ic c C∈ as follows:

1 21 2(, ,) min{ () | is an edge-coloring of and , (,)}.b b i iG i i f f G c c C f vω ω= ∈

If bG has no such edge-coloring we define 1 2(, ,)bG i iω = +∞ . Note that 1 2(, ,)bG i iω = +∞ if either the
block b is an edge and 1 2i i=/ or the block b is a cycle and 1 2i i= . Clearly,

1 2
1 21 , 2 1

() min (, ,).b bi i
G G i iω ω

≤ ≤ ∆−
=

Z. Q. Ye et al.

122

We compute the values 1 2(, ,)bG i iω for all indices 1 2,i i , 1 21 , 2 1i i≤ ≤ ∆ − , from leaves to root r. Thus the
DP table for each node b consists of the 2()O ∆ values 1 2(, ,)bG i iω , 1 21 , 2 1i i≤ ≤ ∆ − .

Our algorithm computes 1 2(, ,)bG i iω for all pairs of colors
1 2
,i ic c C∈ from the leaves to the root r of T, by

means of dynamic programming. Then ()Gω can be computed at the root r from all the values 1 2(, ,)rG i iω as
follows:

1 21 2 1 2

min{ (, ,) | } if the block is an edge;
()

min{ (, ,) | , and } if the block is a cycle
r i

r i i

G i i c C r
G

G i i c c C i i r
ω

ω
ω

∈=  ∈ =/

and it can be computed in polynomial time. Thus the remainder problem is how to compute all the values
1 2(, ,)bG i iω for each node ()b V T∈ of T and all pairs of colors

1 2
,i ic c C∈ .

3.2. Algorithm
In this subsection, we explain how to compute all the values 1 2(, ,)bG i iω for each node ()b V T∈ of T and all
pairs of colors

1 2
,i ic c C∈ .

3.2.1. The Node b Is a Leaf in T
In this case, the block b is either an edge or a cycle. Therefore we have the following two cases to consider.

Case 1: the block b is an edge.
In this case, clearly

1 1 2
1 2

1 2

() if ;
(, ,)

if ,
i

b

c i i
G i i

i i

ω
ω

== 
+∞ =/

and all the values 1 2(, ,)bG i iω ,
1 2
,i ic c C∈ , can be computed in time polynomial in | |C .

Case 2: the block b is a cycle.
In this case, we describe the following algorithm to compute 1 2(, ,)bG i iω in time polynomial in the size of
bG and | |C .

Z. Q. Ye et al.

123

3.2.2. The Node b Is an Internal Node
In order to compute 1 2(, ,)bG i iω for each pair of indices 1i and 2i , 1 21 , | |i i C≤ ≤ , we introduce a new
parameter *

1 2(, , ,)B v i iω defined as follows.
Let 1 2{ , , }B b b=  be a set of blocks of T such that all these blocks share exactly one vertex v in G. For each

pair of colors
1 2
,i ic c C∈ we define

1 2

*
1 2(, , ,) min{ () | is an edge-coloring of and , Miss(,)}.v i iB v i i f f G c c f vω ω= ∈

We show how to compute the all the values *
1 2(, , ,)B v i iω from the 2| | | |B C× values 1 2(, ,)

jbG i iω ,

1 | |j B≤ ≤ and 1 21 , | |i i C≤ ≤ . The problem of computing *
1 2(, , ,)B v i iω can be reduced to the minimum cost

flow problem on a bipartite graph 1 2(,)K i i as follows.
We first introduce 2| | | |B C× isolated vertices

1 2,
j

l lv , 1 | |j B≤ ≤ and 1 21 , | |l l C≤ ≤ . Then add | |C
vertices lv , 1 | |l C≤ ≤ , corresponding to colors lc , and add a source s and a sink t. Connect the source s to all
the | |C vertices lv , 1 | |l C≤ ≤ , with capacity 1 and cost 0. For each vertex lv , 1 | |l C≤ ≤ and 1 2{ , }l i i∈/ ,
connect lv to all the vertices

1 2,
j

l lv , 1 |j B≤ ≤ and 1 21 , | |l l C≤ ≤ , satisfying 1l l= or 2l l= with capacity
1 and cost 0. Finally, for each vertex

1 2,
j

l lv , 1 | |j B≤ ≤ and 1 21 , | |l l C≤ ≤ , connect
1 2,
j

l lv to the sink t with
capacity 2 and cost 1 2(, ,)

jbG l lω . The minimum cost flow problem is to find a maximum flow from s to t with
the sum of costs of edges on the flow. Clearly *

1 2(, , ,)B v i iω is equal to the cost of the minimum cost maximum
flow in 1 2(,)K i i .

The minimum cost maximum flow problem can be solved in time polynomial in the size of the graph [9] [10],
and hence the value *

1 2(, , ,)B v i iω for a pair of indices 1i and 2i , 1 21 , | |i i C≤ ≤ , can be computed in time

polynomial in | |B and | C since 1 2(,)K i i has at most 2(| || |)O B C vertices and edges. Therefore the
2| |C values *

1 2(, , ,)B v i iω for all pairs of indices 1i and 2i , 1 21 , | |i i C≤ ≤ , can be computed total in time
polynomial in | |B and | C .

We are now ready to compute 1 2(, ,)bG i iω . Since the block b is either an edge or a cycle, we have the
following two cases to consider.

Case 1: the block b is an edge (,)e u v= .
Let 1 2 ch(){ , , , }bB b b b=  be the set of blocks of the children of b in T. Then all the blocks 1 2 ch(), , , bb b b

share exactly one vertex v in G. In this case, clearly
*

1 1 1 2
1 2

1 2

(, , ,) if ,
(, ,)

if ;b
B v i i i i

G i i
i i

ω
ω

 == 
+∞ =/

and it can be computed in time polynomial in the size of bG and | |C .
Case 2: the block b is a cycle.
In this case, let 1 2, , , xv v v be the vertices lied on the cycle of bG in the clockwise order. Assume that 1v

is the vertex shared by the block b and its parent block, and let ()jB v , 2 j x≤ ≤ , be the set of blocks which
shares jv ; ()jB v = ∅ if no such blocks exist. In order to compute 1 2(, ,)bG i iω we define

2 3 1

* *
1, 1 11 , , , | | 2 1

(,) min ((), , ,) ()
p

j
j j p p p p ll l l C p j p j

i l B v v l l cω ω ω
−

−≤ ≤ ≤ ≤ ≤ ≤

 
= + 

 
∑ ∑



 (1)

for each j, 2 j x≤ ≤ , where 1 1l i= . Then clearly
*

1 2 1, 1 2(, ,) (,).b xG i i i iω ω=

Therefore it suffices to show how to compute *
1, 1(,)j ji lω in polynomial time for each j, 2 j x≤ ≤ , as

follows.
By Equation (1) we have

{ }
1

2 3

1

* *
1, 1 1 1 11 , , , | | 2 1 1

* *
1, 1 1 1 11 | |

(,) min ((), , ,) ()

min (,) ((), , ,) () ,

p
j

j
j

j j p p p p ll l l C p j p j

j j j j j j ll C

i l B v v l l c

i l B v v l l c

ω ω ω

ω ω ω

+

+

+ + −≤ ≤ ≤ ≤ + ≤ ≤

+ + +≤ ≤

 
= + 

 

= + +

∑ ∑


Z. Q. Ye et al.

124

and hence *
1, 1(,)j ji lω for all j, 2 j x≤ ≤ , can be recursively computed total in time (| |)O x C if all the values

*
1 2((), , ,)j jB v v l lω , 1 21 , | |l l C≤ ≤ , are given. Since we have mentioned before that all the values

*
1 2((), , ,)j jB v v l lω can be computed in time polynomial in | () |jB v and | |C , one can compute all *

1, 1(,)j ji lω
and hence 1 2(, ,)bG i iω total in time polynomial in ()bn G and | |C .

4. Conclusion
In this paper, we show that the cost edge-coloring problem for a cactus G can be solved in polynomial time. It is
still open to solve the problem in polynomial time for outerplanar graphs.

Supported
This work is partially supported by grants of the thousand talent plan of Zhejiang province.

References
[1] West, D.B. (2000) Introduction to Graph Theory. 2nd Edition, Prentice Hall, New Jersey.
[2] Hajiabolhassan, H., Mehrabadi, M.L. and Tusserkani, R. (2000) Minimal Coloring and Strength of Graphs. Discrete

Mathematics, 215, 265-270. http://dx.doi.org/10.1016/S0012-365X(99)00319-2
[3] Mitchem, J., Morriss, P. and Schmeichel, E. (1997) On the Cost Chromatic Number of Outerplanar, Planar, and Line

Graphs. Discussiones Mathematicae Graph Theory, 17, 229-241. http://dx.doi.org/10.7151/dmgt.1050
[4] Giaro, K. and Kubale, M. (2000) Edge-Chromatic Sum of Trees and Bounded Cyclicity Graphs. Information Process-

ing Letters, 75, 65-69. http://dx.doi.org/10.1016/S0020-0190(00)00072-7
[5] Zhou, X. and Nishizeki, T. (2004) Algorithm for the Cost Edge-Coloring of Trees. J. Combinatorial Optimization, 8,

97-108. http://dx.doi.org/10.1023/B:JOCO.0000021940.40066.0c
[6] Coffman, E.G., Garey, M.R., Johnson, D.S. and LaPaugh, A.S. (1985) Scheduling File Transfers. SIAM J. Computing,

14, 744-780. http://dx.doi.org/10.1137/0214054
[7] Krawczyk, H. and Kubale, M. (1985) An Approximation Algorithm for Diagnostic Test Scheduling in Multicomputer

Systems. IEEE Trans. Computers, 34, 869-872. http://dx.doi.org/10.1109/TC.1985.1676647
[8] Marx, D. (2009) Complexity Results for Minimum Sum Edge Coloring. Discrete Applied Mathematics, 157, 1034-

1045. http://dx.doi.org/10.1016/j.dam.2008.04.002
[9] Goldberg, A.V. and Tarjan, R.E. (1987) Solving Minimum Cost Flow Problems by Successive Approximation. Proc.

19th ACM Symposium on the Theory of Computing, 7-18. http://dx.doi.org/10.1145/28395.28397
[10] Goldberg, A.V. and Tarjan, R.E. (1989) Finding Minimum-Cost Circulations by Canceling Negative Cycles. J. ACM,

36, 873-886. http://dx.doi.org/10.1145/76359.76368

http://dx.doi.org/10.1016/S0012-365X(99)00319-2
http://dx.doi.org/10.7151/dmgt.1050
http://dx.doi.org/10.1016/S0020-0190(00)00072-7
http://dx.doi.org/10.1023/B:JOCO.0000021940.40066.0c
http://dx.doi.org/10.1137/0214054
http://dx.doi.org/10.1109/TC.1985.1676647
http://dx.doi.org/10.1016/j.dam.2008.04.002
http://dx.doi.org/10.1145/28395.28397
http://dx.doi.org/10.1145/76359.76368

	Cost Edge-Coloring of a Cactus
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	3. Algorithm
	3.1. Ideas and Definitions
	3.2. Algorithm
	3.2.1. The Node b Is a Leaf in T
	3.2.2. The Node b Is an Internal Node

	4. Conclusion
	Supported
	References

