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Abstract 
Let C be a set of colors, and let c( )ω  be an integer cost assigned to a color c in C. An edge-coloring 
of a graph G V E( , )=  is assigning a color in C to each edge e E∈  so that any two edges having 
end-vertex in common have different colors. The cost f( )ω  of an edge-coloring f of G is the sum 
of costs f e( ( ))ω  of colors f e( )  assigned to all edges e in G. An edge-coloring f of G is optimal if 

f( )ω  is minimum among all edge-colorings of G. A cactus is a connected graph in which every 
block is either an edge or a cycle. In this paper, we give an algorithm to find an optimal edge-   
coloring of a cactus in polynomial time. In our best knowledge, this is the first polynomial-time 
algorithm to find an optimal edge-coloring of a cactus. 
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1. Introduction 
Let ( , )G V E=  be a graph with vertex set V and edge set E, and let C be a set of colors. An edge-coloring of  
G is to color all the edges in E so that any two adjacent edges are colored with different colors in C. The 
minimum number of colors required for edge-colorings of G is called the chromatic index, and is denoted by 

( )Gχ′ . It is well-known that ( ) ( ) ( ) 1G G Gχ′∆ ≤ ≤ ∆ +  for every simple graph G and that ( ) ( )G Gχ′ = ∆  for 
every bipartite (multi)graph G, where ( )G∆  is the maximum degree of G [1]. The ordinary edge-coloring 
problem is to compute the chromatic index ( )Gχ′  of a given graph G and find an edge-coloring of G using 

( )Gχ′  colors. Let ω  be a cost function which assigns an integer ( )cω  to each color c C∈ , then the cost  
edge-coloring problem is to find an optimal edge-coloring of G, that is, an edge-coloring f such that ( ( ))e E f eω

∈∑   
is minimum among all edge-colorings of G. An optimal edge-coloring does not always use the minimum 
number ( )Gχ′  of colors. For example, suppose that 1( ) 1cω =  and ( ) 2icω =  for each index 2i ≥ , then the 
graph G with ( ) 3Gχ′ =  in Figure 1(a) can be uniquely colored with the three cheapest colors 1c , 2c  and 3c  
as in Figure 1(a), but this edge-coloring is not optimal; an optimal edge-coloring of G uses the four cheapest 
colors 1c , 2c , 3c  and 4c , as illustrated in Figure 1(b). However, every simple graph G has an edge-coloring  
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(a)                                           (b) 

Figure 1. (a) An edge-coloring using ( ) 3Gχ′ =  colors, and (b) an optimal edge-coloring 
using ( ) 1 4Gχ′ + =  colors, where 1( ) 1cω =  and 2 3 4( ) ( ) ( ) 2c c cω ω ω= = = .  

 
using ( )G∆  or ( ) 1G∆ +  colors [2] [3]. The edge-chromatic sum problem, introduced by Giaro and Kubale 
[4], is merely the cost edge-coloring problem for the special case where ( )ic iω =  for each integer 1i ≥ . 

The cost edge-coloring problem has a natural application for scheduling [5]. Consider the scheduling of 
biprocessor tasks of unit execution time on dedicated machines. An example of such tasks is the file transfer 
problem in a computer network in which each file engages two corresponding nodes, sender and receiver, 
simultaneously [6]. Another example is the biprocessor diagnostic problem in which links execute concurrently 
the same test for a fault tolerant multiprocessor system [7]. These problems can be modeled by a graph G in 
which machines correspond to the vertices and tasks correspond to the edges. An edge-coloring of G cor- 
responds to a schedule, where the edges colored with color ic C∈  represent the collection of tasks that are 
executed in the ith time slot. Suppose that a task executed in the ith time slot takes the cost ( )icω . Then the 
goal is to find a schedule that minimizes the total cost, and hence this corresponds to the cost edge-coloring 
problem. 

The cost edge-coloring problem is APX-hard even for bipartite graphs [8], and hence there is no polynomial- 
time approximation scheme (PTAS) for the problem unless P NP= . On the other hand, Zhou and Nishizeki 
gave an algorithm to solve the cost edge-coloring problem for trees T in time 1.5( log( ))O n nNω∆ , where n is the 
number of vertices in T, ∆  is the maximum degree of T, and Nω  is the maximum absolute cost | ( ) |cω  of 
colors c in C [5]. The algorithm is based on a dynamic programming (DP) approach, and computes a DP table 
for each vertex of a given tree T from the leaves to the root of T. In this paper, we give a polynomial-time 
algorithm to solve the cost edge-coloring problem for cacti. In our best knowledge, this is the first polynomial- 
time algorithm to find an optimal edge-coloring of a cactus. 

2. Preliminaries  
In this section, we define some basic terms. 

Let ( , )G V E=  be a graph with a set V of vertices and a set E of edges. We sometimes denote by ( )V G  
and ( )E G  the vertex set and the edge set of G, respectively. We denote by ( )n G  and ( )m G , respectively, or 
simply by n and m, the number of vertices and edges in G, that is, ( ) | |n G V=  and ( ) | |m G E= . The degree 

( )d v  of a vertex v is the number of edges in E incident to v. We denote the maximum degree of G by ( )G∆  or 
simply by ∆ . A cactus G can be represented by an under tree T, which is a rooted tree. In the underlay tree T of 
G, each node represents a block which is either a bridge (edge) of G or an elementary cycle of G. If there is an 
edge between nodes 1b  and 2b  of T, then bridges or cycles of G represented by 1b  and 2b  share exactly 
one vertex in G. Each node b of T corresponds to a subgraph bG  of G induced by all bridges and cycles 
represented by the nodes that are descendants of b in T. Figure 2(a) depicts the subgraph 

1b
G  for the child 1b  

of the root r of T. Clearly rG G=  and bG  is a cactus for each node b of T. One can easily find an underlay 
tree T of a given cactus G in linear time, and hence one may assume that an underlay tree of G is given. We 
denote by ch( )b  the number of edges joining a node b and its children in T. Then, ch( ) ( )r d r= , and 
ch( ) ( ) 1b d b= −  for every vertex \{ }b V r∈ . 

Let C be a set of colors. An edge-coloring :f E C→  of a graph G is to color all edges of G by colors in C 
so that any two adjacent edges are colored with different colors. Let : Cω +→  , where +  is the set of real 
numbers. One may assume with loss of generality that ω  is non-decreasing, that is, 1( ) ( )i ic cω ω +≤  for any 
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(a)                                        (b) 

Figure 2. (a) A cactus; and (b) its under tree.  
 

index i, 1 | |i C≤ ≤ . Since trivially any graph G has an optimal edge-coloring using colors at most 2 ( ) 1G∆ − , 
we assume for the sake of convenience that | | 2 ( ) 1C G= ∆ − , and we write 1 2 2 1{ , , , }C c c c ∆−=  . The cost 

( )fω  of an edge-coloring f of a graph ( , )G V E=  is defined as follows:  

( ) ( ( )).
e E

f f eω ω
∈

= ∑  

An edge-coloring f of G is called an optimal one if ( )fω  is minimum among all edge-colorings of G. The 
cost edge-coloring problem is to find an optimal edge-coloring of a given graph G. The cost of an optimal 
edge-coloring of G is called the minimum cost of G, and is denoted by ( )Gω . 

Let f be an edge-coloring of a graph G. For each vertex v of G, let ( , )fC G v  be the set of all colors that are 
assigned to edges incident to v, that is,  

( , ) { ( ) | is an edge incident to in }.fC G v f e e v G=  

We say that a color c C∈  is missing at v if ( , )c C f v∈/ . Let Miss( , )f v  be the set of all colors missing at 
v, that is, Miss( , ) \ ( , )f v C C f v= . 

3. Algorithm  
In this section we prove the following theorem. 

Theorem 1. An optimal edge-coloring of a cactus can be found in polynomial time.  
As a proof of Theorem 1, we give a dynamic programming algorithm in the remainder of this section to 

compute the minimum cost ( )Gω  of a given cactus G. Our algorithm can be easily modified so that it actually 
finds an optimal edge-coloring f of G with ( ) ( )f Gω ω= . 

A dynamic programming method is a standard one to solve a combinatorial problem on graphs with tree- 
construction. We also use it, and compute the minimum cost ( )Gω  of a cactus G with an under tree T by the 
bottom-up tree computation. 

3.1. Ideas and Definitions  
Let b be a node of T with its parent b′ , and let v be the vertex on both two blocks b and b′ . Let 1 2 ch( ), , , bb b b  
be the children of b in T. Then one can observe that the minimum cost ( )bGω  of the subgraph bG  rooted at b 
cannot be computed directly from the minimum costs ( )

jbGω  of all the subgraphs 
jbG , 1 ch( )j b≤ ≤ . Our 

idea is to introduce a new parameter 1 2( , , )bG i iω  defined for each node b of T and each pair of colors 
1 2
,i ic c C∈  as follows:  

1 21 2( , , ) min{ ( ) | is an edge-coloring of and , ( , )}.b b i iG i i f f G c c C f vω ω= ∈  

If bG  has no such edge-coloring we define 1 2( , , )bG i iω = +∞ . Note that 1 2( , , )bG i iω = +∞  if either the 
block b is an edge and 1 2i i=/  or the block b is a cycle and 1 2i i= . Clearly,  

1 2
1 21 , 2 1

( ) min ( , , ).b bi i
G G i iω ω

≤ ≤ ∆−
=  
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We compute the values 1 2( , , )bG i iω  for all indices 1 2,i i , 1 21 , 2 1i i≤ ≤ ∆ − , from leaves to root r. Thus the 
DP table for each node b consists of the 2( )O ∆  values 1 2( , , )bG i iω , 1 21 , 2 1i i≤ ≤ ∆ − . 

Our algorithm computes 1 2( , , )bG i iω  for all pairs of colors 
1 2
,i ic c C∈  from the leaves to the root r of T, by 

means of dynamic programming. Then ( )Gω  can be computed at the root r from all the values 1 2( , , )rG i iω  as 
follows: 

1 21 2 1 2

min{ ( , , ) | } if the block is an edge;
( )

min{ ( , , ) | , and } if the block is a cycle
r i

r i i

G i i c C r
G

G i i c c C i i r
ω

ω
ω

∈=  ∈ =/
 

and it can be computed in polynomial time. Thus the remainder problem is how to compute all the values 
1 2( , , )bG i iω  for each node ( )b V T∈  of T and all pairs of colors 

1 2
,i ic c C∈ . 

3.2. Algorithm  
In this subsection, we explain how to compute all the values 1 2( , , )bG i iω  for each node ( )b V T∈  of T and all 
pairs of colors 

1 2
,i ic c C∈ . 

3.2.1. The Node b Is a Leaf in T 
In this case, the block b is either an edge or a cycle. Therefore we have the following two cases to consider. 

Case 1: the block b is an edge. 
In this case, clearly  

1 1 2
1 2

1 2

( ) if ;
( , , )

if ,
i

b

c i i
G i i

i i

ω
ω

== 
+∞ =/

 

and all the values 1 2( , , )bG i iω , 
1 2
,i ic c C∈ , can be computed in time polynomial in | |C . 

Case 2: the block b is a cycle. 
In this case, we describe the following algorithm to compute 1 2( , , )bG i iω  in time polynomial in the size of 
bG  and | |C . 
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3.2.2. The Node b Is an Internal Node 
In order to compute 1 2( , , )bG i iω  for each pair of indices 1i  and 2i , 1 21 , | |i i C≤ ≤ , we introduce a new 
parameter *

1 2( , , , )B v i iω  defined as follows. 
Let 1 2{ , , }B b b=   be a set of blocks of T such that all these blocks share exactly one vertex v in G. For each 

pair of colors 
1 2
,i ic c C∈  we define  

1 2

*
1 2( , , , ) min{ ( ) | is an edge-coloring of and , Miss( , )}.v i iB v i i f f G c c f vω ω= ∈  

We show how to compute the all the values *
1 2( , , , )B v i iω  from the 2| | | |B C×  values 1 2( , , )

jbG i iω , 

1 | |j B≤ ≤  and 1 21 , | |i i C≤ ≤ . The problem of computing *
1 2( , , , )B v i iω  can be reduced to the minimum cost 

flow problem on a bipartite graph 1 2( , )K i i  as follows. 
We first introduce 2| | | |B C×  isolated vertices 

1 2,
j

l lv , 1 | |j B≤ ≤  and 1 21 , | |l l C≤ ≤ . Then add | |C  
vertices lv , 1 | |l C≤ ≤ , corresponding to colors lc , and add a source s and a sink t. Connect the source s to all 
the | |C  vertices lv , 1 | |l C≤ ≤ , with capacity 1 and cost 0. For each vertex lv , 1 | |l C≤ ≤  and 1 2{ , }l i i∈/ , 
connect lv  to all the vertices 

1 2,
j

l lv , 1 |j B≤ ≤  and 1 21 , | |l l C≤ ≤ , satisfying 1l l=  or 2l l=  with capacity 
1 and cost 0. Finally, for each vertex 

1 2,
j

l lv , 1 | |j B≤ ≤  and 1 21 , | |l l C≤ ≤ , connect 
1 2,
j

l lv  to the sink t with 
capacity 2 and cost 1 2( , , )

jbG l lω . The minimum cost flow problem is to find a maximum flow from s to t with 
the sum of costs of edges on the flow. Clearly *

1 2( , , , )B v i iω  is equal to the cost of the minimum cost maximum 
flow in 1 2( , )K i i . 

The minimum cost maximum flow problem can be solved in time polynomial in the size of the graph [9] [10], 
and hence the value *

1 2( , , , )B v i iω  for a pair of indices 1i  and 2i , 1 21 , | |i i C≤ ≤ , can be computed in time 

polynomial in | |B  and | C  since 1 2( , )K i i  has at most 2(| || | )O B C  vertices and edges. Therefore the 
2| |C  values *

1 2( , , , )B v i iω  for all pairs of indices 1i  and 2i , 1 21 , | |i i C≤ ≤ , can be computed total in time 
polynomial in | |B  and | C . 

We are now ready to compute 1 2( , , )bG i iω . Since the block b is either an edge or a cycle, we have the 
following two cases to consider. 

Case 1: the block b is an edge ( , )e u v= . 
Let 1 2 ch( ){ , , , }bB b b b=   be the set of blocks of the children of b in T. Then all the blocks 1 2 ch( ), , , bb b b  

share exactly one vertex v in G. In this case, clearly  
*

1 1 1 2
1 2

1 2

( , , , ) if ,
( , , )

if ;b
B v i i i i

G i i
i i

ω
ω

 == 
+∞ =/

 

and it can be computed in time polynomial in the size of bG  and | |C . 
Case 2: the block b is a cycle. 
In this case, let 1 2, , , xv v v  be the vertices lied on the cycle of bG  in the clockwise order. Assume that 1v  

is the vertex shared by the block b and its parent block, and let ( )jB v , 2 j x≤ ≤ , be the set of blocks which 
shares jv ; ( )jB v = ∅  if no such blocks exist. In order to compute 1 2( , , )bG i iω  we define  

2 3 1

* *
1, 1 11 , , , | | 2 1

( , ) min ( ( ), , , ) ( )
p

j
j j p p p p ll l l C p j p j

i l B v v l l cω ω ω
−

−≤ ≤ ≤ ≤ ≤ ≤

 
= + 

 
∑ ∑



                    (1) 

for each j, 2 j x≤ ≤ , where 1 1l i= . Then clearly  
*

1 2 1, 1 2( , , ) ( , ).b xG i i i iω ω=  

Therefore it suffices to show how to compute *
1, 1( , )j ji lω  in polynomial time for each j, 2 j x≤ ≤ , as 

follows. 
By Equation (1) we have  

{ }
1

2 3

1

* *
1, 1 1 1 11 , , , | | 2 1 1

* *
1, 1 1 1 11 | |

( , ) min ( ( ), , , ) ( )

min ( , ) ( ( ), , , ) ( ) ,

p
j

j
j

j j p p p p ll l l C p j p j

j j j j j j ll C

i l B v v l l c

i l B v v l l c

ω ω ω

ω ω ω

+

+

+ + −≤ ≤ ≤ ≤ + ≤ ≤

+ + +≤ ≤

 
= + 

 

= + +

∑ ∑
  
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and hence *
1, 1( , )j ji lω  for all j, 2 j x≤ ≤ , can be recursively computed total in time ( | |)O x C  if all the values 

*
1 2( ( ), , , )j jB v v l lω , 1 21 , | |l l C≤ ≤ , are given. Since we have mentioned before that all the values 

*
1 2( ( ), , , )j jB v v l lω  can be computed in time polynomial in | ( ) |jB v  and | |C , one can compute all *

1, 1( , )j ji lω  
and hence 1 2( , , )bG i iω  total in time polynomial in ( )bn G  and | |C . 

4. Conclusion  
In this paper, we show that the cost edge-coloring problem for a cactus G can be solved in polynomial time. It is 
still open to solve the problem in polynomial time for outerplanar graphs. 
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