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Abstract 
Superconductivity and magnetism have been interesting topics in condensed mater physics and 
they have been studied experimentally and theoretically for many years. These two cooperative 
phenomena are antagonistic until the discovery of some rare earth ternary compounds that show 
the coexistence of superconductivity and magnetism. In some of the recently discovered iron-based 
layered superconductors, superconductivity and magnetism coexist. In the present work we ex-
amine the possibility of coexistence of antiferromagnetism and superconductivity in samarium 
arsenide oxide superconductor (SmAsO1-xFxFe). Using a model of the Hamiltonian and retarded 
double time Greens function formalism, we found expressions AFM order Parameter (η) and AFM 
transition temperature (Tm). We obtained the phase diagrams (Tc vs η) and(Tm vs η) to obtain the 
region where orders, i.e., superconductivity and AFM (antiferromagnetism), coexisted. The region 
under the intersection of the two merged graphs shows that superconductivity and AFM coexist in 
the system (SmAsO1-xFxFe). 
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1. Introduction 
Superconductivity is the ability of certain materials to conduct electric current with practically zero resistance. 
This produces interesting and potentially useful effects. For a material to behave as a superconductor, low tem-
peratures are required. Superconductivity was first observed in 1911 by H. K. Onnes, a Dutch physicist. His ex-
periment was conducted with elemental mercury at 4 kelvin scale (approximately −452 degrees Fahrenheit), the 
temperature of liquid helium [1] [2]. 
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Most of the physical properties of superconductors vary from material to material, such as the heat capacity, 
the critical temperature, critical current density, and critical field at which superconductivity is destroyed. The 
coexistence of superconductivity and magnetism has been an interesting topic in condensed mater physics and it 
has been studied experimentally and theoretically for many years. These two cooperative phenomena are anta-
gonistic. According to BCS (Bardeen, Cooper, Schreiffer) theory, a superconductor expels a magnetic field, 
which in turn destroys superconductivity. However, both superconductivity ordering and magnetic ordering 
have been seen in harmony (coexisting) in some of rare earth compounds. The coexistence of superconductivity 
and antiferromagnetism is quite peaceful and very weakly influences each other. Experiment has been revealed 
that superconducting and magnetic phases are interplayed in samarium iron pnictide superconductor (SmA-
sO1-xFxFe) with the long range of (0.1 ≤ x ≤ 0.15). In this paper we studied theoretical coexist of superconduc-
tivity and antiferromagnetism in SmAsO1-xFxFe. 

The newly discovered iron-pnictid superconductor is unconventional superconductivity such as that in copper 
oxides. The reasons why unconventional pairing may be realized in iron pnictides are as follows: 1) Tc is very 
high, compared with conventional phonon-mediated BCS superconductors; 2) electron-phonon coupling is ex-
pected to be weak according to first-principles calculations [3] [4]. Mazin et al. argue that superconductivity 
realized in the iron-pnictide compounds is unconventional and mediated by antiferromagnetic spin fluctuations. 
Its pairing state is an extended s-wave pairing with a sign reversal of the order parameter among different Fermi 
surface sheets [5] [6]. 

The superconductivity is also induced by the nesting-related antiferromagnetic spin fluctuations near the wave 
vectors connecting the electron and hole pockets. Kuroki et al. [7] [8] constructed a minimal model, where all 
the necessary five d-bands were included and calculated spin susceptibility and charge susceptibility within 
random phase approximation. 

The most common way that a magnetic field destroys superconductivity is by disturbing the orbital effect, 
where the electrons in a pair orbit each other, acquiring more and more energy from the magnetic field. Once 
this energy becomes greater than that which unites the two electrons, the electron pairs break apart and super-
conductivity is suppressed. The other way magnetic fields can destroy superconductivity is when two electrons 
have what is called opposite spin; this is when in addition to the two electrons orbiting one another, they also are 
spinning like tops but in opposite directions, called s-wave spin. When the magnetic field is turned on, one elec-
tron gains energy while the other loses. “If the difference is bigger than the amount of energy holding the elec-
trons together, then they fly apart and superconductivity has gone”, explained by Naughton [9]-[11]. 

Experimental study on the newly discovered iron pnictide superconductor found that magnetism and super-
conductivity coexisted in the long rang doping in SmAsO1-xFxFe (0.1 ≤ x ≤ 0.15) [12] [13]. 

2. Model System Hamiltonian 
In order to study the coexistence of antiferromagnetism and superconductivity in superconducting SmAsO1- 
xFxFe theoretically in general and to find the expressions for transition temperature and order parameters in 
particular, systems of conduction and localized electrons have been considered. The model system Hamiltonian 
can be formulated as follows. 

1 2 3
ˆ ˆ ˆ ˆH H H H= + +                                     (1) 

where 
†

1 , ,,
ˆ ˆ ˆH a aκ κ σ κ σκ σ= ∑   

Is the Hamiltonian or energy of mobile (conduction) electrons. Here, the operators ( )†
, ,ˆ ˆa aκ σ κ σ are the creation 

(annihilation) operators for conduction electrons with the wave vector k and the spin projection on z-axis σ = ↑ 
or ↓. κ  is the one electron kinetic energy measured relative to the chemical potential. 2Ĥ  Is the interaction 
(electron-electron) through boson (phonon) exchange and is given by, 

† †
2 ,

ˆ ˆ ˆ ˆ ˆBCSH V a a a aκ κ κ κκ κ ′↑ − ↑ ′− ↑ ↑′= −∑  

where VBCS defines the matrix element of the interaction potential. 3Ĥ  Is the interaction term between conduc-
tion electrons and localized electrons due to some unspecified mechanism with some coupling constant (α) and 
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is expressed as, 
† †

3 ,, ,
ˆ ˆˆ ˆ ˆl m l ml mH a a b b h cκ κκα ↑ − ↑ ↑ ↑= + ⋅∑  

Putting all the three Hamiltonian together we obtain 
† † † † †

, , ,, , , ,
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ BCS l m l ml mH a a V a a a a a a b b h cκ κ σ κ σ κ κ κ κ κ κκ σ κ κ κα↑ − ↑ − ↑ ↑ ↑ − ↑ ↑′′ ↑′= − + + ⋅∑ ∑ ∑           (2) 

3. Equation of Motion for Mobile (Conduction) Electrons 
The retarded double-time Green function is defined as 

( ) ( ) ( ) ( ),
ˆ ˆ, , , ,t tG t t i A t t B t tθ ′′ ′ ′ = −                               (3) 

To obtain the equation of motion of the Green’s function we differentiate the above equation with respect to 
time t as,  

( ) ( ) ( ) ( ) ( ) ( ) ( )
d ,0 dˆ ˆˆ ˆ,0 , , , , , , ,

d d
i G t

t A t t B t t i t t A t t B t t
t t

δ θ    ′= −    ′


′ ′


′               (4) 

( ) ( )d ˆ ˆ ˆ, , , if 1
d

A t t A t t H
t

 =  ′ =′� �  

( ) ( ) ( ) ( ) ( ) ( )
d ,0 dˆ ˆˆ ˆ ˆ0 , 0 , , 0

d d
i G t

t A t B A t H B
t t

δ    = − +       
                 (5) 

To solve this equation it is convenient to work with Fourier transform. A careful analysis shows that the func-
tion depends on t and t′  through ( )t t′− . Thus we can write ( ) ( ), ,0G t t G t′ =  let ( )G ω  be the Fourier 
transform of ( ),0G t  such that 

( ) ( ) ( )( )0 exp 0 dG t G i tω ω ω
∞

−∞
− = − −∫                            (6) 

( ) ( ) ( )( ) ( )  0 exp 0 d 0G G t i t tω ω
∞

−∞
= − − −∫                          (7) 

The Dirac ( )0tδ −  delta function is defined as 

( ) ( )( )0 exp 0t tδ ω
∞

−∞
− = − −∫                               (8) 

Therefore Equation (5) becomes 

( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ, 0 , , 0G A t B A t H Bω ω    = +                          (9) 

( )Gω ω  Can be written as 

ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ,A B A B A H Bω    = +                              (10) 

Now, let us solve the following commutation relation, 

1 2 3
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ,a H a H a H a Hκ κ κ κ↑ ↑ ↑ ↑

       = + +                                (11) 

From which we obtain, 
†

1 , , ,,
ˆˆ ˆ ˆ ˆ ˆ, , p p ppa H a a a aσ σ κκ κ κσ↑ ↑ ↑=   =   ∑                            (12) 

Following similar procedure as above, we get, 
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†
2

ˆˆ ˆ ˆ ˆ, p p ppa H V a a aκκ κ ′′↑ − ↑ − ′↑ ↑′
  = −  ∑                             (13) 

and 
†

3 ,,
ˆ ˆˆˆ ˆ, l m l ml ma H a b bκ κα↑ − ↑ ↑ ↑

  =  ∑                              (14) 

Substituting Equations (12), (13) and (14) into the equation of motion, 

( ) ( )† † †ˆ ˆ ˆ, 1 ˆ,a a a a κκ κ κ κη ω↑ ↑ − ↑ ↑= − ∆ − −                        (15) 

where ˆ ˆpp p pp V a a− ↑′ ′ ′′ ↑∆ = ∑  and ,, ,
ˆ ˆ

l m l ml m p b bη α ↑ ↑= ∑  

One can also obtain the equation of motion for the expression † †ˆ ˆ,a aκ κ− ↑ ↑  and obtain, 

† † † † † † † †
,,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,pp l mp p l mp l ma a a a V a a a a b b a aκκ κ κ κ κ κ κ κω α−− ↑ ↑ − ↑ ↑ ↑ − ↑′′ ↑ ↑ ↑ ↑ ↑ ↑= − − +∑ ∑   (16) 

For κ κ−=  , ∗∆ = ∆  and η η∗= , we obtain, 

( ) ( )† † †ˆ ˆ ˆ ˆ  ,,a a a a κκ κ κ κη ω− ↑ ↑ ↑ ↑=− ∆ − +                        (17) 

Now, using Equations (16) and (17), the equation of motion becomes, 

( ) ( ) ( )2
† † † †ˆ ˆ ˆ ˆ , ,a a a aκ κ κ κ κ

κ κ

η η
ω

ω ω− ↑ ↑ − ↑ ↑

− ∆ − ∆ −
+ = +

− −


 
 

From which we obtain, 

( )
( )

† †
2 2 2

–
ˆ ˆ, ,

( )
a aκ κ

κ

η

ω η− ↑ ↑

∆ −
=

− − ∆ −
                           (19) 

Using the relation for ∆, given by, 

† †ˆ ˆ,V a aκ κκβ − ↑ ↑∆ = ∑                                 (20) 

And by changing the summation into integration and by introducing the density of states at the Fermi level, 
( )( )0N , we get, 

( ) ( )
( )( )22 2

1 0 d
F

N V
η

β ω η

∞

−

∆ −
∆ = −

− − ∆ −
∫  


                         (21) 

Now, changing niω ω→ , we use the Matsubara frequency 

( ) π2 1n nω
β

= +                                     (22) 

Now, using Equation (22) in Equation (21), we get, 

( ) ( )
( )20 2 2 2

2 0 d
2 1 π

b

nN V
n E

ω η
β

β

 ∆ −
∆ =  

+ +  
∑ ∫

�
                       (23) 

where ( )22 2E κ η= + ∆ − . Since attraction is effective in the region b bω ω− < <� � , and taking the density of 
state to be constant in this region and using the relation, 

( )2 2

1 1tanh
2 2 2 1 πn

x
x n x

+∞

=−∞

  = 
  + +

∑  
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We can write Equation (23) as, 

( ) ( ) ( )
0

12 0 tanh 2 d
2

bN V E
E

ω
β η β

β
∆ = ∆ −∫

�
                      (24) 

Let ( )0N Vλ = , 

( )
( )

( )( )22
0 22

tanh 2 dbω η
β η

λ η

∆ −∆
= + ∆ −

+ ∆ −
∫
�

 


                   (25) 

3.1. Effect of Temperature on Superconducting Order Parameter (∆) and Magnetic Order 
Parameter (η) 

Now, let us study Equation (25) by considering different cases. 
Case (I): As 0 KT → , β ⇒ ∞  so that, ( )tanh 2 1Eβ →  
Hence, Equation (25) becomes, 

( )
( )( )0 22

dbω

κ

η
λ η

∆ −∆
=

+ ∆ −
∫
�




                             (26) 

Using the integral ( )1

2 2
d sinha x a x a

a x
−=

+
∫ , where η= ∆ − , Equation (25) becomes, 

Simplifying that we obtain 

1exp2
1

b

λ
η ω

η

 
 
 −

  −  ∆  

∆ − = �                             (27) 

For 0η = , Equation (27) reduces to the well-known BCS model. 
( )0 1.75 B ck T∆ =  Thus, for the compound SmFeAsO1-xFx the experimental result of Tc = 51.5 k so that 

( )0 90.15∆ = . 
Case (II): At cT T= , 0∆ = . Equation (27) reduces, 

( )

1.14 1exp
1

0

b
c

B

T
k a
ω

ηλ

 
 
 =    −   ∆  

�                            (28) 

where 170 kb

Bk
ω

=
�

; 

λ = 0.3 - 0.9; 
η = 0.05 - 7; 
a = 0.00000067. 
By substituting these values into the above equation we can calculate theoretical value for the critical temper-

ature for SmAsFeO0.85F0.15 Tc = 55.5 k. 
These are taken from the experimental data. 

3.2. Equation of Motion for Localized Electrons 
Using Green’s function formalism, the equation of motion for the localized electrons is obtained to be, 
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† †ˆ ˆ ˆ ˆˆ, 1 , ;l l l lb b b H bω ↑ ↑ ↑ ↑
 = +                               (29) 

Now, using the Hamiltonian given in Equation (1), we evaluated the commutation ,lb H↑    and obtained, 

† † † †
,,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ, 1 , ,l l ml l l l m lmb b b b a a b bκ κκω
ω α↑ ↑ ↑ ↑ − ↑ ↑ ↑ ↑= + +∑                 (30) 

( ) ( )
† † †1ˆ ˆ ˆ ˆ, ,l l m l

l l

b b b b
ω ω↑ ↑ ↑ ↑

∆
= +

− − 
                        (31) 

where ,,
ˆ ˆl l ml m a aκ κα − ↑ ↑∆ = ∑  

Applying similar procedure as above and assuming   l m=  , we can obtain the expression for † †ˆ ˆ,m lb b↑ ↑  to 
be, 

( )
† † †ˆ ˆ ˆ ˆ, ,l
m l l l

l

b b b b
ω↑ ↑ ↑ ↑

∆
=

+
                            (32) 

Now, from Equations (31) and (32), we get, 

( )
† †

2 2 2
ˆ ˆ, ,l

m l
l l

b b
ω↑ ↑

∆
=

− − ∆
                              (33) 

From which we get, 

( )
( )

†
2 2 2

ˆ ˆ, l
l l

l l

b b
ω

ω↑ ↑

+
=

− − ∆




                               (34) 

3.3. Correlation between Conduction and Mobile Electrons 
The equation of motion that shows the correlation between the conduction and localized electrons can be dem-
onstrated. Using similar definition as for ∆, we can write the magnetic ordering parameter, η as, 

( )
† †

, , 2 2 2
ˆ ˆ, l

m ln n
l l

b bκ κ

α αη
β β ω↑ ↑

∆
= =

− − ∆
∑ ∑


                       (35) 

Changing the summation into integration and by introducing the density of states, ( )0N , we get, 

( )
( )2 2 20

2 0
db l

n
l l

N ωα
η

β ω

 ∆ =
 − − ∆ 

∑ ∫
�




                          (36) 

Using the Matsubara frequency, 
( )2 1 π

n

n
ω

β
+

=  and ( )
( )2 2 2

1 1tanh 2
2 2 1 πn

x
x n x

=
+ +

∑  

Equation (36) becomes, 

( )
( )( )20

2 2

2
tanh 2 db l

l l l

l l

ω
η λ β

∆
= + ∆

+ ∆
∫
�

 


                       (37) 

where ( )0l Nλ α=  and 2 2 2
l lE = + ∆ . 

Now, let us first solve the following expression. 

( )
( )( )2 2

2 2 20 02 2

1 2 1tanh 2 d d ,b b
l l n

n ll l

ω ω
β

β ω
∞

=−∞
+ ∆ =

+ + ∆+ ∆
∑∫ ∫

� �
  


             (38) 
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Using Laplace’s transform and Matsubara frequency, Equation (38) becomes, 

( )( )
( )

( )
( )

2 2

2
1 2200 0 0 4 22 2

tanh 2 tanh 2 4 1d d d .
1

b b b
l l

l n

l l

I I
a x

ω ω ω
β β

β
∞

=

+ ∆
= − ∆ = +

++ ∆
∑∫ ∫ ∫

� � �
 

  


 

where 

( )
1 0

tanh 2
d ln1.14 ,b b

B m

I
k T

ω β ω
= = −∫

� �



                          (39) 

and 

( )

2
2

2 200 4 2

4 1 d 1.05
π1

b l
l n

B m

I
k Ta x

ω

β
∞

=

 ∆
= ∆ + ≈  

 +
∑∫

�
�                     (40) 

Then, 

2

ln 1.14 1.05b l
l l

B m B mk T pk T
ω

η λ
     ∆  ≈ − ∆ +          

�
                        (42) 

Since ∆l is very small, 3
l∆  can be neglected and thus Equation (36) becomes, 

ln1.14 b
l l

B mk T
ω

η λ≈ − ∆
�

 

From which we get, 

1.14 expm b
B l l

T
k

ηω
λ

 
=  ∆ 

�                                (43) 

4. Results and Discussions 
In this chapter, we examined the effect of magnetic order parameter η on superconducting transition temperature 
(Tc) and on AFM (antiferromagnetism) transition temperature (Tm) in SmAsO1-xFxFe. In chapter three, using 
the model of the Hamiltonian and retarded double time temperature dependent Greens function formalism; we 
obtained mathematical expressions the magnetic order parameter (η), and antiferromagnetism transition temper-
ature (Tm). From Equation (27) we have got the superconducting transition (critical) temperature for the super-
conductor SmAsO1-xFxFe. Using this Tc value and Equation (28) we plotted the phase diagram of Tc versus η as 
shown in Figure 1. This figure indicates, as the magnetic order parameter (η) increases the superconducting 
transition temperature (Tc) decreases. The phase diagram of magnetic ordering temperature (Tm) versus magnetic 
ordering (η) also plotted as demonstrated in Figure 2, based on Equation (43). As we observed from this graph 
the magnetic transition temperature is increases (directly Proportional) as the magnetic order parameter increas-
es. And finally, we merged Figure 1 and Figure 2 to obtain coexistence of superconductivity and antiferromag-
netism. 

5. Conclusions 
In this work, we have studied the possible co-existence of antiferromagnetism and superconductivity in 
SmAsO1-xFxFe. Using a model Hamiltonian and Greens function formalism we obtained mathematical expres-
sion magnetic order parameter (η), critical temperature (Tc), and antiferromagnetism transitional temperature 
(Tm). Based on these mathematical expressions we plotted the graphs Tc vs. η as shown in Figure 1 and Tm vs. η 
also demonstrated in Figure 2. Finally the last two graphs Tc vs. η and Tm vs. η shown in Figure 3 were merged 
to obtain the coexistence of superconductivity and antiferromagnetism in SmAsO1-xFxFe. 
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1 

2.30435 × 10−5 

2 3 4 5 6 7 
η(mev) 

Tc(k) 

2.30435 × 10−4 

2.30435 × 10−6 

2.30434 × 10−8 

2.30434 × 10−7 

2.30434 × 10−9 

 
Figure 1. Superconducting critical temperature vs. magnetic order parameter indicates, as the magnetic order parameter (η) 
increases the superconducting transition temperature Tc decreases. 
 

 
1 2 3 4 5 6 7 

η(mev) 

TM(k) 

1.2 × 10−8 

1.1 × 10−8 

1.0 × 10−8 

9.0 × 10−9 

8.0 × 10−9 

 
Figure 2. Antiferromagnetism transition temperature (Tm) vs. magnetic order parameter (η). 
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1 2 3 4 5 6 7 

η(mev) 

TM(k) 

1.2 × 10−8 

1.1 × 10−8 

1.0 × 10−8 

9.0 × 10−9 

8.0 × 10−9 
SC + AFM 

 vs mT η  

 vs cT η  

 
Figure 3. The superconducting critical temperature and AFM (antiferromagnetism) transition temperature vs. magnetic order 
parameter. 
 

The results of our work describe: 
a) When magnetic order parameter increases, the critical temperature decreases; 
b) The magnetic order parameter increases with the antiferromagnetism transitional temperature. Moreover, 

the region under the intersection of the two merged graphs demonstrated in Figure 3 shows that superconductiv-
ity and AFM coexist in SmAsO1-xFxFe. 
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