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Abstract 
Vascular atherosclerotic vulnerable plaque rupture is the primary cause of 
acute myocardial infarctions and strokes. Thus, stabilization of vulnerable 
plaques is of important clinical endeavor to decrease the fatal risk of atheros-
clerosis. Inflammatory infiltration, apoptosis of endothelial cells (ECs) and 
vascular smooth muscle cells (VSMCs), destruction of extracellular matrix 
(ECM) or collagen, and neovascularization all contribute to the formation and 
stability of plaque. Let-7g, one miRNA of let-7 family, is related to retardation 
of the progress of vulnerable atherosclerosis plaque. First of all, let-7g induced 
preservation on vascular diseases through regulating on the intracellular Ca2+- 
activated protein kinase C-oxLDL-LOX-1 pathway, which resulted in reduced 
leukocyte adhesion to and migration across endothelium. Over expression of 
let-7g negatively regulated apoptosis in the ECs by targeting lectin-like oxi-
dized LDL receptor-1(LOX-1)/CASP3 expression, therefore made the fibrous 
cap of plaque integrated and thick, increased the density of vascular atheros-
clerotic plaque. In addition, let-7g might stabilize the atherosclerotic plaque 
through other aspects. In this review, we focus on current and potential im-
portance of let-7g on the stabilization of atherosclerosis plaque which might 
lead to the future development of an alternative strategy of CAD. 
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1. Introduction 

Vascular atherosclerotic plaque rupture is the major cause of acute myocardial 
infarctions and strokes [1]. In clinical endeavor, stabilizing the vulnerable pla-
ques is important to reduce the fatal risk of atherosclerosis [2]. Vulnerable pla-
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ques usually have thin, highly inflamed, and collagen-poor fibrous caps. Various 
intrinsic and extrinsic factors influence the stability of plaques, resulting in life- 
threatening complications. Those factors include, but not limit to, continuous 
inflammatory responses, matrix degradation, and cell death or apoptosis. These 
changes lead to thinner fibrous cap and prone to rupture. In advanced atheros-
clerotic lesions, ectopic angiogenesis within the intima and media considered to 
be another vulnerable sign [3]. The number of neovessels spouted intraplaque 
indicates an aggravated plaque lesion because angiogenesis can be a source of 
intraplaque hemorrhage [4]. In short, the characteristics of unstable atheroscle-
rosis plaque commonly include following aspects: the larger lipid nucleus of 
atherosclerosis plaque; the thinner fibrous cap; the less dense of vascular wall 
and plaque; and intraplaque ectopic angiogenesis (Figure 1(A)).  

MicroRNAs (miRNAs), a kind of noncoding RNA, are one of the largest gene 
families [5]. They have been indicated intargeting around 60% of human genes 
and regulated a range of biological processes, such as TGF-β and SIRT-1 signal-
ing, Fas/FasL apoptotic pathways, and NF-κB pathway [6]. Moreover, miRNAs 
are associated with apoptosis, cell maturation, oxidative stress, degradation of 
extracellular matrix (ECM), angiogenesis, and inflammation [7] [8] [9] [10].  

 

 
Figure 1. The current and hypothetic mechanisms of let-7g on the formation and stabilization of atherosclerosis plaque (A) The 
characteristics of unstable atherosclerosis plaque include four aspects: 1) the larger lipid nucleus of atherosclerosis plaque; 2) the 
thinner fibrous cap; 3) the less dense of vascular wall and plaque; and 4.intraplaque ectopic angiogenesis. (B) The current and 
hypothetic mechanisms of let-7g on the formation and stabilization of atherosclerosis plaque. Inflammation(-): let-7g could 
inhibit the inflammatory reaction of plaque and vessel wall. Apoptosis(-): let-7g could increase the thickness of the fibrous cap 
through restraining the apoptosis of endothelial cells (ECs) and smooth muscle cell (SMCs) induced by ox-LDL and LOX-1. 
Angiogenesis (-): let-7g presumably inhibit the formation of plaque angiogenesis by TGF-β signaling pathway, hence reduce the 
intraplaque hemorrhage. MMPs(-): It is predicted that let-7g could stabilize atherosclerosis plaque by increasing the ECM of 
fibrous cap and atherosclerosis plaque by down-regulating MMPs. But higher level of ECM might weaken the phenomenon of 
VSMCs migration from original site to fibrous cap, which is harmful to the stability of atherosclerosis plaque. Foam cells(-): It is 
predicted that let-7g reduce the number of foam cells through inhibiting the phagocytosis of macrophage induced by ox-LDL. 
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MiRNAs have also emerged in regulating the complicated regulatory network 
during heart development [11]. Furthermore, recent reports suggest that miRNAs 
plays substantial roles in the development of atherosclerosis [12]. Various 
miRNAs have effects on controlling the integrity of vessels and the function of 
macrophage in every stage of atherosclerosis. The work from Chen’s group sug-
gested that miR-29b was up-regulated in vascular smooth muscle cells (VSMCs) 
with ox-LDL treatment, which might target on MMP2 leading to a reduction of 
VSMC migration [13]. Lovren and colleagues have shown that overexpressing 
miR-145 in VSMCs decreased the plaque size of atherosclerosis and favor plaque 
stability [14].  

Let-7 family, belonging to an evolutionarily-conserved family of miRNAs, 
contains 12 members in mammal [15]. Let-7g is one of the best-characterized 
members of the Let-7 family. Like other miRNAs, let-7g appears to play a uni-
quely primary role in the pathogenesis of disease [16]. Frangogiannis et al. re-
viewed the relation between let-7g and endothelial cell function and proposed 
that let-7g induced preservation on vascular diseases [17] [18]. Let-7g is indi-
cated to negatively regulate lectin-like oxidized LDL receptor-1 (LOX-1) through 
the intracellular Ca2+-activated protein kinase C-oxLDL-LOX-1-let-7g pathway 
[19]. Furthermore, let-7g has been found as an important modulator in the de-
velopment of atherosclerosis over the last 5 years [12] [17]. The recent progres-
sion in let-7g might help to get insight into the potential effects of let-7g on re-
gulating the progression of atherosclerosis-related diseases. In this review, we 
aim to discuss the current and potential roles of let-7g on the stabilization of 
atherosclerotic plaques. 

2. Data Sources 

We searched PubMed, Embase using terms “MicroRNAs/miRNAs/let-7” and 
“inflammation/macrophage” or “extracellular matrix/ECM/matrix” or “apopto-
sis” or “angiogenesis/neovascularization” for literatures we referred in this re-
view.  

3. The Current and Potential Mechanisms of Let-7g on the 
Stabilizing of Atherosclerosis Plaque 

3.1. Let-7g and Inflammation 

Atherosclerosis is considered as a chronic inflammatory disease due to the infil-
tration of immune cells into lesions and the production of pro-inflammatory 
cytokines [20], which contribute to the formation of vulnerable atherosclerotic 
plaques. Once infiltrated into the subendothelial space, some immune cells will 
unlimitedly take up lipids to continuously enlarge plaque [21]. The death of ma-
crophage could induce plaque necrosis in advanced plaques, which may result in 
plaques instability and thus cause plaque rupture. Therefore, strategies to pre-
vent macrophages apoptosis may stabilize the vulnerable plaques and reduce the 
life-threatening complications [21]. In addition, the interplays among immune 
cells, endothelial cells, platelets and smooth muscle cells facilitate the progres-
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sion of the atherosclerotic plaques [22] [23]. 
MicroRNAs are emerging as a new type of inflammatory regulators during 

atherosclerosis progression. Among them, let-7g was regarded to target inflam-
matory molecules. Let-7g, as an endogenous inhibitor of endothelial inflamma-
tory activation, exerts a critical role in protecting endothelial cells [24] and sta- 
bling of atherosclerotic plaques. Let-7g leads to beneficial effects on EC through 
modulating TGF-β signaling and SIRT-1 signaling (Figure 2) [24], which might 
contribute to the limitation of local inflammation of plaque and improve vascu-
lar thrombosis. In addition, overexpression of let-7g has resulted in the reduc-
tion of adhesion and migration of monocytes across endothelium [25]. 

Macrophages are important inflammation cells in the formation of vulnerable 
plaque. Anti-inflammatory M2 macrophages help to stabilize atherosclerotic 
plaques [26]. Our research found that the relative expression levels of let-7g in 
different macrophages were different. After macrophages phagocytized ox-LDL, 
the relative expression levels of let-7g changed. So, we hypothesized that let-7g 
has a regulatory effect on macrophages in atherosclerotic plaques, and the spe-
cific regulatory mechanisms need to be further studied. Currently, what is the 
role of Let-7g in macrophage polarization during atherosclerosis remains largely 
unknown. This could be a new field of research in atherosclerosis in the near fu-
ture. 

3.2. Let-7g and Extracellular Matrix (ECM) or Collagen 

In addition to inflammation, the status of extracellular matrix (ECM) of arteries 
is germane to the stabilization of atherosclerotic plaques. Plaques with high coll- 

 

 
Figure 2. Schematic showed pleotropic effects of let-7g on endothelial functions. 
Let-7g leads to beneficial effects on EC through modulating TGF-β signaling and 
SIRT-1 signaling, which might contribute to the limitation of local inflammation of 
plaque and improve vascular thrombosis.  
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agen levels are more stable than plaques containing lower amounts of ECM pro-
tein [27]. The stabilization of atherosclerotic plaque depends on the content of 
ECM or collagen, the thickness of fibrous cap, the levels of proteases especially 
matrix metalloproteinases (MMPs) [1]. 

MMPs is one big family of calcium-dependent, zinc-containing endopepti-
dases and often produced by inflammatory cells, such as foam cells and macro-
phages, within atherosclerotic plaques. MMPs have strong ability to remodel the 
extracellular matrix components [28] [29] [30]. It could digest extracellular ma-
trix, which is beneficial to immigration of VSMC from the original site to the fi-
ber cap, reduce the thickness of fibrous cap, and thus promote plaque rupture 
[31]. Johnson et al. [32] showed that a specific MMP-12 inhibitor could retard 
the development of atherosclerosis and increase fibrosis within the plaque in an 
atherosclerotic mouse model. Also, it was found that patients with carotid athe-
rosclerosis had markedly increased levels of MMP-7 in plasma, especially whom 
with newly diagnosed symptoms [33]. Silencing MMP-9 by RNA interference in 
the mice arteries had been shown to increase the thickness of the fibrous cap 
[34]. The secretion of MMPs, mainly MMP-2 and MMP-9 by macrophages in 
plaque, has been associated with the vulnerable atherosclerotic plaque rupture 
[35]. Other numerous reports have shown that MMP-9 could induce monocyte/ 
macrophage differentiation, which resulted in progression and destabilization of 
atherosclerotic plaque [36] [37] [38]. 

Although MMPs have been considered as a negative player in atherosclerotic 
plaque formation, it could act positively in the maintenance of atherosclerotic 
plaque stability on other aspects. Some reports suggested that MMP-2, MMP-9, 
and MMP-14 promoted migration and proliferation of VSMCs, which could in-
crease fibrous cap thickness and maintain plaque stability [3] [39]. Therefore, 
MMPs seem to act as double-edged sword in plaque stabilization due to their 
different characteristics. 

At present, although little is known about the effect of let-7g on MMPs in 
atherosclerosis, let-7g has been shown to suppress the expression and activity of 
MMP-2/-9 in breast cancer [40], which indicates that let-7g may also contribute 
to the development of atherosclerotic plaque by regulating MMPs. Since MMPs 
might induce plaque rupture, it is possible that down-regulation of let-7g in sus-
ceptible individuals may increase MMPs effects and thus promote formation of 
unstable lesions [17]. In addition, different MMPs have differential effects on 
plaque stabilization. Which one is dominant becomes an issue of concern. The 
intriguing relationship between let-7g and MMPs on plaque stabilization is 
worth to further investigation. 

3.3. Let-7g and Apoptosis 

Apoptosis of endothelial cells (ECs) and VSMCs could also influence stability of 
plaque. OxLDL, usually expressed higher in hyperlipidemia patients, has the 
toxicity effect on vascular endothelial cells, induced EC apoptosis through mi-
tochondrial and death receptor (Fas/FasL) apoptotic pathways [41], which is as-
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sociated with thin and incomplete of fibrous cap. VSMCs, the main structure of 
artery medium layer, also play a significant role on the formation of advanced 
stage of atherosclerosis. Apoptosis of VSMCs is harmful to the stability of athe-
rosclerosis plaque [42]. Therefore, maintenance of VSMCs has potential to delay 
the progression of atherosclerosis [31]. 

It is well known that CASP3 is the major executioner caspase in apoptosis, 
and involves in cell cycle control, migration, and differentiation [43] [44]. Tar-
geting CASP3 by hsa-let-7g significantly decreases apoptosis of endothelial cells 
induced by the ox-LDL. Hence, let-7g may have a significant influence on regu-
lating ox-LDL-induced apoptosis and atherosclerosis [43] [45]. Report from 
Zhang group also suggested that overexpression of let-7g suppressed CASP3 ex-
pression and reduced apoptosis of ECs and the decreased levels of let-7g were 
found in apoptotic ECs elicited by ox-LDL [46]. As to VSMCs, observations 
from Ding group suggested that hsa-let-7g acts as a critical regulator of auto-
phagy and apoptosis by modulating oxidized low density lipoprotein (lection- 
like) receptor 1 (LOX-1, aka. OLR1). Hsa-let-7g can reduce SMC apoptosis th- 
rough down-regulating cytochrome c and Smac/Diablo and up-regulating Bcl- 
xL and Bcl-2 expression [47]. Moreover, let-7g can down-regulate LOX-1 ex-
pression in a dose-dependent and time-dependent manner. Together, these stu-
dies indicate let-7g can suppress apoptosis and promote cell survival by nega-
tively regulating LOX-1 expression [48] [49] or other pathways (Figure 3). 

 

 
Figure 3. The effects of let-7g on inhibiting 
apoptosis of endothelial cells and vascular 
smooth muscular cells by negatively regulating 
LOX-1 expression or apoptotic molecules. 
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Current data suggest that let-7g is an important regulator of apoptosis of ECs 
and SMCs. Let-7g could also regulate other cellular apoptosis contributed to 
atherosclerosis. Thus it might be a potential target for therapeutic intervention. 
Insights into the regulation of let-7g in atherosclerosis-related apoptosis might 
guide to the development of an alternative strategy by targeting let-7g in treat-
ment of disease characterized by LOX-1 over-expression such as atherosclerosis 
[46]. 

3.4. Let-7g and Intraplaque Ectopic Angiogenesis 

Plaque angiogenesis is a physiological response to the increased oxygen demand 
in the plaque, which has adverse effects on plaque vulnerability. Neovessels in 
plaques are usually fragility which allows for extravasation of lipoproteins. How- 
ever, they can also promote the formation and enlargement of plaque lipid nuc-
leus by letting red blood cells enter plaques, and results in plaque destabilization 
by increasing intraplaque hemorrhage and the infiltration of inflammatory cells 
[50] [51] [52]. Numerous studies have demonstrated that the co-existance of in-
flammatory and hypoxia in the plaque is a major stimulus for neovascularization 
[50] [51] [52] [53]. Indeed, it has been found that elevated oxygen tension could 
reduce hypoxia and inhibit the neovascularization of plaque and the progression 
lesion in mice [54]. Also, the inhibition of the lipid-driven inflammation or mo- 
nocyte influx has similar results [55]. Therefore, atherosclerosis promotes the 
development of angiogenesis, which in return accelerates the progression of pla- 
ques. Therefore, the inhibition of intraplaque angiogenesis seems to be especially 
important to increase the stability of plaque. From this point, anti-angiogenic 
substances have been considered as apotential targeted therapy to stable plaques 
[17] [56]. 

Various miRNAs are associated with angiogenesis during different stages of 
atherosclerosis. According to published studies, let-7, miR-126, −143/145, −155, 
−17−92 and −222/221 could regulate angiogenesis [57] [58] [59] [60] [61]. 
Among them, the effects of let-7 on angiogenesis were firstly found by the 
knockdown of Dicer and Drosha in mouse which reduced let-7a, let-7b, let-7c, 
let-7f and let-7gmore than 30%. On the other hand, the reduction of let-7a, 
let-7b and let-7f has been verified to contribute to the sprouting of microvessels 
[62] [63] [64]. Recently, let-7g was shown to decrease angiogenesis and increase 
EC inflammation and monocyte adhesion via alterations in the TGF-β signaling 
pathway. Liao’s study suggested that venous injection of let-7g inhibitor into 
apolipoprotein E knockout mice increased the growth of vessels, the expression 
of PAI-1, and promoted the macrophage infiltration. At the same time, the 
up-regulations of TGF-β downstream genes were detected in the carotid arteries, 
and suppression of the TGF-β signaling by siRNAs could recover the angiogene-
sis [24]. Frangogiannis found that let-7g down-regulates expression of throm-
bospondin (TSP)-1, a matricellular protein with potent direct angiostatic prop-
erties [65] [66]. Thus, its impact on collateral circulation remains to be further 
investigated. These evidences indicate that let-7g plays important roles in plaque 
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angiogenesis, but the underlie mechanism is complex and needs further studies. 

4. Conclusion 

Overall, let-7g has been suggested to contribute to a series of improvement in 
pathological process of atherosclerosis, which might benefit from preventing ag-
gravation of atherosclerosis (Figure 1(B)). Let-7g actions may represent a pro- 
mising therapy for atherosclerotic disease [12]. But the implementation of 
miRNA let-7g-targeting strategies in vascular disease remains a daunting task. 
More robust in vivo experiment and careful analysis of the pathophysiologic 
pathways are needed to support the potential clinical application of let-7g-tar- 
geting strategies. 
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