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ABSTRACT 

In this framework we present a new method for measurement of the UWB impulse train based on the parallel sampling 
of the cascaded identical RC filters. We show that the amplitudes and time locations of p sequential impulses can be 
reconstructed from simultaneous measurement of the outputs from 2p cascaded identical RC filters. The parallel sam-
pling scheme has a wide range of applications including the detection of the ultra wideband (UWB) impulses. Due to 
identical analog RC filters and buffer amplifiers, the parallel sampling scheme is flexible to implement in VLSI applica-
tions. 
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1. Introduction 

The conventional sampling methods are based on the 
sequential measurement of signals at equidistant intervals. 
If the signal contains abrupt changes, such as edges, im-
pulses and other discontinuities, the signal bandwidth is 
not limited below the Nyquist frequency and the Shan-
non’s sampling theorem is not warranted. Recently the 
problem to measure and reproduce non-band limited 
signals has been widely studied in signal processing so-
ciety. Excellent articles [1-8] concern on the prefiltering 
and reconstruction of signals under nonideal sampling 
constraints. The sampling scheme based on the finite rate 
of innovation (FRI) recovers a variety of transient signal 
families, which are not band limited, such as impulses, 
piecewise linear and amplitude modulated edges.  

The measurement and recovery of short term transient 
signals (Diracs) plays a main role in wireless ultra wide-
band (UWB) technology, where the information is coded 
to impulse sequences. The Diracs are fed to an analog 
circuit, which has a specific impulse response. The pur-
pose of the sampling filter is to lengthen the UWB im-
pulses for equidistant sampling by an analog-to-digital 
converter. Various methods have been developed for 
reconstruction of the original signal from discrete sam-
ples.  

Our research group has introduced a sampling scheme, 
where the signal is fed to the parallel RC filters, whose 

outputs are sampled simultaneously [9,10]. A variant of 
the parallel sampling scheme is tailored for detection of 
edges [11,12]. The parallel sampling scheme can be ap-
plied to reproduce transient signals without ad hoc 
knowledge of the signal waveform [13]. Recently a mul-
tichannel sampling (MCS) arrangement was introduced, 
where the input signal is modulated by a set of sinusoidal 
waveforms, followed by a bank of integrators [14]. The 
MCS yields Fourier series coefficients, which enable the 
reconstruction of the input signal. 

In this framework we introduce a new method for 
measurement and reconstruction of the impulse trains 
based on the parallel sampling of the identical cascaded 
RC filters. We show that the amplitudes and locations of 
p Diracs can be reproduced from simultaneous measure-
ments of 2p outputs of cascaded identical RC filters. We 
compare the reconstruction performance of the present 
method with the MCS arrangement using an analog elec-
tronic circuit simulator. 

2. Theoretical Considerations  

2.1. Sampling of the Impulse Train  

We consider the impulse train consisting of p sequential 
Dirac distributions 
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where iA  are amplitudes and it  the time locations. 
The impulse train is fed to the N identical cascaded RC 
filters (Figure 1), each having the impulse response  
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  0,1, , 1ky t k N    of the cascaded RC filter net-
work are obtained as where the unit step function  u t  

 for  and  for  and 1 0t   u t 0 0t  1 RC  . 
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In Laplace transform domain we have  
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The inverse Laplace transform then gives 
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where 1 !k
kC   k . Now we can write the convolution 

integral 
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The prominent idea in this work is to measure the RC 
filter outputs  ky t

, , p
i

simultaneously at a time 
. By denoting the time difference 

 and rearranging we obtain  
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where the notations  0k ku y t C k  and e i
i ia A    

are used.  

2.2. Reconstruction Algorithm  

In the following we develop a reconstruction algorithm 
for the amplitudes and time locations of the Diracs based  
 

 

Figure 1. The arrangement for measurement of the impulse 
train based on the parallel sampling of N cascaded identical 
RC filters, which are separated by the unity gain buffer 
amplifiers. 

on formulation (7). The z transform of the  sequence 
with respect to k yields 
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Let us define the pole cancellation filter as 
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and the  P z  polynomial as 
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Clearly the roots of the pole cancellation filter corre-
spond to the roots of the  polynomial. The im-
pulse response 
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The roots of the  P z  are obtained by setting 
0np   for . This yields the matrix/vector equa-

tion 
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We may observe that the solution of the coefficients of 
the pole zero cancellation filter requires the knowledge 
of the 2p values of the  sequence. The polynomial  ku

T

1 21 ph h h   h   has roots .  i  1,2, ,i p 
The time locations of the Diracs are then obtained as 

0i it t  . For solution of the amplitudes we may write 
(7) in matrix/vector form  
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where # denotes the pseudoinverse matrix. Now the am-
plitudes of the impulses are obtained as e i

i iA a  . To 
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summarize, the reconstruction of p impulses requires the 
knowledge of the  sequence. This 
needs the simultaneous measurement of at least  
samples from the outputs of the cascaded RC filters. An 
alternative singular value decomposition (SVD) based 
null space method is presented in Appendix for the solu-
tion of the roots of the pole zero cancellation filter (9). 
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2.3. Noise Cancellation 

The above formulation (8)-(13) is valid only in noise free 
situation. The noise was rejected by the singular value 
decomposition (SVD) based subspace method. Let us 
construct a Hankel matrix 

1
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where the antidiagonal elements are identical. The sin-
gular value decomposition of the matrix H  is 
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, where U  and  are unitary matrices. 
 is a diagonal matrix consisting of the singular values 
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n  contains the smallest singular values and hence the 
matrix n

Σ
H  can be considered to belong to the noise 

subspace. The matrix sH  is then related to the noise 
free signal subspace. The dimension of the signal sub-
space can be evaluated by several methods [15]. In this 
work we plotted the logarithm of the singular values in 
descending order. The logarithmic singular values form 
clearly separable linear groups. In all cases the dimension 
of the signal subspace appeared to be p, i.e. the number 
of impulses. The signal matrix sH  is not precisely a 
Hankel matrix, as some variation occurs in the antidi-
agonal elements. We reconstructed the noise free Hankel 
matrix by replacing the antidiagonal elements by their 
mean values.  

2.4. High-Speed Sampling Method  

In the case the impulse rate is limited so that only one 
impulse arrives at the cascaded RC network, the recon-
struction algorithm simplifies notably and the sampling 
of the outputs of the first two RC filters is enough to re-
cover the amplitude and time location of the impulse. 
Based on (6) we obtain 
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In practice the outputs of at least three RC filters is ad-
visable to measure, since we may then construct the Han- 

kel matrix 0 1

1 2

y y
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H  for SVD based noise cancel- 

lation. 

2.5. Elimination of the Pulse Pile-Up in UWB 
Transmitter  

The practical UWB transmission protocol consists of 
wireless RF pulses each containing three impulses (Fig-
ure 2). The current reconstruction algorithm (12, 13) 
does not take into account the pulse pile-up effect due to 
the previous pulses in cascaded RC network. Let us con-
sider the situation in which the UWB pulses are trans-
mitted at constant time intervals  and the 
parallel sampling of the outputs of the RC network also 
occurs at  intervals. By denoting the sampled and 
normalized outputs by 
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contains the output due to the impulses occurring at time 
interval  , 1nT n T    reduced by the pile-up signal 
due to the previous UWB pulses at time interval 
 n T1 ,nT   . The approximation in (17) is exact for 

0k  . However, in cases for  the exponential 1, 2,k  
e t  is mainly responsible for the descending tail and 
the approximation error is negligible.  

3. Experimental 

The reconstruction algorithm was tested by an extensive 
simulation study. The cascaded network comprised eight 
identical RC filters which were constructed using an ana- 
 

 

Figure 2. The output signal of the cascaded RC filter net-
work comprising of eight cascaded identical RC circuits. 
Each UWB pulse consists of three Diracs. 
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log electronic circuit simulator (Spice). The   parameter 
varied in the range 0.1 - 0.8. In the absence of noise the 
reconstruction algorithm (12, 13) recovered the ampli-
tudes and time locations of the impulse train consisting 
of 1 - 4 Diracs with machine precision. When the random 
noise was added to the input of the network, the algo-
rithm could reconstruct 1 - 3 Diracs with good accuracy, 
when the SVD based subspace method was applied to 
noise cancellation. The error in amplitudes varied be-
tween 0.8 - 1.2 percent and in time locations 0.3 - 0.7 
percent. In the case of four sequential Diracs the recon-
struction algorithm yielded inaccurate results or totally 
failed. 

We made a preliminary comparison with the mul-
tichannel sampling (MCS) arrangement [14] using the 
Spice simulation toolbox. In the case of 1 - 3 sequential 
impulses the performance of the MCS was clearly poorer 
than the results obtained by the present RC filter network 
in the presence of noise below SNR < 45 dB, but signifi-
cantly higher at SNR > 45 dB. In the case of four se-
quential impulses the performance of the MCS was sig-
nificantly higher compared with the present reconstruc-
tion method in all noise levels. 

The cascaded RC network was implemented using 
metallic foil resistors and low-noise capacitors. Eight RC 
filters were separated by unity gain buffer amplifiers 
(Figure 1). The outputs of the RC filters were sampled 
simultaneously with an eight channel differential 12-bit 
analog-to-digital converter (ADC) equipped with a sam-
ple and hold (S/H) circuit in every channel. For 1 - 3 Di-
racs the reconstruction error in amplitudes was between 
1.1 - 1.4 percent and in time locations 0.6 - 0.9 percent. 
For four Diracs the reconstruction error was considerably 
higher, for amplitudes 2.2 - 3.4 percent and for time lo-
cations 0.9 - 1.7 percent. In all experimental measure-
ments the SVD based subspace method was used for 
noise rejection. The high-speed sampling method (16) 
recovered the amplitudes and time locations of single 
Diracs with good accuracy using three cascaded RC fil-
ters. The amplitude error was between 0.6 - 1.3 percent 
and the error in time locations 0.1 - 1.1 percent. 

The reconstruction of Diracs using the SVD based null 
space method (Appendix) gave almost identical results, 
which are not repeated here. The slight difference is 
probably due to that the matrices H  in (14) and  in 
(17) are different. 

U

4. Conclusions 

In our previous work [9] we introduced a novel sampling 
scheme based on parallel RC filters, where the outputs 
were measured simultaneously. A disadvantage in the 
practical construction of the parallel RC network comes 
from the precise adjustment of the time constants of the 

RC circuits. For N parallel RC circuits the   parameter 
must obey the condition 0 , 0,1, ,k k k N 1     . 
On the contrary, in present cascaded network all RC fil-
ters and buffer amplifiers are identical and much simpler 
to implement in integrated VLSI circuits. Compared with 
the previous FRI methods, which are based on the se-
quential sampling, the outputs of the parallel RC filters 
are sampled only once per UWB pulse, which contains a 
restricted number of impulses (Figure 2). This eliminates 
the need for high frequency analog-to-digital converters 
(ADCs), since the UWB pulse repetition rate can be ad-
justed to match the ADC’s performance.  

The formulation of the reconstruction algorithm was 
warranted by extensive simulation study using Spice 
toolbox. In the presence of noise the SVD based noise 
cancellation method had to be applied. The computa-
tional complexity of the SVD algorithm is  3O N , 
which restricts the real-time applications of the present 
method to a relatively low transmission rate. However, 
since the information is coded to both the amplitude and 
the time locations of the Diracs, the number of transmit-
ted pulses can be significantly lower compared with the 
conventional UWB methods. As an advantage lower 
number of transmitted pulses reduces the RF radiation 
load.  

We showed in Spice simulation study that in noise free 
conditions the p Diracs can be reconstructed from sam-
pling the outputs of the 2p cascaded identical RC filters. 
In the presence of noise this theoretical “2p rule” is not 
valid and it seems evident that preferable “2p + 1 rule” 
should be applied.  

The high-speed method (16) suits best for reconstruc-
tion of single Diracs, whose amplitudes are quantized to 
only a few levels. For example the impulses with 15 dis-
crete levels can be produced by a 4-bit digital-to-analog 
converter, which the method reproduces perfectly. 

In MCS arrangement the signal is modulated by a set 
of sinusoidal waveforms, followed by a bank of integra-
tors [14]. The MCS produces Fourier series coefficients, 
which enable to reconstruct the input signal. However, 
the MCS is much more complex compared to the circuit 
consisting of the cascaded identical RC filters. The Spice 
simulation study revealed that the MCS outperforms the 
present approach at high noise level, SNR over 45 dB, 
but inferiors at lower noise environment. To the best of 
our knowledge the hardware for the implementation of 
the MCS is not yet available. Hence, in this moment this 
figure is based only on a simulation study.  

In most of the UWB devices information is transmitted 
by monocycle Gaussian pulses. The FCC restricted the 
UWB frequency band between 3.1 - 10.6 GHz in year 
2002 [16]. The Gaussian pulse train does not meet this 
constraint and other pulse shapes have been introduced to 
meet the FCC criteria, e.g. the family of the orthogonal 
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UWB pulse waveforms [17,18]. The fast digital-to-ana- 
log converters (DACs) can produce UWB pulses, where 
the information is coded via orthogonal base vectors and 
reproduced by matrix/vector computation.  

In this work we have concentrated on the UWB com-
munication device, which transmits pulses consisting of 
most 1 - 3 impulses. The information is coded to the am-
plitudes and time locations of the Diracs. Such pulse 
generators are relatively easy to implement in VLSI [19]. 
Following [18] the impulse train can be designed so that 
its spectral density spectrum coincides with the FCC cri-
teria. 
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Appendix 

SVD Based Null Space Solution 

Let us write the convolution (11) in the matrix/vector 
form 

2 1 2 2 1 0

2 2 2 3 2 1

1 0

p p p

p p p

p p p

u u u h

u u u h

u u u h

  

  



 
 
  

 
  
 Uh




    


0

0

 
 
 

  
 
  

       (18) 

In the following we describe the singular value decompo-
sition (SVD) based null space solution of the unknown 
vector  in (18). The SDV of the  matrix in (18) 
yields 

h U

TU L RΣ                 (19) 

where matrices  and 

1 2 1p   contain the left and right singu-
lar vectors (column vectors) and matrix 

 the singular values in de-

scending order. Matrices 

1 2 1p   L l l l
r

 1 2 1p 

 R r r 

diag  Σ

L  and R  are unitary, i.e. 
T L L I  and Τ R R I

1 2 1

, where  is the identity matrix. 
Applied to (19) we obtain , which yields  

I
LΣ

2 2



 

UR

1 1 1 1 p p p       U r lr r l

k

l

k

     (20) 

Finally we may write 

k Ur

, 1p

l                   (21) 

for 1,2,k   . Equation (21) forms the basis for 
the SVD based null space method. By searching very 
small singular value k 0  , the right singular vector k  
equals vector  in (18) yielding the solution for the 
roots of the pole cancellation filter (9). In the presence of 
noise the dimensions of the 

r
h

L  and  matrices should 
be selected so that there appears only one tiny singular 
value. This can be also achieved by zeroing the rest of the 
tiny singular values. It should be pointed out that the 
SVD based null space method does not yield the coeffi-
cients of the pole zero cancellation filtering (9) in nor-
malized form, i.e. 

R

0 1h  . However, we may apply post 
normalization as 0k hkh h  for . 0,1, ,k p
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