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ABSTRACT 

Cognitive radio (CR) is a technology that provides a promising new way to improve the efficiency of the use of the 
electromagnetic spectrum that available. Spectrum sensing helps in the detection of spectrum holes (unused channels of 
the band), and instantly move into vacant channels while avoiding occupied ones. An energy detector with baseband 
sampling for CR is presented with mathematical analyses for an additive white Gaussian noise (AWGN) channel. A 
brief overview of the energy detection based spectrum sensing for CR technology is introduced. Practical implementa-
tion issues on Texas Instruments TMS320C6713 floating point DSP board are presented. Novelties of this work came 
from a derivation of probability of detection and probability of false alarm for the baseband energy detector without 
including the sampling theorems and the associated approximation.  
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1. Introduction 

The limited available spectrum and inefficiency in the 
use of the spectrum makes it necessary to establish the 
new communication model to benefit from the existing 
wireless spectrum professionally.  

Mitola proposed a solution to the spectrum efficiency 
problem [1], where higher spectrum efficiency can be 
reached by dynamic spectrum access [2,3]. The concept 
of cognitive radio (CR) allows detecting the unused 
spectrum (spectrum holes) of the primary user (PU) in 
order for the secondary user (SU) to share the spectrum 
without harmful interference. The accuracy of detection 
is the most important factor that determines the per-
formance of the CR. Since the concept of CR is still at 
the stage of being developed, there is no agreement on 
what kind of wireless technologies to employ for realiz-
ing it. Currently, there are three different techniques 
which are commonly used in signal processing tech-
niques for spectrum sensing [4]: matched filter, cyclosta-
tionary feature detection and energy detection.  

In [5], the matched filter also referred to as coherent 
detector, it can improve detection performance if the 
primary transmitted signal is deterministic and known a 
priori. This technique can be applied only when we 
choose to detect specific signals, and it is very accurate 
since it maximizes the SNR for the signal. 

In [6,7], a signal is said to be cyclostationary if its 
mean and autocorrelation are a periodic function. Com-

munication signals may have special statistical features. 
Feature detection denotes to extracting features from the 
received signal and performing the detection based on 
the extracted features. Cyclostationary feature detection 
can distinguish PU signal from noise, and used at very 
low signal to noise ratio (SNR) detection by using the 
information embedded in the PU signal that is not pre-
sented in the noise. The main drawback of this method is 
the complexity of calculation. Also, it must deal with all 
the frequencies in order to generate the spectral correla-
tion function, which makes it a very large calculation. 
The benefit of feature detection compared to energy de-
tection is that it typically allows differences among dis-
similar signals or waveforms. 

Energy detection (also denoted as noncoherent detec-
tion), is the signal detection mechanism using an energy 
detector (also known as radiometer) to specify the pres-
ence or absence of signal in the band. The most often 
used approaches in the energy detection are based on the 
Neyman-Pearson (NP) lemma. The NP detection crite-
rion enlarges the probability of detection  for a 
given probability of false alarm 

 dP
 faP . 

It is an essential and a common approach to spectrum 
sensing since it has moderate computational complexities, 
and can be implemented in both time domain and fre-
quency domain [8,9]. In [10], to adjust the threshold of 
detection, energy detector requires knowledge of the 
power of noise in the band to be sensed. The signal is 
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detected by comparing the output of energy detector with 
threshold which depends on the noise floor. 

The TMS320C6713 kit was chosen as it provides a 
properly low cost access into the real-time implementa-
tion of energy detection algorithms. This DSP card has 
the following features: It evaluates 1350 million floating 
point operations per second (MIPS), a processor running 
at 225 MHz, programmed by C and assembly languages. 

The paper is organized as follows: Section 2 describes 
detection techniques. Section 3 lists the main issues of 
previous works. Section 4 presents the baseband energy 
detector model. Section 5 drives probability equations for 
baseband energy detector over AWGN Channel. Section 
6 describes how to generate noisy PU signal. Section 7 
implemented using a DSP kit. Discussed in Section 8 
presented. Finally, in Section 9 the conclusions are men-
tioned . 

2. Detection Techniques 

Fundamental to the theory of detecting the signal in noise 
is the theory of statistical decision, where the deci-
sion-making depends on the hypothesis testing. In binary 
hypothesis testing, the problem resides in defining a de-
cision rule that indicates which of two hypotheses should 
be chosen: the null hypothesis ( 0H ) or the alternative 
hypothesis ( 1H ). If the null and alternative hypotheses 
are defined in terms of signal(s), hypothesis 0H  (signal 
absent) and hypothesis 1H  (signal present). 

In [11], the decision rule can be represented as 

 
1

0

Λ

H

y

H

                (1) 

where   is the threshold and  Λ y  is a function 
that depends on the measurements. If it exceeds the 
threshold, then 1H  is selected; otherwise, 0H  is de- 
cided. The aim of the detection theory is, hence, to de- 
sign the most effective detector by definition  Λ y  and 
 . Let  0 , ,y 

0, 1,
1N  be the observation vector and 

i  denote the joint probability density 
function (PDF) of these  elements of observing y 
given that i

y 
i 

y
 | ,HP y

N
H  was true, is often referred to as the like-

lihood function of the observation vector y. Thus, we can 
define the  is the likelihood ratio test (LRT) as Λ y 

   
 
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              (2) 

In [12], define two main approaches to test the hy-
pothesis: NP and Bayesian. The method used depends on 
our readiness to merge previous knowledge about the 
probability of a different hypothesis. If we were able to 
assign prior probabilities to hypotheses, we can use the 

approach of Bayesian. However, in most detection prob-
lems we cannot say how probable an event is and we 
have used the NP approach instead. 

2.1. Bayes Test 

The aim of the Bayes test is to minimize the mean cost or 
“risk”, whose expression can be evaluated as [13] 

       10 10 01 01 11 11 00 00C C P C C P C C P C C P C     (3) 

where ijC  is the cost that denotes jH  is accepted while 

jH  is true,  denotes the probability that we ac-
cept i

( )ijP C
H  when jH  is true. From this expression it is 

possible to derive the decision rule can be expressed as 

    
  
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




        (4) 

the probability   , 0,iP H i  1 , is called a priori prob-
ability of iH . When 10 00 01 11  the Bayes' 
test is the maximum aposteriori probability (MAP) test as 
shown 

C C C C  

        
1 1
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1 1 0
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0 0
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P H P y H P H P y H
P H

H H

  y   0

 (5) 

Also, when    0P H P H 1  the MAP test is called 
maximum-likelihood (ML) test as shown 

    
1 1

0

0

1

0

Λ 1

H H

y P y H P

H H

    y H      (6) 

2.2. Neyman-Pearson Test 

In [12], the NP test follows a different philosophy than 
that of the Bayes test. The NP test can be expressed in 
terms of the LRT as 

   
 

1
1

0
0

Λ

H
P y H

y
P y H

H

           (7) 

where   is the Lagrange multiplier and equals to value 
of detector threshold.   is chosen to satisfy the con-
straint 

    fa 0|
d

y y
P P y H y          (8) 

where fa  as defined as the type I error or probability of 
false alarm, which is the probability that the LRT is lar-
ger than the threshold when the observation is composed 
entirely of noise, 

P

  level of significance. The detection 
is performed on the basis of a Constant False Alarm Rate 
(CFAR) i.e. The NP technique provides a threshold for 
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detection subject to a constant . The probability of 
detection can be evaluated as 

faP

    1|
dd y y

P P y H   y          (9) 

is the probability that the likelihood ratio is larger than 
the threshold when the observation is composed of the 
signal of interest and noise. 

If the signal under hypothesis 0H  is assumed to be 
   2

1 0~ 0,P y H  , and under 1H  is assumed to be 
   2

1 1~ 0, ,  ΛP y H   y  can be evaluated as 
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taking logarithm, and removing all constants that are 
independent of vector , and merging with threshold, 
we obtain 

y
 Λ y  test as 

  2

1

Λ .
N

i
i

y y


              (11) 

Hence, the optimal detector, in the NP sense, is in this 
case the energy detector. 

A test of the hypotheses which is optimal in the NP 
and Bayes test can be expressed as 

         1       if &Λ

0      otherwise.

y
g


 


y        (12) 

3. Previous Works 

Energy detector has been widely used for signal detec-
tion due to its simple circuit in practical implementation. 

The most important preliminary work for the general 
analysis of energy detector was presented in the land-
mark paper [10], the authors proposed the model as 
shown in Figure 1.  

In [10], his classic work was based on detection of a 
deterministic signal in an additive white Gaussian noise 
(AWGN), and exact noise variance is known a priori. 
The input signal  is first passed through an ideal 
bandpass filter (BPF) with center frequency 

( )y t

0f  and 
bandwidth W, with transfer function 

  0

0

0

2
,         | |

0,               

f f W
NH f

f f W

   
  

       (13) 

 

y(t) 

 

Figure 1. Classical model of energy detector. 

where 0  is the one-sided noise power spectral density, 
this normalizes it found convenient to compute the false 
alarm and detection probabilities using the related trans-
fer function. After that the signal squared, and integrated 
in the observation interval T to produce a test statistic, 

 is compared to a threshold 

N

,V  . The receiver makes a 
decision that the target signal has been detected if and 
only if the threshold is exceeded. 

In [14], the received signal  y t  of SU under the bi-
nary hypotheses testing can be represented as 

   
     

0

1

: &

:

H y t w t

H y t x t n t


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          (14) 

where 0H  represents the hypothesis corresponding to 
“no signal transmitted”, and 1H  to “signal transmitted”, 
 x t  is the unknown deterministic transmitted signal, 

and  w t

 assumed to be an AWGN with zero mean and 

variance  is known a priori. The SNR is de-
noted as 

2
0n WN

2

2
s

n





  

where 2
s  variance of signal and 2

n  variance of noise. 
By using Shannon’s sampling formula, we can obtain the 
reconstructed noise signal 

   2
i

in t n sinc Wt i
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



           (15) 

where 

   π

π

sin x
sinc x

x
  

is the normalized sinc  function and  

2i

i
n n

W
   
 

 

is the i-th noise sample. The test statistic under hypothe-
sis 0H  as follows 

  
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If we take the BPF effect and simplify, the decision 
rule which is employed by the energy detector can be 
obtained as 

 
12 22 2
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The same approach can be applied under hypothesis 

1H  when the signal  x t  is presented, by replacing 
each  by iin in x  where  

2i

i
x x

W
   
 

. 
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The test statistic for both cases can be expressed as 
2

0 2
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1 2
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where  chi-square distribution with the  
degree of freedom (DOF), and 

2
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 2
2 2TW 

2

 noncentral 
chi-square distribution with the same number of DOF 
and a noncentrality parameter equal to  . The prob-
ability of detection and probability of false alarm can be 
computed if  by 2 2TW  50
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 
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             (20) 

In [15], present several classical models of energy de-
tector, which can be used to evaluate the energy detector 
performance instead of using the accurate results. These 
models are easily available for theoretical analysis when 
one takes advantage of the energy detector for spectrum 
sensing [16]. 

In [17], Lehtomaki has done a lot of research work in 
signal detection based on the ideal energy detector. His 
main goal was to develop energy based detectors. Dif-
ferent possibilities for setting the detection threshold for 
a quantized total power energy detector are analyzed. 

Energy detector has discussed the existence of signals 
with random amplitude and channel fading in [18] and 
[14]. The average probability of detection over a fading 
channel also derived. 

The improved performance of the energy detector for 
random signals corrupted by Gaussian noise is derived. 
The derivation is based on a simple modification to the 
conventional energy detector in [10,14,18] by replacing 
the squaring operation of the signal amplitude with an 
arbitrary positive power operation [19]. 

 
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             (21) 

In [20], in order to solve both the interference avoid-
ance and the spectrum efficiency problem, an optimal 
spectrum sensing framework is based on the maximum a 
posteriori probability (MAP) energy detection and its 
decision criterion based on the primary user activities. 
The PU activities can be assumed as a two state birth- 
death process, death rate   and birth rate  . Where 
each transition follows the Poisson arrival process 
meaning that the length of ON (Busy) and OFF (Idle) 
intervals of primary network are exponentially distrib-
uted. We can estimate the a posteriori probability as fol-
lows  

offP


 



            (22) 

on off1P P


 
  


           (23) 

where on  is the probability of the period used by pri-
mary users and off  is the probability of the idle period. 
From the definition of MAP detection, the detection 
probability d  and false alarm probability  can be 
expressed as follows  

P
P

P faP

dP P V H P 1 on              (24) 

0fa offP P V H P               (25) 

where   is a decision threshold of MAP detection. 

4. Baseband Energy Detector Model 

In practical implementation of the energy detector, 
transmission and sensing cannot be performed at the 
same time. Thus, during observation time, all CR users 
should stop their transmissions. Due to this hardware 
constraint, CR users should sense the spectrum cyclically 
with sensing period sT  and transmission time , as 
described in Figure 2. 

rT

A large number of signal processing applications func-
tion in real-time systems. Because most signal processing 
is nowdays implemented with DSP methods, it is suitable 
for understanding EDs as discrete time (DT) systems. 
The input signal of the DT system is denoted by a se-
quence as 

  c sa x n x nT            (26) 

where   c sax nT  is analogue continuous time signal that 
is sampled in order to produce the DT signal  x n , the 
time index n is an integer, and sa  is the sampling in-
terval, which is reciprocal to the sampling frequency and 
is given by 

T

1
.sa

sa

F
T

                  (27) 

A system model of energy detector with baseband 
sampling for CR can be shown in Figure 3.  

In order to measure the energy of the received signal, 
the output signal of codec is squared and integrated over  
 

Senting
Time:Ts 

 

Figure 2. Sensing and transmission structure for energy 
detector. 
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Figure 3. Energy detector with baseband sampling using a 
DSP kit. 
 
the sensing interval sT . The sensing interval sT  is usu- 
ally assumed to be small enough so that the PU signal 
can span over the whole sensing interval. According to 
the Nyquist sampling theorem, the minimum sampling 
rate should be sa 2F W , where W is the highest fre-
quency of the original signal, hence, the minimum sam-
ple size N collected by the energy detector can be repre-
sented as 2 . In real-time  equal to sampling 
frequency 

TW 2W

saF  of the DSP card, hence as sensing time 

sT  is chosen such that N is an integer 

s
s sa

sa

T
N T F

T
            (28) 

5. Baseband Energy Detector over 
AWGN Channel 

In a binary hypothesis test, the received signal after co-
dec can be given as 
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where N denotes the number of samples collected during 
the signal sensing period. The test statistic for the energy 
detector with predetermined threshold   is defined as 
follows 
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When the received signal contains the noise only un-
der 0H  hypothesis, the test statistic can be written as: 
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Since V is a square sum of N AWGN with zero mean, 
i.e.    2~ 0, nw n 

2

, thus the distribution of the test 
statistic is a chi-square with N degrees of freedom (DOF) 

~ NV   [21], can be evaluated as follows 
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where 2k N , is an integer,  is the gamma func-
tion, which is defined as  

Γ(.)

  1

0

Γ e du tu t


   t  [22]. 

From the definition of false alarm probability, the CR 
decides in favor of 1H  while the band is idle, thus, the 
false alarm probability can be expressed as 
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To solve this equation, we must apply some variable 
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(incomplete gamma functionis given by [22]  

, therefore (35) becomes       1Γ , a t
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In [23, Equation (2.5), p. 24], the incomplete gamma 
function can be expressed as 
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based on (37),  can be evaluated as faP
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The same approach is applied when the signal of PU, 
 x n  is presented hence, the test statistic under hy-

pothesis 1H  becomes  
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We can observe that V consists of two terms: a fixed 
(non-random) component  x n  and a noise component 
 w n  obey the Gaussian distribution. More specifically, 

V is a noncentral chi-square distribution with non-central 
parameter 
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in particular, the PDFs of V under 1H  hypothesis takes 
the form [21] 
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(40) 
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where nI  is the n order modified Bessel function. The 
probability of detection is 
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The d  can be expressed in term of the generalized 
Marcum Q-function, which is defined as [21] 

P
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Where m is a nonnegative integer, and   and   are 
nonnegative real numbers. If we change variable of inte-
gration (41), v to x, where  

2
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             (43) 

If  i.e.  the Marcum Q-function is 
difficult to calculate or to take its inverse, thus, we can 
use the central limit theorem (CLT), for the large number 
of sample, we can use the Gaussian distribution to ap-
proximate the chi-square distribution, under 0

100,k  200,N 

H  hy-
pothesis, and non-central chi-square distribution, under 

1H  hypothesis, thus, the CLT can therefore be employed 
to approximate the test statistic as Gaussian 
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If only AWGN is considered, fa  and d  of energy 
detector can be derived in terms of the Q function as fol-
lows 
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where the  
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is standard Q-function [22]. The decision threshold   
is determined by the pdf of the noise only signal, thus, by 
using (44), we get 

  1
fa2 nNQ P N 2            (47) 

where  1 .Q

P
 denote the inverse Q-function [22].  

In [20], fa  should be kept as small and d  should 
be large as possible to avoid underutilization of transmis-
sion opportunities. Note that from (45) and (47), the fa  
and 

P

P
  can be set even without the knowledge of the 

signal power. The curve represents the performance of 
the energy detector, which is called the receiver operat-
ing curve (ROC), for a given   pair of fa  and d  
representing the point in the ROC. We can plot another 
curve give an energy detector performance, for a given 

fa  it’s convenient to display the d  with 

P P

P P  . In addi-
tion to using the ROC curve for performance comparison, 
one can also resort to the so-called deflection coefficient 
[12], especially when the statistical properties of the sig-
nal and noise are limited to moments up to a given order. 
The deflection coefficient is defined as 
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      (48) 

6. Generating Received Signal 

The energy detection is used when the CR knows the 
signal of PU (deterministic) or their probabilities (ran-
dom). It requires a good model of PU signal and noise is 
accurately known. 

In the process of implementing an energy detector 
with DSP processor, often we are stymied by the prob-
lem of getting a received noisy signal with required 
amount of SNR i.e. under 1H . To obtain an expression 
for receiving signals, the PU signal is modeled as being 
deterministic, by definition of SNR, the variance of sig-
nal is 

2 2 1010
dBSNR

s n               (49) 

/1010 dBSNR
n

s

Scale



            (50) 

Thus, All we have to do is to scale the signal  x n  
appropriately, the received signal expressed as 

     y n Scale x n w n               (51) 

Also PU signal can be modeled as being random, the 
received signal takes the form of a zero mean Gaussian 
process with known variance    2 2 .s n 

Most methods for generating white Gaussian noise are 
based on transformations or operations on white uniform 
noise. There are several algorithms to generate white 
uniform noise which is generated by generating a pseudo 
random number. In this paper, we focus on a particular 
class of generators suitable for real-time applications. 
Making choices among generators requires specific crite-
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ria. We used two criteria to choose a good generator, are 
the length of the generation as well as the short imple- 
mentation period to fit with the real-time environment. 

The most widely used techniques for generating pseu- 
do random number have approximately uniform distribu- 
tion. Such generators, introduced by D. H. Lehmer in 
1951, which is known as the linear congruential method 
[24] 

 1  i ix ax c mod m              (52) 

m is the nonzero modulus . 0m 
a is a multiplier . 0 a m 
c is an additive constant , The case of 

 is called a mixed-congruential generator while 
 is referred to as a multiplicative-congruential 

generator. 

0 c m 
0c 
0c 

0x  is the starting value, or seed 00 x m 
 ax c m

. 
mod  is the operator means that i  is 

the residue from dividing  by m. 
od m

ax c 1i

If  and 0, , ,m a c x  are integers, then this technique 
will produce a sequence of integers with each integer in 
the range 0≤xn<m. 

In [25], many versions of linear congruential genera-
tors set the constant c to zero. The resulting multiplica-
tive congruential generator is 

 1  .i ix ax mod m            (53) 

Park and Miller give suitable choices for 
 and , this 

yields a full period generator. The Park Miller generator 
was implemented using David G. Carta’s optimization 
which needs only 32 bit integer math, and no division. 

57 16807a a  312 1 2147483647m   

The last two algorithms generating white uniform 
noise zero mean and variance equal to 1/12. 

In this implementation, we present white Gaussian 
noise generator based on the CLT (Sum-of-uniforms) 
method. Therefore, approximation of a white Gaussian 
noise with zero mean and unit variance, can be gained by 
realizing the sum of 12 uniform random variables. 

7. Implementation of Energy Detector on 
TMS320C6713 

A PU transmitter and SU receiver for CR is implemented 
on a C6713 DSP board. Figure 4 shows the equipment 
used in this paper.  

From (45-47), the energy detector is strongly depend- 
ing on knowledge of noise power. Thus, accurate estima- 
tion of noise power plays an important role in perform- 
ance of energy detector. We proposed the auxiliary en- 
ergy detector connected to primary energy detector, 
which can be used for the detection process of noise 
power, give an accurate detection as noise power 
changes. 

 
 

 

Figure 4. The TMS320C6713 and the equipment. 
 

We determined the DSP card cycle numbers of the two 
algorithms evaluation units to be 392 and 279 respec-
tively, due to this constraint, we are able to fit the algo-
rithm 2 into the signal used under 0H . Figure 5 shows 
the time domain plot of white Gaussian noise signal with 
zero mean and unit variance. 

Two scenarios for signal under 1H  can be imple-
mented, in (51)  x n  isa (deterministic) sinusoid signal 
generated using eight points a table lookup method as in 
Figure 6, or  x n  is random, thus,  
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Figure 5. Time domain representation of Gaussian noise. 
 

 

Figure 6. Time domain and FFT of 10 kHz signal at 5 dB SNR. 
 

  2 2 ,s ny n randn     
d

No. of detection

observation numbers
P          (54) 

as as in Figure 7. 
we take the Fsa at four different values 8, 16, 32 and 96 

kHz and and its number of samples 80, 160, 320 and 960 
respectively. From the figure it is observed that the de-
tection performance improved by increasing SNR and 
with increase samples point i.e. sampling frequency.  

We use the following implementation parameters: 
the PU signal , , fa  and 
assume n . The C6713 development board 
we used has sampling frequencies 8, 16, 32, 44, 1, 
48 and  are supported, , we select 

, and  

4 KHzW 
2 1210

Hz
96 kHz.

0.P 

210 ssT 

saF 

01

0.01P 

2 W

 

 96 k
16, 328,saF  To ensure that the fa  is accurately estimated, we 

will compare the theoretical value and the implementa-
tion results. The  is calculated using the following 
formula [26] 

P

faP
Since we set the fa , this is to say that we ob-

serve test statistic under hypothesis 1H  for 100 times to 
yield 99 realizations of detections in theory. We change 
SNR from –20 dB to 0, and repeat the 100 observations 
for each to calculate the number of detections. Figure 8 
represents 100 observations at –11 dB, saF = 96 kHz it 
has gotten 4 detections. 

fa

false detection

observation numbers
P          (55) 

Figure 10 illustrates the values of  which are cal-
culated for different values of SNRs at 

faP

saF = 96 kHz. As 
we know that the estimated value of  is 0.01, the  faP

Figure 9 plots the  versus SNR.  can be ex-
pressed as [26] 

dP dP
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Figure 7. Time domain of 10 kHz signal at −10 dB SNR. 
 

 

Figure 8. Signal after integrating with 100 frames. 
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Figure 9. Probability of detection for different SNRs. 
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Figure 10. faP  for different SNRs, . fa = 96 kHzF

 
figure shows when SNR is between –3 dB and 0, the 

fa = 0.01, 0.0 and 0 which are almost the same and con-
firm the estimated we used. Thus, it can be concluded 
when SNR between –3 dB to 0, the energy detector can 
offer significant detections. 

P

8. Discussion 

The energy detector of 100 observations is implemented, 
the d  and fa  are calculated. fa  is different from the 
estimated value. The SNR plays an important factor that 
influences the detections. By changing the value of the 
SNR from –20 to 0 dB, we get the relationship between 
the SNR and the detections Figure 9, from that figure, 
we can see from –3 dB to 0, the energy detector gives 
best performance. We also calculate the relation between 
SNR and  as, as shown in Figure 10. 

P P

fa

P

P

9. Conclusion 

The energy detection is worldwide in the sense that it can 
detect any type of signal, and does not need any knowl-
edge about the signal to be detected. Moreover, the noise 
power needs to be known to set the determination thres- 
hold. The main advantages of energy detection based 
spectrum sensing are its simplicity, low computational 
and implementation costs as well as its ability to work 
regardless of the actual signal to be detected. In the pre- 
sent work, without involving the sampling theorems and 
the accompanying approximation, we derive the expres- 
sions for probability of detection and false alarm over 
AWGN. Therefore, the calculation is progressively pre- 
cise. Also, the performance of the energy detector in 
real-time is analyzed.  
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