

Cryptocurrencies and Investment Diversification: Empirical Evidence from Seven Largest Cryptocurrencies

Nguyen Phuc Canh¹, Nguyen Quang Binh², Su Dinh Thanh³

¹School of Banking, University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam ²University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam ³School of Public Finance, University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam Email: canhnguyen@ueh.edu.vn, binhnq@ueh.edu.vn, dinhthanh@ueh.edu.vn

How to cite this paper: Canh, N.P., Binh, N.Q. and Thanh, S.D. (2019) Cryptocurrencies and Investment Diversification: Empirical Evidence from Seven Largest Cryptocurrencies. *Theoretical Economics Letters*, **9**, 431-452. https://doi.org/10.4236/tel.2019.93031

Received: November 5, 2018 Accepted: March 3, 2019 Published: March 6, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

The study examines the diversification capability of seven cryptocurrencies with the largest market size against risks from economic factors as oil price, gold price, interest rate, USD strength, and S&P500. Using the weekly data of Bitcoin, Litecoin, Ripple, Stellar, Monero, Dash, and Bytecoin in the period Aug/2014-Jun/2018, the study finds that there are structural breaks and ARCH disturbance in each cryptocurrency, suggesting a systematic risk within the cryptocurrency market. However, the causality between cryptocurrencies and economic factors is undirected. Interestingly, our findings show that cryptocurrencies are insignificant correlations with economic factors. The result implies that cryptocurrencies can not be assumed as financial assets to hedge systematic risks from economic factors.

Keywords

Cryptocurrency, Economic Factors, Systematic Risk

1. Introduction

The cryptocurrencies with a decentralized and open-source technology have extensively received attention from finance literature in recent years [1]. The fact is true that some financial institutions, public organizations and governments have recognized Bitcoin and other cryptocurrencies as official financial assets [2]. From the original objective as an alternative payment system independent of any central banks, the popularity of cryptocurrencies has tremendously received much attention from the literature due to their increased capitalization values. However, because of lacking foundational theories, linkages between cryptocurrencies and economic factors are still open to debate.

Some studies have focused on the volatility of cryptocurrency prices, especially the Bitcoin [3]-[10]. Other studies have emphasized the relationships between Bitcoin price and economic factors. Su, Li, Tao, and Si [11] showed that there have been four explosive bubbles in China and the U.S. market during the periods of the huge surges of Bitcoin prices and the shocks from foreign or domestic markets. Concerning Bitcoin and other assets [12] [13] [14] [15] found that the fundamental price of Bitcoin is close to zero. About the relation between cryptocurrencies, for instance, Bitcoin and Ethereum [16] [17] unveiled clear bubble behaviours during the time after 2013. Gandal, Hamrick, Moore, and Oberman [18] added that the suspicious trading resulted in an unprecedented spike of the USD-BTC exchange rate in late 2013.

Interestingly, as a hedge instrument against market-specific risk and uncertainty, Bitcoin may be a priority choice in portfolio management for financial markets [11] [19] [20] [21]. Some arguments show that the average monthly volatility of Bitcoin returns is higher than for gold or a set of foreign currencies indexed by dollars [22]. The Bitcoin price is more sensitive to changes in economic and market factors in the short-run, but less sensitive to technological factors in the long-run [23]. As in Al-Yahyaee, Mensi, and Yoon [24], the Bitcoin market is easy to be broken in comparison to other currencies markets, while Gajardo *et al.* [2] show that Bitcoin has a greater multifractal spectrum than other assets on its cross-correlation with the WTI, the Gold and the DJIA. Concerning the role of other cryptocurrencies, Ciaian, Rajcaniova, and Kancs [25] revealed that Bitcoin seems to be less affected macro-financial indicators in comparison to the altcoins price formation. On the contrary, Ciaian *et al.* [25] show that relationships among cryptocurrencies are complex, especially in the context of ICOs leading to a huge of cryptocurrencies available [26].

This study contributes to the literature by shedding the light on the capability of seven cryptocurrencies with the largest market capitalization in hedging against the systematic risks in line with economic factors. Specifically, the Granger causality tests between each cryptocurrency with economic factors show that the oil price, and the USD index cause most of the selected cryptocurrencies. While only BTC and LTC are among the cryptocurrencies, which cause the oil price, the USD index, the S&P500 index and the gold price, respectively. In addition, there exist structural breaks and ARCH disturbance in the price of each cryptocurrency, suggesting a systematic risk within cryptocurrency markets. Moreover, the USD index has negative effects on all seven cryptocurrencies, while other economic factors have inconsistent effects on all cryptocurrencies. The results imply that the cryptocurrencies are likely impacted by economic factors other than a hedge for economic factors.

Next section presents the methodology and data. The results and discussions are in Section 3. Some conclusions are remarked in the final section.

2. Methodology and Data

The study surveys all cryptocurrency markets and collects the daily closing price of each cryptocurrency and come up to 20 largest cryptocurrencies. Matching each cryptocurrency together with economic factors to find the longest time span possible, the study narrows down to seven cryptocurrencies in terms of largest market capitalization including Bitcoin, Litecoin, Ripple, Stellar, Monero, Dash, and Bytecoin in the period from 8 Aug 2014-7 June 2018. Economic indicators are proxied by WTI Oil price, Gold price, S&P500 index, LIBOR, and USD index. The weekly data of WTI Oil price, S&P500 index, Gold price, LIBOR (one month), and the bid price of USD index are collected from Thomson Reuter and Fred. All variables are taken by logarithm to reduce heteroskedasticity, except for LIBOR. Definitions, sources, and statistical descriptions of variables are presented in **Table 1**. The data of cryptocurrencies is collected from Coinmarketcap in Aug/2018. The LIBOR is collected from Federal Reserve Economic Data St. Louis Fed (FRED). All remained economic factors are collected from Thomson Reuter.

In this study, we collect the weekly data of all variables to enlarge the time span of the sample. In which, the weekly close values of all variables are used. **Table 1** shows the primary data before taking logarithm. Bitcoin has highest average price then Dash, Monero, and Litecoin in the followings. To examine linkages between cryptocurrencies and world economic indicators, the study conducts Granger causality tests for each of pair variables. To detect the associations of cryptocurrencies with systematic risks, the study uses the GARCH (1, 1) based on the existence of ARCH disturbance. GARCH (1, 1) is formed as followings.

$$Y_t = \beta_0 + \beta_i X_t + \epsilon_t \tag{1}$$

Vars.	Definitions	Data	Obs.	Mean	Std. Dev.	Min	Max
OIL	WTI Oil Price	Daily closed price	204	53.713	13.440	29.42	97.65
SP500	SP500 Index	Daily closed index	204	2250.556	262.696	1864.78	2872.87
GOLD	Gold Price	Daily closed price	204	1236.067	71.912	1058.41	1366.4
LIBOR	LIBOR 1 Month	Daily closed interest	204	0.723	0.582	0.152	2.098
USD	USD Index Bid	Daily closed index	204	94.820	4.310	81.424	103.01
BTC	Bitcoin	Daily closed price	204	2480.591	3732.954	208.1	17,706.9
XRP	Ripple	Daily closed price	204	0.181	0.396	0.004	3.05
LTC	Litecoin	Daily closed price	204	34.947	61.386	1.4	299.78
XLM	Stellar	Daily closed price	204	0.056	0.129	0.0014	0.678
XMR	Monero	Daily closed price	204	51.295	93.456	0.256	394.78
DAS	Dash	Daily closed price	204	132.222	238.510	1.28	1179.01
BCN	Bytecoin	Daily closed price	204	0.001	0.002	0.000008	0.014

Table 1. Data description (primary data).

Note: Time period: 8 Aug 2014-7 June 2018 due to the availability of Cryptocurrency prices from Coinmarketcap [from Aug 2014]. Source: Coinmarketcap, Fred, Thomson Reuters.

$$\epsilon_t \left| \varphi_{t-1} \sim N\left(0, \partial_t^2\right) \right. \tag{2}$$

$$\partial_t^2 = \gamma + \alpha_1 \epsilon_{t-1}^2 + \delta_1 \partial_{t-1}^2 \tag{3}$$

where: Y is each cryptocurrency; X is a set of economic factors including oil price, SP500, gold price, USD index, and LIBOR. β is coefficient. ϵ is conditional error term. ∂^2 is GARCH term. ϵ^2 is ARCH term. To check robustness, the study employs dynamic conditional correlation Multivariate GARCH model (Multivariate Autoregressive Conditionally Heteroskedastic—MGARCH). Due to the existence of ARCH disturbance and structural breaks in variables, MGARCH is more flexible than the conditional correlation MGARCH model, and more parsimonious than the diagonal vech MGARCH model [27] [28] [29]. The estimated results of conditional correlations from DCC MGARCH [30] [31] between each cryptocurrency and economic factors are helpful in detecting the associations between cryptocurrencies and economic factors.

The DCC GARCH model is given:

$$Y_t = \alpha X_t + \epsilon_t \tag{4}$$

$$\epsilon_t = H_t^{1/2} \gamma_t \tag{5}$$

where: *Y* is cryptocurrency; *X* is a set of economic factors; *H* is the Cholesky factor of the time-varying conditional covariance matrix; γ_t is the vector of normal, independent, and identically distributed innovations.

3. Results and Discussions

3.1. Basic Results

Figure 1 shows that Bitcoin has the highest price with the peak at the end of 2017. All six other cryptocurrencies are the same patterns in this period. The US stock market (S&P500) has a stable trend, while gold price and USD index show a small fluctuation during this time. Oil price steadily decreases from 2014 until 2015 before increasing until 2018. LIBOR shows a steadily increasing trend, especially from 2015 (**Figures 1-4**).

7 largest cryptocurrencies

Figure 2. Economic factors in the period Aug/2014-Jun/2018 (SP500 and Gold are left axis; Old, LIBOR (1M) × 100 and USD index are right axis).

DOI: 10.4236/tel.2019.93031

Figure 3. Cusum test for all variables (in log forms).

DOI: 10.4236/tel.2019.93031

DOI: 10.4236/tel.2019.93031

Theoretical Economics Letters

Figure 4. Cusum test for all variables (in 1st difference of log forms).

Tables 2-4 reports the characteristics of variables examined by the Dicky-Fuller unit root test, Johansen Cointegration test, and Granger causality test, respectively.

Results in **Table 2** show that all variables (excluding USD index) have stationary at the 1st difference. For testing cointegration, results in **Table 3** show that the LIBOR and the USD index have cointegration with all cryptocurrencies. The S&P500 index has cointegration with BTC, XRP, DAS and BCN, while the oil price has cointegration with XMR and DAS. Interestingly, the gold price has no cointegration with all cryptocurrencies. These results suggest that there are strong relationships between the USD index and LIBOR with cryptocurrencies.

The results of Granger causality test for each pair of cryptocurrency and economic indicators are presented in **Table 4**. The causal relations between these variables are asymmetric. There exists bidirectional causality between the oil price and most of the cryptocurrencies, except for BTC. The USD index causes all cryptocurrencies. However, only BTC, LTC, DAS and BCN, respectively, causes the USD index. The S&P500 index causes BTC, LTC, and DAS, respectively; and only XRP, XLM, and BCN, respectively causes S&P500 index. The goldprice causes BTC, XRP, XMR, and DAS, respectively; and only LTC causes the gold price. In summary, the oil price, and the USD index cause most of the selected cryptocurrencies. Conversely, only BTC and LTC are among the cryptocurrencies, which cause the oil price, the USD index, the S&P500 index and the gold price, respectively.

As in **Table 2**, all variables are stationary at the 1st difference (excluding USD index. Taking the 1st difference of all variables, we examine the structural breaks and ARCH disturbance for each variable. Results of **Table 5** show evidence that there are structural breaks in economic factors (e.g., oil price, LIBOR, USD index). In addition, there is an ARCH disturbance in case of XRP, XLM, XMR and BCN, respectively. We then run GARCH (1, 1) for each cryptocurrency with economic factors and results are reported in **Table 6**.

The results in **Table 6** show that there exist structural breaks and ARCH disturbance in the price of each cryptocurrency, suggesting a systematic risk within

Table 2.	Correlation	matrix
----------	-------------	--------

	OIL	SP500	GOLD	LIBOR	USD	BTC	XRP	LTC	XLM	XMR	DASH	BCN
OIL	1											
SP500	0.290*** (0.000)	1										
GOLD	0.310*** (0.000)	0.556*** (0.000)	1									
LIBOR	0.221*** (0.0015)	0.946*** (0.000)	0.563*** (0.000)	1								
USD	-0.703*** (0.000)	-0.050 (0.4786)	-0.375*** (0.000)	0.067 (0.000)	1							
BTC	0.280*** (0.0001)	0.944*** (0.000)	0.603*** (0.000)	0.955*** (0.000)	-0.182*** (0.0091)	1						
XRP	0.264*** (0.0001)	0.902*** (0.000)	0.536*** (0.000)	0.899*** (0.000)	-0.243*** (0.0005)	0.915*** (0.000)	1					
LTC	0.311*** (0.000)	0.906*** (0.000)	0.552*** (0.000)	0.929*** (0.000)	-0.291*** (0.000)	0.970*** (0.000)	0.952*** (0.000)	1				
XLM	0.365*** (0.000)	0.883*** (0.000)	0.511*** (0.000)	0.889*** (0.000)	-0.301*** (0.000)	0.894*** (0.000)	0.967*** (0.000)	0.934*** (0.000)	1			
XMR	0.282*** (0.000)	0.943*** (0.000)	0.630*** (0.000)	0.944*** (0.000)	-0.103 (0.1412)	0.970*** (0.000)	0.868*** (0.000)	0.921*** (0.000)	0.836*** (0.000)	1		
DASH	0.197*** (0.005)	0.951*** (0.000)	0.614*** (0.000)	0.949*** (0.000)	-0.089 (0.206)	0.975*** (0.000)	0.911*** (0.000)	0.944*** (0.000)	0.859*** (0.000)	0.974*** (0.000)	1	
BCN	0.176** (0.012)	0.917*** (0.000)	0.529*** (0.000)	0.939*** (0.000)	-0.114 (0.1041)	0.944*** (0.000)	0.939*** (0.000)	0.960*** (0.000)	0.91*** (0.000)	0.923*** (0.000)	0.952*** (0.000)	1

Note: *, **, *** denote significant levels at 10%, 5%, 1% respectively. P-values are in parenthesis. All variables are examined in log forms (exclude LIBOR).

Coin		Dickey Fuller tes	st statistic
Com	Level Data	1 st Difference Data	Conclusions
OIL	-2.358	-12.733***	Stationary at 1 st Difference
SP500	-0.681	-16.203***	Stationary at 1 st Difference
GOLD	-2.378	-12.505***	Stationary at 1 st Difference
LIBOR	5.016	-6.549***	Stationary at 1 st Difference
USD	-3.330**	-	Stationary at Level
BTC	0.374	-12.819***	Stationary at 1 st Difference
LTC	0.020	-12.735***	Stationary at 1 st Difference
XRP	-0.207	-9.872***	Stationary at 1 st Difference
XLM	0.083	-11.017***	Stationary at 1 st Difference
XMR	0.213	-11.652***	Stationary at 1 st Difference
DAS	0.055	-12.073***	Stationary at 1 st Difference
BCN	-0.308	-12.549***	Stationary at 1 st Difference

 Table 3. Dickey Fuller test for stationary for level and first different data.

Note: *, **, *** denote significant levels at 10%, 5%, 1% respectively.

Coin	Asset	Test for rank 0	Statistic value	5% critical value	1% critical value	Conclusion
втс	OII	Trace test	14.425	15.41	20.04	No cointegration
DIC	OIL	Max eigenvalue	14.213	14.07	18.63	Cointegration
YDD	OII	Trace test	10.578	15.41	20.04	No cointegration
AR	OIL	Max eigenvalue	10.576	14.07	18.63	No cointegration
ITC	OII	Trace test	11.642	15.41	20.04	No cointegration
LIC	OIL	Max eigenvalue	11.490	14.07	18.63	No cointegration
ХІМ	OII	Trace test	11.408	15.41	20.04	No cointegration
ALM	OIL	Max eigenvalue	11.397	14.07	18.63	No cointegration
YMP	OII	Trace test	24.129	15.41	20.04	Cointegration
AMK	OIL	Max eigenvalue	22.818	14.07	18.63	Cointegration
DAS	OT	Trace test	19.474	15.41	20.04	Cointegration
DAS	OIL	Max eigenvalue	17.786	14.07	18.63	Cointegration
PCN	OII	Trace test	11.084	15.41	20.04	No cointegration
DCIN	OIL	Max eigenvalue	10.783	14.07	18.63	No cointegration
втс	SD500	Trace test	17.362	15.41	20.04	Cointegration
ыс	32300	Max eigenvalue	17.062	14.07	18.63	Cointegration
VDD	SD500	Trace test	9.391	15.41	20.04	No cointegration
AKP	35300	Max eigenvalue	9.390	14.07	18.63	No cointegration
ITC	SDEAD	Trace test	13.980	15.41	20.04	No cointegration
LIC	31300	Max eigenvalue	13.903	14.07	18.63	No cointegration
VIM	SDEAD	Trace test	11.009	15.41	20.04	No cointegration
ALM	31300	Max eigenvalue	11.007	14.07	18.63	No cointegration
YMD	SDEOO	Trace test	17.480	15.41	20.04	No cointegration
AWK	31300	Max eigenvalue	17.333	14.07	18.63	No cointegration
DAS	SD500	Trace test	16.322	15.41	20.04	Cointegration
DAS	31300	Max eigenvalue	16.287	14.07	18.63	Cointegration
PCN	SD500	Trace test	10.352	15.41	20.04	No cointegration
BCIN	31300	Max eigenvalue	10.346	14.07	18.63	No cointegration
BTC	COLD	Trace test	11.508	15.41	20.04	No cointegration
BIC	GOLD	Max eigenvalue	11.428	14.07	18.63	No cointegration
VDD	COLD	Trace test	9.396	15.41	20.04	No cointegration
AKF	GOLD	Max eigenvalue	9.341	14.07	18.63	No cointegration
ITC		Trace test	8.802	15.41	20.04	No cointegration
LIC	GOLD	Max eigenvalue	8.802	14.07	18.63	No cointegration
VIM		Trace test	8.133	15.41	20.04	No cointegration
ALM	GOLD	Max eigenvalue	8.125	14.07	18.63	No cointegration
VID	0015	Trace test	9.876	15.41	20.04	No cointegration
лмК	GOLD	Max eigenvalue	9.830	14.07	18.63	No cointegration
DAS	GOLD	Trace test	11.571	15.41	20.04	No cointegration

 Table 4. Johansen Cointegration test.

Continue	d						
		Max eigenvalue	11.570	14.07	18.63	No cointegration	
PCN	COLD	Trace test	8.712	15.41	20.04	No cointegration	
DCIN	GOLD	Max eigenvalue	8.622	14.07	18.63	No cointegration	
BTC	LISD	Trace test	20.668	15.41	20.04	Cointegration	
ыс	03D	Max eigenvalue	20.525	14.07	18.63	Cointegration	
VDD	מאו	Trace test	16.059	15.41	20.04	Cointegration	
лкг	03D	Max eigenvalue	15.818	14.07	18.63	Cointegration	
ITC	LISD	Trace test	21.984	15.41	20.04	Cointegration	
LIC	03D	Max eigenvalue	21.561	14.07	18.63	Cointegration	
XI M	USD	Trace test	15.052	15.41	20.04	Cointegration	
ALM	03D	Max eigenvalue	15.050	14.07	18.63	Cointegration	
YMD	USD	Trace test	21.245	15.41	20.04	Cointegration	
AWIK	03D	Max eigenvalue	20.789	14.07	18.63	Cointegration	
DAS	מאז	Trace test	28.137	15.41	20.04	Cointegration	
DAS	03D	Max eigenvalue	26.304	14.07	18.63	Cointegration	
BCN	USD	Trace test	19.157	15.41	20.04	Cointegration	
BCIN	03D	Max eigenvalue	18.106	14.07	18.63	Cointegration	
втс	LIBOR	Trace test	32.398	15.41	20.04	Cointegration	
DIC	LIDOK	Max eigenvalue	31.709	14.07	18.63	Cointegration	
XPP	LIBOR	Trace test	27.910	15.41	20.04	Cointegration	
AN	LIDOK	Max eigenvalue	25.270	14.07	18.63	Cointegration	
ITC	LIBOR	Trace test	27.685	15.41	20.04	Cointegration	
LIC	LIDOK	Max eigenvalue	24.040	14.07	18.63	Cointegration	
VI M		Trace test	29.167	15.41	20.04	Cointegration	
ALM	LIBOK	Max eigenvalue	25.314	14.07	18.63	Cointegration	
		Trace test	26.296	15.41	20.04	Cointegration	
XMR	LIBOR	Max eigenvalue	25.771	14.07	18.63	Cointegration	
		Trace test	25.597	15.41	20.04	Cointegration	
DAS	LIBOR	Max eigenvalue	25.592	14.07	18.63	Cointegration	
		Trace test	28 396	15 41	20.04	Cointegration	
BCN	LIBOR	Man air and	20.370	14.07	10.04	Cointegration	
		wax eigenvalue	24.308	14.07	18.63	Cointegration	

Note: *, **, *** denote significant levels at 10%, 5%, 1% respectively. All of pair asset are tested to obtain suitable lag-order selection statistics.

Equation	Excluded	Chi2	df	P-value	Equation	Excluded	Chi2	df	P-Value	Equation	Excluded	Chi2	df	P-Value
BTC	OIL	2.903*	1	0.088	BTC	SP500	2.170	1	0.141	BTC	GOLD	1.288	2	0.525
OIL	BTC	5.968**	1	0.015	SP500	BTC	14.353***	1	0.000	GOLD	BTC	6.48**	2	0.039
XRP	OIL	0.383	2	0.826	XRP	SP500	7.826**	2	0.020	XRP	GOLD	0.101	2	0.951
OIL	XRP	4.935*	2	0.085	SP500	XRP	3.172	2	0.205	GOLD	XRP	6.957**	2	0.031

N. P. Canh et al.	

Continued	1													
LTC	OIL	1.012	1	0.315	LTC	SP500	7.115**	2	0.029	LTC	GOLD	5.166*	2	0.076
OIL	LTC	4.948**	1	0.026	SP500	LTC	5.781*	2	0.056	GOLD	LTC	4.065	2	0.131
XLM	OIL	0.371	2	0.831	XLM	SP500	9.238**	2	0.010	XLM	GOLD	0.739	2	0.691
OIL	XLM	7.517**	2	0.023	SP500	XLM	2.377	2	0.305	GOLD	XLM	3.582	2	0.167
XMR	OIL	3.820	2	0.148	XMR	SP500	2.103	2	0.349	XMR	GOLD	1.647	2	0.439
OIL	XMR	8.003**	2	0.018	SP500	XMR	15.51***	2	0.000	GOLD	XMR	6.013**	2	0.049
DAS	OIL	2.764	2	0.251	DAS	SP500	1.949	2	0.377	DAS	GOLD	2.443	2	0.295
OIL	DAS	7.047**	2	0.03	SP500	DAS	11.968***	2	0.003	GOLD	DAS	8.412**	2	0.015
BCN	OIL	0.269	1	0.604	BCN	SP500	9.228**	2	0.010	BCN	GOLD	0.859	2	0.651
OIL	BCN	5.301**	1	0.021	SP500	BCN	4.434	2	0.109	GOLD	BCN	3.860	2	0.145
BTC	USD	6.263**	1	0.012	BTC	LIBOR	1.413	2	0.493					
USD	BTC	3.636*	1	0.057	LIBOR	BTC	10.007***	2	0.007					
XRP	USD	0.431	2	0.806	XRP	LIBOR	8.350**	2	0.015					
USD	XRP	5.462*	2	0.065	LIBOR	XRP	1.482	2	0.477					
LTC	USD	6.677**	1	0.010	LTC	LIBOR	4.019	2	0.134					
USD	LTC	5.389**	1	0.020	LIBOR	LTC	1.286	2	0.526					
XLM	USD	0.335	1	0.563	XLM	LIBOR	9.360*	4	0.053					
USD	XLM	3.905**	1	0.048	LIBOR	XLM	6.397	4	0.171					
XMR	USD	3.947	2	0.139	XMR	LIBOR	1.364	2	0.506					
USD	XMR	4.797*	2	0.091	LIBOR	XMR	2.797	2	0.247					
DAS	USD	17.358***	1	0.000	DAS	LIBOR	0.330	2	0.848					
USD	DAS	4.282**	1	0.039	LIBOR	DAS	1.779	2	0.411					
BCN	USD	3.149*	1	0.076	BCN	LIBOR	25.452***	4	0.000					
USD	BCN	5.196**	1	0.023	LIBOR	BCN	9.481*	4	0.050					

Note: *, **, *** denote significant levels at 10%, 5%, 1% respectively. All of pair asset are tested to obtain suitable lag-order selection statistics.

 Table 6. Cumulative sum test and Structural Break test for 1st Difference Data.

Coin	Ci	umulative su	ım test for p	oarameter st	abilit y	Si	tructural brea	ak test	LM test for autoregressive conditional heteroskedasticity [ARCH]			
	Test statistic	1% critical value	5% critical value	10% critical value	Conclusions	Swald test	Estimated break week	Conclusions	Chi2	p-value	Conclusion	
D.OIL	0.818	1.1430	0.9479	0.850	No Break	11.660**	2016w3	Break	0.847	0.3573	No ARCH effects	
D.LIBOR	1.529***	1.1430	0.9479	0.850	Break	34.769***	2016w46	Break	28.874***	0.0000	ARCH[p] disturbance	
D.SP500	0.509	1.1430	0.9479	0.850	No Break	2.061	2016w7	No Break	4.426**	0.0354	ARCH[p] disturbance	
D.GOLD	0.667	1.1430	0.9479	0.850	No Break	2.494	2015w49	No Break	0.067	0.7965	No ARCH effects	

Continued	1										
D.USD	0.919*	1.1430	0.9479	0.850	Break	12.467***	2015w12	Break	1.508	0.2195	No ARCH effects
D.BTC	1.323***	1.1430	0.9479	0.850	Break	6.608	2015w17	No Break	1.877	0.1707	No ARCH effects
D.LTC	1.170***	1.1430	0.9479	0.850	Break	6.181	2015w17	No Break	0.831	0.3621	No ARCH effects
D.XRP	0.561	1.1430	0.9479	0.850	No Break	4.466	2017w12	No Break	15.396***	0.0001	ARCH[p] disturbance
D.XLM	0.677	1.1430	0.9479	0.850	No Break	5.196	2017w11	No Break	13.810***	0.0002	ARCH[p] disturbance
D.XMR	1.146***	1.1430	0.9479	0.850	Break	6.728	2015w50	No Break	5.156**	0.023	ARCH[p] disturbance
D.DAS	1.387***	1.1430	0.9479	0.850	Break	5.142	2017w49	No Break	0.000	1.0000	No ARCH effects
D.BCN	0.522	1.1430	0.9479	0.850	No Break	2.794	2017w13	No Break	3.026*	0.0819	ARCH[p] disturbance

Note: *, **, *** denote significant levels at 10%, 5%, 1% respectively.

cryptocurrency markets. Concerning economic factors, observations show that the USD index has negative effects on all seven cryptocurrencies, while other economic factors have inconsistent effects on all cryptocurrencies. The implication drawn from these results is that cryptocurrencies are considered as a financial asset to hedge systematic risk from economic factors.

3.2. Check Robustness

The inconsistent results of economic factors in line with the existence of structural breaks and ARCH disturbance among variables leading to an ideal condition for DCC MGARCH model in which the conditional correlation matrix from estimation is robust to analyse the relationship among variables [30] [31]. All results from DCC MGARCH are reported in **Tables 7-13** for each cryptocurrency.

For BTC, as in **Table 7** the oil price, the S&P500 index, and LIBOR have significantly negative correlations with BTC. The results suggest that BTC seems to not be a tool for hedging the risk of USD index and gold price. Our finding is different from the studies [20] [21] that Bitcoin can hedge against USD or any currency.

For XRP, the results of **Table 8** show that XRP has a significant negative correlation with the oil price. Moreover, as in **Table 4**, the oil price causes XRP. These results suggest that the increased oil price reduces the price of XRP.

For other cryptocurrencies, as in **Tables 9-14** DAS has a positive correlation with LIBOR, but negative correlation with USD index. XLM has a positive correlation with SP500 index. Our findings show that the correlations between cryptocurrencies and economic factors are inconsistent, suggesting that cryptocurrencies may be not tools or financial assets to hedge systematic risks, which are caused by economic factors.

Variables	BTC	XRP	LTC	XLM	XMR	DAS	BCN
011	0.013	-0.467***	0.307	-0.0004	-0.313	0.043	0.130
OIL	[0.146]	[0.149]	[0.229]	[0.209]	[0.325]	[0.197]	[0.339]
SDEOO	0.092	1.560***	-0.773	0.934	-0.110	0.330	-0.647
32300	[0.426]	[0.483]	[0.505]	[0.945]	[0.844]	[0.551]	[0.822]
COLD	-0.347	0.670	-0.093	0.353	-0.280	-0.225	0.603
GOLD	0.405	[0.481]	[0.629]	[0.765]	[0.806]	[0.689]	[0.872]
LICD	-0.555	-1.285**	-1.497	-0.338	-1.619	-2.596**	1.119
USD	[0.893]	[0.653]	[1.041]	[1.775]	[1.488]	[1.062]	[1.314]
LIBOR	-0.048	4.342***	0.105	0.323	1.177*	1.454**	-3.292***
	[0.447]	[0.380]	[0.462]	[0.635]	[0.601]	[0.645]	[0.704]
cons	0.009	-0.025**	0.001	0.0002	0.008	0.002	0.036*
	[0.013]	[0.01]	[0.012]	[0.014]	[0.020]	[0.016]	[0.021]
ARMA							
AR(1)	0.969***	-0.308	-0.844***	-0.911***	0.511	0.483	0.457
	[0.161]	[0.286]	[0.131]	[0.094]	[0.618]	[0.380]	[0.314]
MA(1)	-0.860***	0.554**	0.861***	1.064***	-0.355	-0.283	-0.229
	[0.188]	[0.241]	[0.131]	[0.106]	[0.674]	[0.416]	[0.299]
MA(3)	-0.090	-0.115**	-0.096**	-0.192***	-0.034	0.009	0.069
	[0.080]	[0.048]	[0.046]	[0.048]	[0.109]	[0.095]	[0.097]
ARCH							
L1.ARCH	0.157**	1.139***	0.699***	0.347***	0.213**	0.236**	0.650***
	[0.07]	[0.186]	[0.145]	[0.083]	[0.100]	[0.115]	[0.204]
L1.GARCH	0.788***	0.212***	0.055	0.614***	0.202	0.533***	0.303**
	[0.084]	[0.072]	[0.065]	[0.074]	[0.304]	[0.200]	[0.124]
cons GARCH	0.001*	0.004**	0.011***	0.004***	0.019**	0.005*	0.014***
	[0.0003]	[0.002]	[0.001]	[0.002]	[0.009]	[0.003]	[0.005]
N	203	203	203	203	203	203	203
Log likelihood	192.008	81.109	107.206	54.210	66.557	112.707	18.956
Chi2	266.4***	284.88***	122.06***	128.88***	16.38**	34.89***	39.91***
		Test L1.	ARCH = 0; I	L1.GARCH =	: 0		
Chi2[2]	531.07***	70.35***	31.17***	189.11***	6.39**	41.47***	43.89***

Table 7. GARCH (1, 1) for each cryptocurrency.

Note: *, **, *** denote significant levels at 10%, 5%, 1% respectively. Standard errors are in bracket.

 Table 8. Dynamic conditional correlation MGARCH model of Bitcoin.

Variables	BTC	OIL	SP500	GOLD	USD	LIBOR
Cons	0.009	0.0002	0.002**	0.0001	0.0006	0.003***
	[0.006]	[0.003]	[0.001]	[0.001]	[0.0007]	[0.0007]

Continued						
L1.ARCH	0.168** [0.071]	0.084* [0.051]	0.227*** [0.072]	0.060 [0.048]	0.07* [0.0403]	0.957*** [0.180]
L1.GARCH	0.776*** [0.071]	0.786*** [0.123]	0.712*** [0.072]	-0.798*** [0.227]	0.881*** [0.087]	-0.005 [0009]
Cons ARCH	0.001** [0.0003]	0.0003 [0.0002]	0.00002* [0.00001]	0.006*** [0.0001]	0.000005 [0.000007]	0.00006*** [0.000008]
N	203					
Log likelihood	2905.324					
	Test b[Adju	ıstment:lam	bda1] = b[A]	djustment:lam	bda2] = 0	
Chi2	5.52*					
Lambda1	0.0402 [0.025]					
Lambda2	0.330 [0.278]					
Correlations	BTC	(OIL	SP500	GOLD	USD
OIL	0.002 [0.074]				
SP500	0.050 [0.074	0.2] [0	212*** .073]			
GOLD	-0.01 [0.075	5 0] [0	.039 -	-0.189*** [0.072]		
USD	-0.048 [0.075	8 —(] [0	0.115 .074]	0.139* [0.075]	0.556*** [0.052]	
LIBOR	0.076] [0	0.01 0.076]	-0.019 [0.075]	-0.117 [0.074]	-0.014 [0.075]

Table 9. Dynamic conditional correlation MGARCH model of Ripple.

Variables	XRP	OIL	SP500	GOLD	USD	LIBOR
0	-0.006	0.001	0.002**	-0.00005	0.001	0.003***
Cons	[0.012]	[0.003]	[0.001]	[0.001]	[0.001]	[0.001]
L1.ARCH	0.484***	0.086*	0.216***	0.064	0.069*	0.956***
	[0.146]	[0.052]	[0.070]	[0.056]	[0.039]	[0.180]
L1.GARCH	-0.010	0.792***	0.721***	-0.770**	0.879***	-0.005
	[0.068]	[0.124]	[0.072]	[0.299]	[0.087]	[0.009]
Come ADCII	0.024***	0.0002	0.00002*	0.001***	0.00006	0.00006***
Cons ARCH	[0.003]	[0.0002]	[0.00001]	[0.0001]	[0.00007]	[0.000008]
Ν	203					
Log likelihood	2776.066					
	Test b[Adjı	ıstment:laml	bda1] = b[Adj	ustment:lambo	da2] = 0	
Chi2	3.07					
Tamb da 1	0.033					
Lambdal	[0.023]					

Continued					
Lamb da 2	0.264				
Lambdaz	[0.361]				
Correlations	XRP	OIL	SP500	GOLD	USD
OII	-0.133*				
OIL	[0.072]				
SD500	0.042	0.221***			
31 300	[0.073]	[0.071]			
COLD	0.038	0.041	-0.195***		
GOLD	[0.074]	[0.075]	[0.071]		
LICD	-0.076	-0.108	0.143*	-0.560***	
03D	[0.074]	[0.074]	[0.074]	[0.052]	
LIBOD	0.054	0.006	-0.014	-0.115	-0.015
LIDOK	[0.075]	[0.075]	[0.075]	[0.073]	[0.074]

 Table 10. Dynamic conditional correlation MGARCH model of Litecoin.

Variables	LTC	OIL	SP500	GOLD	USD	LIBOR
Come	-0.003	0.0002	0.002**	0.0001	0.001	0.003***
Cons	[0.010]	[0.003]	[0.001]	[0.001]	[0.001]	[0.001]
	0.457***	0.085*	0.237***	0.063	0.074*	0.950***
LI.AKCH	[0.170]	[0.051]	[0.074]	[0.049]	[0.040]	[0.179]
	0.181	0.788***	0.707***	-0.792***	0.876***	-0.005
LI.GAKCH	[0.168]	[0.122]	[0.072]	[0.238]	[0.084]	[0.009]
	0.011***	0.0003	0.00002*	0.001***	0.00001	0.00006***
Cons ARCH	[0.003]	[0.0002]	[0.00001]	[0.0001]	[0.00001]	[0.00001]
Ν	203					
Log likelihood	2820.564					
	Test b[Adjı	ıstment:lamt	oda1] = b[Adj	ustment:lamb	da2] = 0	
Chi2	6.41**					
Th. J. 1	0.05*					
Lambda1	[0.026]					
Lambda?	0.295					
Lanibuaz	[0.274]					
Correlations	LTC	OIL	SP5	00	GOLD	USD
OII	-0.002					
OIL	[0.076]					
\$2500	0.014	0.215***				
SP500	[0.076]	[0.073]				

Continued					
	0.024	0.040	-0.195***		
GOLD	[0.075]	[0.076]	[0.072]		
LIED	-0.091	-0.113	0.148**	-0.566***	
03D	[0.075]	[0.075]	[0.075]	[0.052]	
LIBOD	0.045	0.011	-0.021	-0.111	-0.018
LIBOK	[0.076]	[0.076]	[0.076]	[0.074]	[0.075]

 Table 11. Dynamic conditional correlation MGARCH model of Stellar.

Variables	XLM	OIL	SP500	GOLD	USD	LIBOR			
-	0.002	0.0003	0.002**	0.0001	0.001	0.003***			
Cons	[0.011]	[0.003]	[0.001]	[0.001]	[0.001]	[0.001]			
	0.412***	0.086*	0.219***	0.062	0.073*	0.953***			
L1.ARCH	[0.139]	[0.052]	[0.069]	[0.049]	[0.040]	[0.180]			
	0.566***	0.788***	0.726***	-0.794***	0.872***	-0.006			
LI.GARCH	[0.115]	[0.123]	[0.071]	[0.237]	[0.087]	[0.008]			
	0.005**	0.000	0.00002*	0.001***	0.000006	0.00006***			
Cons ARCH	[0.002]	[0.000]	[0.00001]	[0.0001]	[0.000007]	[0.000008]			
Ν	203								
Log likelihood	2769.843								
	Test b[Adjustment:lambda1] = b[Adjustment:lambda2] = 0								
Chi2	4.53								
Lamb da 1	0.046*								
Lambda1	[0.025]								
Lamb da 2	0.228								
Lambdaz	[0.309]								
Correlations	XLM	0	IL	SP500	GOLD	USD			
OII	-0.049								
OIL	[0.075]								
\$2500	0.136*	0.21	2***						
51 500	[0.073]	[0.0	073]						
GOLD	0.000	0.0)39 -	-0.194***					
GOLD	[0.075]	[0.0)75]	[0.071]					
נוצט	-0.039	-0.	114	0.145	-0.564***				
0.02	[0.075]	[0.0	074]	[0.074]	[0.052]				
LIBOR	-0.065	0.0	009	-0.018	-0.115	-0.018			
LIBOR	[0.076]	[0.0)75]	[0.075]	[0.074]	[0.074]			

Variables	XMR	OIL	SP500	GOLD	USD	LIBOR
0	0.012	0.00004	0.002**	0.0001	0.001	0.003***
Cons	[0.013]	[0.003]	[0.001]	[0.001]	[0.001]	[0.001]
	0.164*	0.086*	0.228***	0.061	0.071*	0.95***
LI.AKCH	[0.09]	[0.051]	[0.072]	[0.049]	[0.04]	[0.178]
	0.109	0.784***	0.711***	-0.792***	0.881***	-0.005
L1.GARCH	[0.205]	[0.123]	[0.072]	[0.243]	[0.086]	[0.009]
	0.024***	0.0003	0.00002*	0.001***	0.00001	0.00006***
Cons ARCH	[0.007]	[0.0002]	[0.00001]	[0.0001]	[0.00001]	[0.00001]
N	203					
Log likelihood	2777.998					
	Test b[Adju	stment:lambda	a1] = b[Adju	stment:lambo	da2] = 0	
Chi2	6.11**					
	0.054**					
Lambda1	[0.027]					
	0.257					
Lambda2	[0.273]					
Correlations	XMR	OIL	SI	P500	GOLD	USD
	-0.084					
OIL	[0.076]					
	-0.020	0.203**	*			
SP500	[0.076]	[0.074]				
COLD	0.048	0.042	-0.	192***		
GOLD	[0.075]	[0.076]	[0	.072]		
USD	-0.080	-0.109	0.1	150**	-0.56***	
0.00	[0.075]	[0.075]	[0	.075]	[0.053]	
LIBOR	0.064	0.008	-(0.024	-0.114	-0.014
DIDOK	[0.076]	[0.076]	[0	.076]	[0.074]	[0.075]

 Table 12. Dynamic conditional correlation MGARCH model of Monero.

 Table 13. Dynamic conditional correlation MGARCH model of DASH.

Variables	DAS	OIL	SP500	GOLD	USD	LIBOR
Cons	0.008	0.0002	0.002**	0.0001	0.0007	0.002***
	[0.011]	[0.003]	[0.001]	[0.001]	[0.001]	[0.001]
L1.ARCH	0.200**	0.088*	0.239***	0.061	0.065*	0.929***
	[0.091]	[0.052]	[0.074]	[0.05]	[0.038]	[0.174]
L1.GARCH	0.551***	0.782***	0.71***	-0.793***	0.897***	-0.005
	[0.154]	[0.123]	[0.071]	[0.24]	[0.076]	[0.009]

Continued						
	0.006**	0.0003	0.00002*	0.001***	0.000004	0.0001***
Cons AKCH	[0.003]	[0.0002]	[0.00001]	[0.0001]	[0.00001]	[0.00001]
N	203					
Log likelihood	2824.785					
	Test b[Adjus	tment:lambo	la1] = b[Adju	stment:lamb	oda2] = 0	
Chi2	8.44**					
Th J . 1	0.041					
Lambdal	[0.025]					
Lamb da 2	0.44					
Lambda2	[0.327]					
Correlations	DAS	OI	L S.	P500	GOLD	USD
OII	0.007					
OIL	[0.077]					
\$2500	0.070	0.211	***			
51 500	[0.076]	[0.07	[4]			
COLD	0.072	0.03	9 -0.	194***		
GOLD	[0.077]	[0.07	[6]	.073]		
LIED	-0.195***	-0.1	12 0.	.146*	-0.555***	
03D	[0.074]	[0.07	[0]	.076]	[0.054]	
LIBOD	0.175**	0.00	4 -	0.029	-0.125*	-0.008
	[0.076]	[0.07	[0	0.076]	[0.074]	[0.076]

 Table 14. Dynamic conditional correlation MGARCH model of Bytecoin.

Variables	BCN	OIL	SP500	GOLD	USD	LIBOR
Come	0.029**	0.0001	0.002**	-0.0001	0.001	0.003***
Cons	[0.014]	[0.003]	[0.001]	[0.001]	[0.001]	[0.001]
L1.ARCH	0.308*	0.083*	0.221***	0.069	0.07*	0.928***
	[0.159]	[0.05]	[0.07]	[0.052]	[0.041]	[0.176]
L1.GARCH	0.566***	0.789***	0.72***	-0.769***	0.88***	-0.012***
	[0.146]	[0.122]	[0.071]	[0.264]	[0.088]	[0.004]
0.400	0.011**	0.0003	0.00002*	0.001***	0.00001	0.0001***
Cons AKCH	[0.005]	[0.0002]	[0.00001]	[0.0001]	[0.00001]	[0.00001]
N	203					
Log likelihood	2731.926					
	Test b[Adju	ıstment:lamb	da1] = b[Adju	stment:lambda	a2] = 0	
Chi2	5.83*					
Lambda1	0.035					

Continued					
	[0.025]				
Lambda2	0.395				
	[0.277]				
Correlations	BCN	OIL	SP500	GOLD	USD
OIL	0.065				
	[0.074]				
SP500	0.105	0.215***			
	[0.075]	[0.073]			
GOLD	0.099	0.033	-0.196***		
	[0.073]	[0.076]	[0.072]		
USD	-0.007	-0.108	0.141*	-0.559***	
	[0.074]	[0.074]	[0.075]	[0.053]	
LIBOR	-0.114	0.001	-0.026	-0.117	-0.017
	[0.09]	[0.075]	[0.075]	[0.074]	[0.074]

4. Conclusions

With the assumption as financial assets, the question on the capability of cryptocurrencies in hedging to systematic risk is quite worthy to investigate. Selecting seven cryptocurrencies with largest capitalization level, the study investigates correlations between the selected cryptocurrencies and economic factors that are proxied by oil price, gold price, interest rate, USD strength, and S&P500. Some main findings are noticeable.

First, there are strong correlations between cryptocurrencies. Moreover, there are also structural breaks and ARCH disturbance in each cryptocurrency. We suggest a systematic risk within the cryptocurrency market. *Second*, the Granger causality tests show that the relationship between cryptocurrencies and economic factors are undirected. *Third*, GARCH (1, 1) tests provide evidence that cryptocurrencies are insignificant correlations with economic factors with the implication that cryptocurrencies are not assumed as financial assets to hedge systematic risks. The results are robust by DCC MGARCH tests. The results are significant for financial investors on the perspective of the diversification. That is, the financial investor must be more careful in using cryptocurrencies as financial assets, especially in diversifying their portfolio since they have low capability in diversification within cryptocurrency market and also with economic risks.

Acknowledgements

This study is funded by the University of Economics Ho Chi Minh city.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Thies, S. and Molnár, P. (2018) Bayesian Change Point Analysis of Bitcoin Returns. *Finance Research Letters*, 27, 223-227. https://doi.org/10.1016/j.frl.2018.03.018
- [2] Gajardo, G., Kristjanpoller, W.D. and Minutolo, M. (2018) Does Bitcoin Exhibit the Same Asymmetric Multifractal Cross-Correlations with Crude Oil, Gold and DJIA as the Euro, Great British Pound and Yen? *Chaos, Solitons & Fractals*, **109**, 195-205. https://doi.org/10.1016/j.chaos.2018.02.029
- [3] Alvarez-Ramirez, J., Rodriguez, E. and Ibarra-Valdez, C. (2018) Long-Range Correlations and Asymmetry in the Bitcoin Market. *Physica A: Statistical Mechanics and Its Applications*, **492**, 948-955. <u>https://doi.org/10.1016/j.physa.2017.11.025</u>
- Balcilar, M., Bouri, E., Gupta, R. and Roubaud, D. (2017) Can Volume Predict Bitcoin Returns and Volatility? A Quantiles-Based Approach. *Economic Modelling*, 64, 74-81. https://doi.org/10.1016/j.physa.2017.11.025
- [5] Brandvold, M., Molnár, P., Vagstad, K. and Andreas Valstad, O.C. (2015) Price discovery on Bitcoin Exchanges. *Journal of International Financial Markets, Institutions and Money*, **36**, 18-35. <u>https://doi.org/10.1016/j.intfin.2015.02.010</u>
- Brauneis, A. and Mestel, R. (2018) Price Discovery of Cryptocurrencies: Bitcoin and Beyond. *Economics Letters*, 165, 58-61. https://doi.org/10.1016/j.econlet.2018.02.001
- Jiang, Y., Nie, H. and Ruan, W. (2018) Time-Varying Long-Term Memory in Bitcoin Market. *Finance Research Letters*, 25, 280-284. https://doi.org/10.1016/j.frl.2017.12.009
- [8] Koutmos, D. (2018) Bitcoin Returns and Transaction Activity. *Economics Letters*, 167, 81-85. <u>https://doi.org/10.1016/j.frl.2017.12.009</u>
- Takaishi, T. (2018) Statistical Properties and Multifractality of Bitcoin. *Physica A: Statistical Mechanics and Its Applications*, **506**, 507-519. https://doi.org/10.1016/j.physa.2018.04.046
- [10] Van Vliet, B. (2018) An Alternative Model of Metcalfe's Law for Valuing Bitcoin. *Economics Letters*, 165, 70-72. <u>https://doi.org/10.1016/j.econlet.2018.02.007</u>
- [11] Su, C.-W., Li, Z.-Z., Tao, R. and Si, D.-K. (2018) Testing for Multiple Bubbles in Bitcoin Markets: A Generalized Sup ADF Test. *Japan and the World Economy*, 46, 56-63. <u>https://doi.org/10.1016/j.japwor.2018.03.004</u>
- [12] Baur, D. G., Dimpfl, T. and Kuck, K. (2018) Bitcoin, Gold and the US Dollar—A Replication and Extension. *Finance Research Letters*, 25, 103-110. https://doi.org/10.1016/j.frl.2017.10.012
- [13] Cheah, E.-T. and Fry, J. (2015) Speculative Bubbles in Bitcoin Markets? An Empirical Investigation into the Fundamental Value of Bitcoin. *Economics Letters*, 130, 32-36. <u>https://doi.org/10.1016/j.econlet.2015.02.029</u>
- [14] Frunza, M.-C. (2016) Chapter 1E—Cryptocurrencies: A New Monetary Vehicle. In Frunza, M.-C., Ed., Solving Modern Crime in Financial Markets, Academic Press, New York, 39-75. https://doi.org/10.1016/j.econlet.2015.02.029
- [15] Fry, J. and Cheah, E.-T. (2016) Negative Bubbles and Shocks in Cryptocurrency Markets. *International Review of Financial Analysis*, **47**, 343-352. https://doi.org/10.1016/j.irfa.2016.02.008
- [16] Phillips, P.C. and Yu, J. (2011) Dating the Timeline of Financial Bubbles during the Subprime Crisis. *Quantitative Economics*, 2, 455-491. <u>https://doi.org/10.3982/QE82</u>
- [17] Corbet, S., Lucey, B. and Yarovaya, L. (2017) Datestamping the Bitcoin and Ethe-

reum Bubbles. *Finance Research Letters*, **26**, 81-88. https://doi.org/10.1016/j.frl.2017.12.006

- [18] Gandal, N., Hamrick, J.T., Moore, T. and Oberman, T. (2018) Price Manipulation in the Bitcoin Ecosystem. *Journal of Monetary Economics*, 95, 86-96. https://doi.org/10.1016/j.jmoneco.2017.12.004
- [19] Demir, E., Gozgor, G., Lau, C.K.M. and Vigne, S.A. (2018) Does Economic Policy Uncertainty Predict the Bitcoin Returns? An Empirical Investigation. *Finance Research Letters*, 26, 81-88. <u>https://doi.org/10.1016/j.frl.2018.01.005</u>
- [20] Dyhrberg, A.H. (2016a) Bitcoin, Gold and the Dollar—A GARCH Volatility Analysis. *Finance Research Letters*, 16, 85-92. https://doi.org/10.1016/j.frl.2015.10.008
- [21] Dyhrberg, A.H. (2016b) Hedging Capabilities of Bitcoin. Is It the Virtual Gold? *Finance Research Letters*, 16, 139-144. https://doi.org/10.1016/j.frl.2015.10.025
- [22] Dwyer, G.P. (2015) The Economics of Bitcoin and Similar Private Digital Currencies. *Journal of Financial Stability*, 17, 81-91. https://doi.org/10.1016/j.jfs.2014.11.006
- [23] Li, X. and Wang, C.A. (2017) The Technology and Economic Determinants of Cryptocurrency Exchange Rates: The Case of Bitcoin. *Decision Support Systems*, 95, 49-60. <u>https://doi.org/10.1016/j.dss.2016.12.001</u>
- [24] Al-Yahyaee, K.H., Mensi, W. and Yoon, S.-M. (2018) Efficiency, Multifractality, and the Long-Memory Property of the Bitcoin Market: A Comparative Analysis with Stock, Currency, and Gold Markets. *Finance Research Letters*, 27, 228-234. https://doi.org/10.1016/j.frl.2018.03.017
- [25] Ciaian, P., Rajcaniova, M. and Kancs, D.A. (2018) Virtual Relationships: Short- and Long-Run Evidence from BitCoin and Altcoin Markets. *Journal of International Financial Markets, Institutions and Money*, **52**, 173-195. https://doi.org/10.1016/j.intfin.2017.11.001
- [26] Chen, Y. (2018) Blockchain Tokens and the Potential Democratization of Entrepreneurship and Innovation. Business Horizons. <u>https://doi.org/10.1016/j.bushor.2018.03.006</u>
- [27] Acatrinei, M., Gorun, A. and Marcu, N. (2013) A Dcc-Garch Model to Estimate. *Romanian Journal of Economic Forecasting*, **1**, 136-148.
- [28] Engle, R. (2002) Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. *Journal of Business & Economic Statistics*, 20, 339-350. https://doi.org/10.1198/073500102288618487
- [29] Peters, T. (2008) Forecasting the Covariance Matrix with the DCC GARCH Model.
- [30] Billio, M., Caporin, M. and Gobbo, M. (2006) Flexible Dynamic Conditional Correlation Multivariate Garch Models for asset allocation. *Applied Financial Economics Letters*, 2, 123-130. <u>https://doi.org/10.1080/17446540500428843</u>
- [31] Lee, M.-C., Chiou, J.-S. and Lin, C.-M. (2006) A Study of Value-at-Risk on Portfolio in Stock Return Using DCC Multivariate GARCH. *Applied Financial Economics Letters*, 2, 183-188. <u>https://doi.org/10.1080/17446540500447645</u>