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ABSTRACT 

In our paper, we analyze the interplay of contestant heterogeneity and idiosyncratic risk in rank-order tournaments: 
While in symmetric tournaments an increase in idiosyncratic risk reduces incentives, in asymmetric tournaments this is 
not necessarily the case: Rather, we show that increasing the level of idiosyncratic risk in asymmetric tournaments will 
at first increase and—only after a critical risk level has been reached—reduce incentives. We find this critical risk level 
to be higher, the larger the degree of contestant heterogeneity. Concerning practical implications, it is more important to 
reduce idiosyncratic risk in the tournament when contestants are similar and less beneficial when contestants are het- 
erogeneous. In light of the fact that equilibrium effort levels in tournaments with a low level of contestant heterogeneity 
are by far higher than those in tournaments with high levels of contestant heterogeneity, the advice would be to simul-
taneously reduce contestant heterogeneity (e.g., by league-building or handicapping) and idiosyncratic risk. 
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1. Introduction 

Tournament incentives have developed into an important 
component of organizational reward systems: Employees 
compete against one another with the best performing 
employee(s) receiving a predefined tournament prize (e.g. 
a promotion, a bonus payment, a travel incentive or the 
like). Given the prevalence of tournament incentives, it is 
not surprising that beginning with the seminal paper by 
[1] the incentive properties of tournaments have repeatedly 
been analyzed (e.g. [2]). 

In our paper, we analyze the effect of idiosyncratic, i.e. 
contestant-specific, risk in a tournament where conte- 
stants are heterogeneous. While the literature has re- 
garded the effects of both idiosyncratic risk and con- 
testant heterogeneity in isolation, the interplay of the two 
has not received much attention yet. 

Starting first with contestant heterogeneity, this refers 
to a situation where contestants in a tournament are not 
equally talented in doing their job. In a two-person tour- 
nament, e.g., where one of the two contestants is of much 
higher ability, both contestants will not be inclined to put 
in much effort in the tournament—knowing that the more  

talented one will win anyway. Consequently, tournament 
incentives are distorted in a situation where contestants 
are heterogeneous (see, e.g. [1]). 

Concerning risks, it is important to distinguish bet- 
ween two different types of risk: common risks on the 
one hand and idiosyncratic risks on the other. While the 
former affect the output of all contestants alike (e.g. sea- 
sonal fluctuations or fluctuations over the business cycle), 
the latter are contestant-specific and are not leveled out 
by the tournament. From the literature it is clear that if 
contestants are homogenous (symmetric tournament), an 
increase in idiosyncratic risk will decrease tournament 
incentives as the expected marginal return of an in- 
creased effort level is reduced. However, if and how an 
increase in idiosyncratic risk will affect tournament in- 
centives in an asymmetric tournament, i.e., in a tourna- 
ment that is characterized by contestant heterogeneity, is 
far less clear and has not been explored so far. This is 
despite the fact that in reality we will typically observe 
both, contestant heterogeneity and idiosyncratic risks, at 
the same time. 

In the recent literature on asymmetric tournaments (e.g. 
[3]), only [4,5] are concerned with the role of idiosyn-  
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cratic risk. However, other than in this paper, [4] as well 
as [5] are interested in agents’ active risk-taking stra- 
tegies and model risk as a second choice variable of 
contestants1. To the contrary, in our paper we are con- 
cerned with exogenously determined idiosyncratic risks 
which are inherent in almost any production or mea- 
surement technology. Further, and on a more technical 
note, our paper differs from the one by [4] in that [4] 
vary the degree of heterogeneity for two distinct levels of 
risk, whereas we vary the level of idiosyncratic risk— 
given the level of heterogeneity. While [4] as well as [5] 
find that in a situation with a low degree of contestant 
heterogeneity, an (endogenous) increase in idiosyncratic 
risk will generally reduce tournament incentives, in our 
framework this is no longer the case: An exogenous 
increase in the amount of idiosyncratic risk in an 
asymmetric tournament starting from an initially very 
low level of risk will rather at first increase tournament 
incentives and only later on (after a critical level of idio- 
syncratic risk has been reached) reduce these. 

The intuition of this ambivalent effect is as follows: At 
very low levels of risk inherent in the production tech- 
nology, even a small degree of (publicly known) con- 
testant heterogeneity is apt to distort tournament incen- 
tives as the outcome of the tournament becomes more or 
less predictable: The more able contestant will know that 
even a low level of effort will make her win the tour- 
nament, and hence the best response of the less able 
contestant will be to choose a low level of effort as well. 
In such a situation, an increase in the amount of idio- 
syncratic risk will reduce the predictability of the 
outcome and will therefore make it more worthwhile for 
the two contestants to exert high effort levels. However, 
when a certain critical level of idiosyncratic risk has been 
reached, a further increase in risk will decrease incen- 
tives again—just as it is the case in symmetric tour- 
naments, i.e., as long as idiosyncratic risks do not fully 
compensate for contestant heterogeneity, adding more 
risk to the contest will increase incentives; as soon as 
idiosyncratic risks more than compensate for contestant 
heterogeneity, adding more risk will decrease incentives. 

The level of idiosyncratic risk where the positive 
relation between risk and tournament incentives turns 
into a negative one depends on the degree of contestant 
heterogeneity: The smaller the degree of contestant 
heterogeneity, the lower the critical risk level, i.e., the 
smaller the range of risk levels where the effect of an 
increase in risk on equilibrium effort is positive. Hence, 
provided that contestant heterogeneity is sufficiently low, 
an increase in idiosyncratic risk will decrease tournament  

incentives over wide ranges of the risk spectrum. For 
higher degrees of contestant heterogeneity, however, this 
is no longer true: Over a large range of the risk spectrum, 
an increase in idiosyncratic risk will rather increase 
tournament incentives. 

The remainder of this paper is organized as follows: 
Section 2 starts with a reference model with two homo- 
geneous contestants and then introduces heterogeneity on 
the part of contestants. Section 3 presents a short dis- 
cussion and practical implications, Section 4 concludes. 

2. The Model 

In a first reference case, let there be two homogeneous 
employees  1, 2i i   who compete in a rank-order tour- 
nament. Both employees independently choose an effort 
level i , which is not observable and only known to the 
respective employee. Individual output i  is assumed 
to be observable and is a function of effort level i  and 
an idiosyncratic error term i

e
q

e
x  with i i i . The 

idiosyncratic error terms i

q e x 
x  are assumed to be iden- 

tically and independently distributed with  20,ix   . 
The tournament foresees that employee  is awarded 
the tournament prize  if i i . When choosing his 
or her effort level, each of the risk-neutral employees  
individually maximizes his or her expected utility:  

i
t q  q

i

    ,i i i i iE U p e e t c e            (1) 

where i  denotes the probability of winning the tour- 
nament for employee  and where  denotes the 
costs of effort with 

p
i  ic e

   0 0,c c 0ei   and   0ic e  . 
The probability  of winning the tournament is 

given by: 
ip

 
  
   

,

Pr Pr

Pr ,

i i i

i i i i i i

i i i i

p e e

q q e x e x

e e G e e



 

 

     

    

    (2) 

where   is the composed error term i ix x    and 
where  G   denotes its cumulated distribution function. 
The composed error term   is normally distributed 
with  20,2  .   S

to
olving the maximization problem 

in Equation (1) and substituting for ip  according  
Equation (2), one arrives at the following reaction func- 
tion for employee i :  

     , .i i i i i ic e p e e t g e e t    
            (3) 

Hence, we arrive at the well-known result that each 
employee will choose an effort level such that his or her 
marginal costs of effort  ic e  are equal to his or her 
marginal returns in form of an increased chance of  

winning the tournament  multiplied by the 

tournament prize , where  may be written  

 ,i i ip e e 


 ,i ip e e 



t i

1Similarly, [6] theoretically and experimentally studies active risk-taking 
in a field of heterogeneous contestants, but they regard risk-taking as 
the only choice variable (no effort choice). [7] again, analyzes both, 
risk-taking and effort choice, but in a symmetric tournament with ho-
mogeneous contestants. in terms of the density function of the composed error  
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term evaluated at i i . Symmetry of e e  
   g   imp- 

lies that, if a Nash-equilibrium in pure strategies exists2, 
we have . Hence, Equation (3) can be re-written 
as:  

ie e 
 i

   0 .ic e g t    

Concerning the impact of idiosyncratic risk on tourna- 
ment incentives, a higher amount of risk (i.e., a lower 
value of ), will generally decrease effort levels in a 
symmetric tournament. 

 0g

Example 2.1. The following example—which will prove 
to be useful in the case of heterogeneous contestants— 
may illustrate this effect: Assuming quadratic effort costs 
with , the equilibrium effort level   20.5ic e c e   i ie  is 
given by:  

.
2 π

i

t
e

c
 

 
 

Hence, an increase in idiosyncratic risk as indicated by a 
larger   will decrease equilibrium effort.  

In what follows, heterogeneity on the part of emp- 
loyees is introduced. In accordance with [1] and with e.g. 
[5,8,9], we do so by assuming that employees vary in 
their marginal costs of effort3. Again let i  denote the 
effort level and  the costs of effort of contestant 

. Let employee 1 be characterized by generally lower 
marginal costs of effort than employee 2, i.e. assume that 

i  holds for all effort levels . When 
no effort is displayed, there are zero costs 

e

ie

 i ic e
i

   1 2ic e c e  0
  0 0ic   

and also marginal costs are set to zero   0 0ic  . 

Furthermore and for technical reasons we assume that 
for the second derivatives we have  and that 10 c c   2

1    1

2 1c c
  


 holds. In a Nash-equilibrium, the re- 

action function of employee  will then take the fol- 
lowing form:  

i

     2

2exp .
24π

i i

i i i i

e et
c e g e e t



 
  



       
  
 

 (4) 

Since  g   is symmetric,    i i i ig e e g e e   
   

 2 ie
 

holds. Hence, with  for all effort levels  1 ic e c 

0ie  , in equilibrium employee 1 will choose a higher 
effort level than employee 2: 1 2e . As e    g   dis- 
plays a maximum at 0   (see Figure 1), we can fur- 
ther write: 

  i ie g   i ie  0g e e g   .        (5) 

Thus, in an asymmetric tournament, for a given tour- 
nament prize , both employees will choose lower effort 
levels than each of them would have chosen in a sym- 
metric tournament. The intuition for this effect is straight 
forward: For each of the employees, the marginal reve- 
nue of choosing a higher effort level (as is being 
represented by an increase in the probability of winning 
the tournament multiplied by the tournament prize) is 
reduced in an asymmetric as compared to a symmetric 
tournament where the ex ante [and ex post] chances to 
win the tournament are identical for the two contestants. 
The larger the ability differentials, i.e., the larger the 
degree of contestant heterogeneity, the lower the incen- 
tives to provide effort (for given levels of idiosyncratic 
risk). 

t

Concerning the effect of idiosyncratic risk on effort 
levels, however, the picture is less clear: Tournament 
incentives may in fact either increase or decrease with 
the level of idiosyncratic risk—depending on the (endo- 
genously to be determined) difference in equilibrium ef- 
fort levels. 

Example 2.2. Recurring on the above example and 
assuming quadratic effort costs for both contestants with  

   1, 220.5 i ic e i  i ic e  yields that we have  

 i ic e i ic e  giving us ,   i ic e    ie c
 1 i ic e    

i ic e

and hence we obtain: 

2

i

          
 
 
 
 

2
p

2π 2

i

i

c

ct




 


 

1

4

ie

ex
ic

 


e  

 

 

2The existence of a pure-strategy equilibrium in a tournament model is 
not automatically assured (see e.g. the discussion in [1:845] or in [4: 
106]). Rather, it needs a minimum amount of idiosyncratic risk in the 
tournament. Otherwise contestants would deduce their opponents’ effort 
levels from the publicly known cost functions and choose slightly 
higher effort levels than their opponents. As a result, there will only be 
mixed-strategy equilibria. In what follows, we assume that the idiosyn-
cratic risk in the tournament is high enough to ensure the existence of a 
pure-strategy equilibrium. 
3[4] takes a different road and model differing ability levels by introducing 
additive shift factors of different size into the production functions of 
the two contestants. [10] introduces contestant heterogeneity by modeling 
individual output as being the product of effort and ability level. Figure 1. Idiosyncratic risk and equilibrium effort levels. 
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Figure 2 plots the equilibrium effort level of con- 
testant  as a function of the level of idiosyncratic risk 
as measured by 

i
  for the parameters , 100t  1ic   

and . 0.5ci 
As Figure 2 shows, an increase in idiosyncratic risk 

will at first increase incentives and then reduce them. 
The intuition for this effect is as follows: At very low 
levels of idiosyncratic risk4, contestant heterogeneity will 
adversely affect effort levels. Adding risk to the contest 

 will reduce the predictability of the outcome, 
increase the marginal return of exerting higher effort 
levels for the two contestants and will hence make it 
more worthwhile for the contestants to exert positive 
effort levels. However, when a critical level of risk 

 

̂  
is reached, a further increase in risk will decrease incen- 
tives again—just as it is the case in symmetric contests, i.e., 
as long as idiosyncratic risks do not fully compensate for 
contestant heterogeneity, adding more risk to the contest 
will increase incentives; as soon as idiosyncratic risks 
more than compensate for contestant heterogeneity, 
adding more risk will decrease incentives. This is equi- 
valent to stating that the function for i  displays a 
maximum in the idiosyncratic risks 

e

  where 0  . 
This maximum is displayed at the critical risk level ̂ . 
We obtain: 

Theorem 2.3. There is a unique risk level ˆ 0   for 
which i  are simultaneously maximal and for this level 
the following equation holds:  

e

   1 10.5 0.5
1 2ˆ e e

ˆ ˆ4π 4π

t t
c c

 
          
   

.  

Proof. See Appendix. 
The theorem gives us an equation for the level of risk 

in the tournament at which the effort of both contestants 
is at a maximum. This equation does not depend on the 
effort levels; unfortunately, however, it is an implicit 
formula. As we will see in the following Example 2.4, 
when choosing suitable cost functions we can compute 
an explicit value for the optimal risk level which only 
depends on contestant heterogeneity. 

Example 2.4. Assuming the same cost functions as in 
2.2 Theorem 2.3 yields an explicit formula for the critical 
risk level ̂ :  

 2 1

1 2

ˆ exp 0.5 ,
4π

c c t

c c
 
    

where the first factor can be interpreted as heterogeneity  

ei
* 

6
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Figure 2. Idiosyncratic risk and equilibrium effort levels in 

f the contestants. 

an asymmetric tournament. 
 
o

The critical risk level ̂  at which the positive effect 
of u

el of con- 
te

 idiosyncratic risk on to rnament incentives turns into 
a negative one, depends on the degree of contestant 
heterogeneity with a higher degree of contestant hetero- 
geneity leading to a higher critical risk level. 

Figure 3 plots the equilibrium effort lev
stant i  as a function of the level of idiosyncratic risk 

as measured by   for (a) a situation where contestants 
are almost homo neous in their marginal effort costs 
and (b) a situation where the degree of contestant hetero- 
geneity is rather large5. If the differential in marginal 
effort costs is low (Figure 3(a)), the critical risk value 
beyond which the positive effect on incentives turns into 
a negative one is reached at a lower risk level than if the 
differential in marginal effort costs is high (Figure 3(b)). 
Hence, for a low level of contestant heterogeneity an 
increase in risk will decrease incentives over a wide 
range of the risk spectrum (just as is the case in a sym- 
metric tournament) while for a high level of contestant 
heterogeneity an increase in risk will increase incentives 
over a wide range of the risk spectrum. 

ge

3. Discussion 

ilarly, [5]—we find that when risk 

 equilibrium effort levels cho- 
se

Unlike [4]—and, sim
is not a choice variable, but rather inherent to the produc- 
tion process, introducing risk into an asymmetric tour- 
nament will always at first increase equilibrium effort 
levels and then decrease them—irrespective of the size 
of the ability differential. 

Note, however, that the
n in a situation with a low degree of contestant hetero- 

geneity are by far higher than those in a situation with a 
high degree of contestant heterogeneity. The results con- 
cerning a high degree of contestant heterogeneity are 
well in line with the suppositions of [11] and [12] who 
each postulate that increasing the risk in a contest     

4Of course, we need to make sure that idiosyncratic risk is above the 
minimum level guaranteeing the existence of a pure-strategy equilib-
rium (see above). To argue our point the minimum level of risk re-
quired to obtain an equilibrium in pure strategies needs to be below the 
level of risk granting the highest effort level (see Figure 2). Even if this 
might not hold for a situation of very low contestant heterogeneity, this 
will clearly be the case for higher degrees of contestant heterogeneity 
(see Figure 3(b) vs. Figure 3(a)). 

5The parameters for ic  were chosen as follows: (a) , (b) 0.99ic 

0.01ic  . Again, 100t   and  1ic  .
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(a)                                              (b) 

Figure 3. Idiosyncratic risk and equili s. (a) Low degree of contestant 

hrough less monitoring by the tournament sponsor) 

espect to practical implications, our analysis 
sh

4. Conclusion  

reasing amount of idiosyncratic
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Appendix: Proof of Theorem 2.3 

Let us recall some of the notation used. By i  we de- 
note the effort level and by ic  the costs of effort of 
contestant . In a Nash-equilibrium we then obtain  

e

i

     2

2exp ,
24π

i i

i i i i

e et
c e g e e t



 
  



         
 

 (6) 

where by ie  we denote the equilibrium effort levels. 
Symmetry of 



g  yields  

       .i i i i i i i ic e g e e t g e e t c e     
             (7) 

We now assume  and  to vanish; con- 
testant heterogeneity is modeled by 

 0ic  0ic
   1 2i ic e c e


  1

i


1

 for 
every level . Furthermore for the second deri- 
vatives 1 2  shall hold. This means ic  is strictly 
increasing, i.e. the inverse function  exists. Fur- 

0ie 
c c  0

c

1
ther, we assume that     2 1c c

     holds. 

For the sake of simplifying the calculation we fix some 
more notation and do some technical preparations. Let 

 and       1
:i i iz c c z 
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Lemma 5.1. For any  and the equilibria 0z  ie  
the following equations hold  

1)        ,i i ic z c z 

 e e  2)  and  i i i

 3) .     e e e e    1 1 1 2 2 2

Proof. The first claim follows directly from the defi- 
nition of . Using Formula (7) we see that  i

           1 1

i i i i i i i i ie c c e c c e e    
        

  

holds. And the last assertion follows from  

       1 1 1 1 1 1 2 2 2 2 2 2e e e e e e e e                 .  

Lemma 5.2. For any  and  the expre- 
ssion  is non-negative.  

0z   1, 2i

1i 
   z z  i i

Proof. We only prove the lemma for , the other 
case follows by an analogous argument. It suffices to 
show that    1 11z z 0      holds, because  1 0 0 .  

By differentiating     1 2 1c z c z

   
   with respect to z , 

we obtain   1 1 2 1z c z c z     and it remains to 

prove . This, however, follows from     2 1 1c z c z 
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Lemma 5.3. 
1) The derivative of

   

 ie  with respect to   is given 
by  
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2) The equation   i ie     has a unique solution 
̂ . With  ˆ ˆ:e ei i    denoting th

 of the secon
e corresponding effort 

level the evaluation d derivative of ie  at 
̂  is given by  
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Proof.  
1) Applying the natural logarithm to Formula (6) and 

differentiating with respect to   we get  
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Redistributing the terms gives our claim.  
2) The quotient rule yields the second derivative. For 

an
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y solution ̂  of   i ie     the following equa- 
tions hold  
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By Lemma 5.2, it then follows that the second deri- 
vative is negative in all extremal points, i.e. there are 
only maxima. This yields uniqueness.               

Proof of Theorem 2.3. From Lemma 5.3, it follows 
directly that the derivative of ie  with respect to   
vanishes independently of i  if and only if  

  ie    holds. Moreover this is a maximu
because by the same lemma the second d

tituting this result into Formula (6) we 
obtain  
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Taking the respective inverse functions and subtrac- 
ting the two equations shows that  
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