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ABSTRACT 

This paper demonstrates the concavity of the consumption function of infinitely living households under liquidity con- 
straints who are not prudent—i.e. with a quadratic utility. The concavity of the consumption function is closely related 
to the 3-convexity of the value function. 
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1. Introduction 

Since the numerical illustration by Deaton [1], research- 
ers have been aware that liquidity constraints generate a 
concavity in the consumption function. However, ana- 
lytics of the concavity due to liquidity constraints has 
remained unknown until recently. Carroll and Kimball [2] 
made the first important attempt in setting an analytical 
foundation and showed the concavity of the consumption 
function when the consumer’s optimization has a finite 
horizon. Technically, they exploit the convexity of mar- 
ginal value function in the terminal period and use the 
backward induction to show the convexity of marginal 
value function in the current period. However, in the 
context of infinite horizon, this particular approach is not 
applicable since the terminal period’s value function is 
not defined. 

In this paper, we offer an analytical foundation of the 
concavity of the consumption function in the context of 
infinite horizon, when consumer’s utility is quadratic. 
Taking a different approach to Carroll and Kimball [2], 
we directly prove the 3-convexity or Levinson’s In- 
equality (Levinson [3]) of the value function and show 
that the consumption function is concave. The concept of 
3-convexity is extremely convenient when characterizing 
the value function, especially with the infinite horizon. 
Thus, we regard this 3-convexity approach as a com- 
plement, rather than a substitute, to Carroll and Kim- 
ball’s [2] backward induction approach in the finite 
horizon setting.  

Finally, it should be emphasized that under the model 
that we consider—i.e. consumer’s utility is quadratic— 
the concavity is not generated by prudence of the con- 

sumer, but is solely generated by the presence of liquidity 
constraints1. By the virtue of this set-up, we can solely 
focus on the analytical mechanism how liquidity con- 
straints generate the concavity in the consumption fun- 
ction. The rest of the paper is organized as follows. 
Sectiones 2 discuss the set-up of the model. Section 3 
clarifies the concept of 3-convexity, shows the 3-con- 
vexity of the value function and proves the concavity of 
the consumption function. Section 4 provides some con- 
cluding remarks. 

2. The Model 

We assume a very simple infinite horizon dynamic opti- 
mization problem where consumer’s utility is quadratic 
and time-separable. Further, consumer faces no uncertainty 
in terms of rate-of-return on the net wealth and in terms 
of labor income. The only source that makes the dynamic 
optimization problem non-standard is the existence of 
liquidity constraints—the net wealth cannot be negative. 
Thus, consumer’s dynamic optimization problem can be 
formulated as follows.  
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where t  stands for consumption, which is the control va- 
riable of the consumer, and t  stands for the net wealth, 
which is the state variable of the optimization problem. 

c
w

1For the concavity of the consumption function generated by prudence, 
see Carroll and Kimball [4].
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Period-by-period utility is defined as a quadratic function 
in consumption, i.e.     2= 2t t t , where  
and  are positive constant parameters. Discount rate 

U c ac b c a
b

,  interest rate R , and labor income y , are assumed to 
be time-invariant2. Recursive nature of this infinite horizon 
problem allows us to reduce it into the following Bellman 
equation:  
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It should be noted that since the optimization horizon 
is infinite, the value functions in the subsequent period 
will converge to a certain function  as can be seen 
on both sides of the Bellman Equation (2). Furthermore, 
this converged value function is a consequence of re- 
cursive optimization under liquidity constraints from the 
future period and therefore should be distinguished from 
the value function under liquidity unconstrained case3. In 
other words, the value function under liquidity con- 
straints will no longer be a quadratic function even under 
quadratic utility, which is in sharp contrast to the case 
without liquidity constraint whose value function is, of 
course, quadratic.  

V

Taking the first-order condition of Equation (2) with 
respect to consumption will yield the following equation:  

   w

' w

= 'a
c w RV

b b


           (3) 

The function  on the left-hand side characterizes 
the optimal consumption as a function of the current net 
wealth. Further, by invoking the envelope theorem (or 
Benveniste-Scheinkman formula) on Equation (2), we 
can derive the following relation between the current 
shadow price of the net wealth—i.e. the marginal value 
function evaluated at the current net wealth—and the 
future shadow price.  

 c w

  ='V w RV              (4) 
Combining Equations (3) and (4), we obtain the follow- 

ing key equation:  

   1
= 'a

c w V w
b b
              (5) 

The virtue of Equation (5) is that it relates the current 
optimal consumption to the current shadow price of the 
net wealth rather than the future shadow price of the net 
wealth as in Equation (3). This key relationship enables 
us to infer the characteristics of the optimal consumption 
function by investigating the nature of the marginal value 
function. Or putting it another way, it suffices to charac- 
terize the marginal value function in order to characterize 
the optimal consumption function4.  

Some remarks are in order. If the value function is 
three times differentiable, then 3-convexity of the value 
function is equivalent to positiveness of the third de- 
rivative of the value function—i.e., . However, 
as pointed out by Carroll and Kimball [2], the marginal 
value function in Equation (5) is “kinked” under the 
deterministic environment with liquidity constraints that 

( ) 0'''V  

 '''V   is not well defined. Thus, it is not appropriate to 
rely on third order differentiability of  in proving 
the concavity of the consumption function, especially in 
our case of consideration. Fortunately, the concept of 
3-convexity is more general in its applicability. As long 
as the value function is once differentiable, 3-convexity 
implies the convexity of marginal value function even if 
the marginal value function is kinked and this im- 
plication does not require the function to be 2 or 3 times 
differentiable. It is this property of 3-convexity that 
makes it relatively easy to show the concavity of the con- 
sumption function in the presence of liquidity constraints. 
The following section clarifies the concept of 3-con- 
vexity and then shows that the value function is 3-con- 
vex. 

 V 

3. Main Results 

We first define the notion of 3-convexity. 
Definition 1 (3-convexity). A function  : ,f a b   is 
said to be 3-convex on  ,a b  if for  1 2, ,x x  a b  
such that 1 2x x  
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     (6) 

The inequality (6) is a special case of Levinson’s in- 
equality (Levinson [3]) which can be regarded as a 
higher-order Jensen’s inequality. As Jensen’s inequality 
is closely related with the notion of convexity, so is 
Levinson’s inequality with 3-convexity. The intuition of 
the inequality (6) can be vividly captured by Figure 1. 
The left-hand side of the inequality (i.e. denoted A ) 
represents the difference between the value of function  

2Uncertainty in rate-of-return or labor income can be easily introduced 
in the model set-up, but will not alter the main implication. Indeed, 
since the very message of this paper is the concavity of consumption 
function under deterministic environment, introduction of uncertainty 
will only obscure the main point of this paper. 
3We assume the regularity condition on discount rate to ensure the 
Contraction Mapping Theorem to hold. For more rigorous treatment 
on this issue, see for Stokey and Lucas [5]. Also, for the existence of 
converged value function under the case where control variables are 
constrained, see for instance Chmielewski and Manousiouthakis
[6]. 
4It should be noted that when the value function is quadratic (as in the 
case when preference is quadratic and without liquidity constraints), 
the optimal consumption function will be linear. This can be easily 
seen from Equation (5). 
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Figure 1. Illustration of 3-convexity. 
 
evaluated at the mid-point of 1x  and 2x  to the mid- 
point of the chord from 1x  and 2x . It is possible to in- 
terpret A  as a magnitude of concavity of a function in 
the domain  1 2,x x . The right-hand side of the in- 
equality (i.e. denoted ) can be interpreted in the similar 
fashion with a difference that domain is now  

B

1 2 2 13
,

2 2

x x x x  
  

. 

Thus, intuitively speaking, the function will be 3-con- 
vex if the magnitude of concavity decreases as x  in- 
creases5.  

Next, we state the lemma that links 3-convexity of the 
function to convexity of the marginal function. The fol- 
lowing lemma is a special case of the more general 
theorem that links -convexity to convexity of n  n k th 
derivative of a function. Rigorous proof of the theorem is 
well beyond the scope of this paper and will be omitted.  

Lemma 1. If a function  is 3-convex on :f 
 ,a b , then the first derivative  exists and is 
convex on 

:'f 
 ,a b .  

Proof. See Pecaric et al. [7]. 
We are now in the position to state the key theorem of 

this paper. 
Theorem 1. Let be the value function stated in 

(2). Then for any w s 3-convex.  
 V w  
0, 

w
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Proof. Let 1  and  be some arbitrary number in 
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following inequality:  
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which is equivalent in showing that  
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Let sequence  1, =0t j j
c



  and  2, =0t j j
c



  be the  

optimal consumption path given state  and , 
respectively. Now, define  
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Then from Chmielewski and Manousiouthakis [6], the 
sequence  
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is feasible, but not necessarily equal to the optimal con- 
sumption path given the state w  (or ). Therefore, ŵ
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Then from the inequality (7), it follows that  
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Rearranging the right-hand side of the inequality (8) 
and from the definition of the utility function, it follows 
that  
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Thus,        1 2ˆ3 3V w V w V w V w 0.     This  
proves the theorem.                             

The concavity of the optimal consumption function 
follows naturally from Lemma 1 and Theorem 1. 

Theorem 2. Let  c w

)

 be the optimal consumption 
function of the dynamic optimization problem (2). Then 
for any  in w [0, ,  c w

w
 is concave.  

Proof. Let 1  and  be some arbitrary number in w 2

[0, )  such that . Then it suffices to show,  1 w5Or, in the continuous analouge,  ''f x  is increasing in x. 2<w
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