

Comparative H₂S Sensing Characteristics of Fe₂O₃: Thin Film vs. Bulk

Vishal Balouria^{1,2}, Ajay Singh¹, Niranjan Suryakant Ramgir¹, Anil Krishan Debnath¹, Aman Mahajan², Ratish Kumar Bedi², Dinesh Kumar Aswal¹, Shiv Kumar Gupta¹

¹Technical Physics Division, Bhabha Atomic Research Center, Mumbai, India; ²Material Science Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar, India. Email: vishalbalouria@vahoo.com

Received October 1st, 2013; revised November 2nd, 2013; accepted November 9th, 2013

Copyright © 2013 Vishal Balouria *et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Comparative investigations of gas sensing characteristics of Fe_2O_3 in both thin film as well as bulk forms have been performed. Thin film sensors were realized by first depositing Fe films using electron-beam evaporation followed by thermal oxidation. Bulk sensors in the form of pellets were prepared by cold pressing commercial Fe_2O_3 powder with subsequent sintering. Both thin film and bulk Fe_2O_3 sensors exhibited a selective and reversible response characteristics towards H_2S with maximum response at an operating temperature of 250°C and 200°C, respectively. A negligible response towards other interfering gases was observed. Thin film sensors exhibited an enhanced response in comparison to that of pellets.

Keywords: Fe₂O₃; Thin Film; Pellets; H₂S Sensor

1. Introduction

 H_2S is a colorless, highly flammable and toxic gas, which in low concentration has an offensive odor similar to that of rotten eggs. As the Threshold Limit Value (TLV) for H_2S is 10 ppm, there is a need for its detection in either ppm or sub ppm level [1-3]. α -Fe₂O₃, an intrinsically n-type semiconductor has been widely exploited as a gas sensitive material owing to its good structural and thermodynamical stability along with resistance to photocorrosion. In the present work, H_2S sensing characteristics of Fe₂O₃ in both thin film and conventional forms have been investigated and compared. Our results indicate that thin film based sensors exhibited better response towards H_2S in comparison to that of pellets.

2. Experimental

Fe₂O₃ thin films were prepared in two steps. In the first step, Fe films with ~100 nm thickness were deposited onto pre-cleaned (0001) Al₂O₃ substrates using electron-beam evaporation under a base vacuum of ~1.3 × 10^{-4} Pa. A high purity (99.99%) Fe powder was cold pressed in the form of a pellet and used as source material. These films were subsequently subjected to thermal

oxidation at 800°C in an oxygen environment (O₂ flow: 50 sccm) for 2 h. Bulk sensors in the form of pellets were prepared by cold pressing commercial Fe₂O₃ powder followed by sintering at 800°C for 2 h. The response characteristics were recorded as a function of temperature, gas (H₂S, C₂H₅OH, NH₃, CH₄, CO, CO₂, NO, and Cl₂) and their concentrations using a static setup as described elsewhere [4]. For this purpose, the sensor was mounted on a Pt-100 based heater assembly in a leak-tight glass chamber (net volume: 500 ml). Electrical contacts were made by thermally depositing two Au pads (120 nm thick). A desired concentration of the test gas in the chamber was achieved by injecting a known quantity of the test gas using a micro-syringe. The sensor response was calculated using the relations:

$$R\% = \left(\frac{G_g - G_a}{G_a}\right) \times 100 \tag{1}$$

where G_g and G_a are conductance in the presence of test gas and air, respectively.

3. Results

Figure 1 shows the X-ray diffraction (XRD) pattern ob-

Figure 1. XRD diffraction pattern for Fe_2O_3 in bulk and thin film form.

tained for Fe₂O₃ thin film and bulk samples. All the peaks could be assigned to the single phase of Fe₂O₃ (hematite). The least-square fitting of the pattern indicated hexagonal rhombo-centred cubic unit cell structure with lattice parameters a = b = 5.028 Å, c = 13.73 and $a = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, which are in agreement with the reported values [JCPDS card no. #79-0007].

Figure 2 is a plot of % response recorded for both the sensor films as a function of operating temperature towards 10 ppm of H₂S. It is clearly evident that thin films and bulk sensors exhibit response maxima at 250°C and 200°C, respectively. At all the temperatures the response of thin films is higher than that of bulk samples. For instance, thin film sensors show, response maxima of 262% in comparison to 112%, exhibited by bulk samples towards 10 ppm H₂S.

A Typical response curves for both the sensor films towards 10 ppm H_2S is shown in **Figure 3**. The conductance of the sensors increases on exposure to H_2S indicating an n-type response. Thin film sensors exhibited a maximum response towards H_2S . A baseline drift was observed for bulk sensors.

Figure 4 shows the selectivity histogram recorded upon exposure to 10 ppm of various reducing and oxidizing test gases. It is clearly evident that both the sensors are highly selective towards H_2S . A negligible response towards all the other interfering gases was observed.

4. Conclusion

Comparative gas sensing properties of Fe_2O_3 in thin film and bulk form have been investigated. Both the sensor types exhibited an n-type response characteristic with highly selective response towards H_2S . An operating temperature for maximum response towards H_2S was found to be 250°C and 200°C for thin film and bulk sensors, respectively. For H_2S detection, thin film is a better sensor in comparison to bulk owing to the enhanced response and less baseline drift.

Figure 2. Sensor responses as a function of operating temperature.

Figure 3. Sensor responses @ 10 ppm H_2S for bulk and thin film sensor.

Figure 4. Selectivity data for bulk and thin films.

5. Acknowledgements

V.B. thanks CSIR, New Delhi for the senior research fellowship. The authors are thankful to BRNS-DAE for providing financial assistance vide Sanction No. 2008/37/4/BRNS.

REFERENCES

[1] M. Kaur, D. K. Aswal and J. V. Yakhmi, "Chemiresistor

Gas Sensors: Materials, Mechanisms and Fabrication," In: D. K. Aswal and S. K. Gupta, Eds., *Science and Technology of Chemiresistor Gas Sensors*, Nova Science Publisher, New York, 2007, pp. 33-93.

- [2] V. Balouria, A. Kumar, A. Singh, S. Samanta, A. K. Debnath, A. Mahajan, R. K. Bedi, D. K. Aswal, S. K. Gupta and J. V. Yakhmi, "Temperature Dependent H₂S and Cl₂ Sensing Selectivity of Cr₂O₃ Thin Films," *Sensors and Actuators B: Chemical*, Vol. 157, No. 2, 2011, pp. 466-472. http://dx.doi.org/10.1016/j.snb.2011.05.002
- [3] V. Balouria, S. Samanta, A. Singh, A. K. Debnath, A.

Mahajan, R. K. Bedi, D. K. Aswal, S. K. Gupta, "Chemiresistive Gas Sensing Properties of Nanocrystalline Co₃O₄ Thin Films," *Sensors and Actuators B: Chemical*, Vol. 176, 2013, pp. 38-45. http://dx.doi.org/10.1016/j.snb.2012.08.064

[4] V. Balouria, A. Kumar, S. Samanta, A. Singh, A. K. Debnath, A. Mahajan, R. K. Bedi, D. K. Aswal, S. K. Gupta, "Nano-Crystalline Fe₂O₃ Thin Films for ppm Level Detection of H₂S," *Sensors and Actuators B: Chemical*, Vol. 181, 2013, pp. 471-478. http://dx.doi.org/10.1016/j.snb.2013.02.013