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Abstract 
Fault management study in smart grid systems (SGSs) is important to ensure 
the stability of the system. Also, it is important to know the major types of 
power failures for the effective operation of the SGS. This paper reviews di-
verse types of faults that might appear in the SGS and gives a survey about the 
impact of renewable energy resources (RERs) on the behavior of the system. 
Moreover, this paper offers different fault detection and localization tech-
niques that can be used for SGSs. Furthermore, a potential fault management 
case study is proposed in this paper. The SGS model in this paper is investi-
gated using both of the Matlab/Simulink and the Real Time Digital Simula-
tion (RTDS) to compute the fault management study. Simulation results 
show the fast response to a power failure in the system which improves the 
stability of the SGS. 
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1. Introduction 

According to [1], the SGS enhances the performance of the power grid and it 
improves the stability of the network. The SGS has more components that dis-
tinguish the system from the conventional power system. Also, the SGS can de-
pend only on RERs to deliver power to the loads in the system. Equally impor-
tant, the SGS is known to operate as a grid-connected system where loads receive 
demanded power from the grid and the RERs, and it can operate as a 
stand-alone system where loads receive power only from RERs. Figure 1 shows 
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some major components of a conventional SGS: utility, photovoltaics (PV), wind 
turbines (WT), battery storage system, power converters, electric vehicles, smart 
communication devices, smart meter, switches, coupling point, and customers 
or loads of the system. Also, it is important to know that the SGS consists of two 
major networks that are linked together. According to [2] [3], the two coupled 
networks are the power network and the communication/control network in 
which they perform the framework of the SGS. The major components of the 
power network are energy resources, transformers, transmission lines, distribu-
tion lines, substations, and customers or loads. In contrast, the function of the 
communication/control network depends on the electricity provided by the 
power network. To illustrate, the power network must be controlled by the 
communication/control network in the SGS. 

There are multiple improvements that the SGS provide compared to the con-
ventional power system including improve power quality and availability, ensure 
system survivability and security, and reduce costs for customers. Also, the tran-
sient stability of the system should be improved in an ideal SGS. In addition, the 
robustness of the SGS is improved because of power controllers in the system. 
To illustrate, controlling the active power and the reactive power helps to im-
prove the power angle and the voltage stability of the system respectively. 
Moreover, a droop controller can be used to enhance power sharing, where a 
secondary controller is used to reduce voltage and frequency deviations in the 
SGS [2] [4] [5] [6] [7]. Therefore, the SGS improves the maintainability of cur-
rents and voltages in the SGS within safe ranges. 

 

 
Figure 1. Major components of a smart grid system. 
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The location of power failure and its type have different undesired impacts on 
the system performance such as power outages and component failures. This 
fact makes it necessary to recognize possible power failure causes and recognize 
different ways to clear out these possible failures to guarantee the stability of the 
system [4] [8]. Authors in [9], state that smart meters can be used to detect and 
locate unsafe current and voltage signals in the system since they consider fast 
response devices. Since the SGS is able to operate as a stand-alone system, it is 
preferable to isolate the main grid from the system to protect components in the 
SGS upon detection of faulty conditions [4]. 

According to [10], both of the survivability and reliability of the SGS are im-
proved due to the existence of RERs in the system. In case of emergency condi-
tions, the least priority loads are deposed from the system during the time of re-
solving the power failure. Shedding loads in the SGS occurs in the order of their 
importance. Survivability is defined as the ability of the SGS to provide de-
manded power to important loads in the system for both normal and faulty con-
ditions. In short, the SGS is subject to face most of the power failures that occur 
in the traditional power system [1] [11]. Therefore, the survivability and reliabil-
ity of the SGS are enhanced due to the existence of RERs, storage systems, and 
controllers in the system. 

The importance of fault management and diagnosis, protection categories, 
common power failures, and proposed power failure categories are explained in 
Section 2. Section 3 discusses the impact of RERs on the performance of the SGS. 
Section 4 presents promising methods that can be used to detect and locate 
power failures in the SGS. The proposed system and computational software in-
cluding Matlab/Simulink and RTDS are explained in Sections 5 and 6 respec-
tively. Fault management simulation results including fault detecting, locating, 
and isolating faulty line using both software are presented in Section 7 followed 
by paper conclusion on Section 8. 

2. Power Failure in the Smart Grid System 
2.1. Importance of Fault Management and Fault Diagnosis 

According to [9], in order to maintain the normal operation and protect system 
components, fault management and diagnosis must be fast. Fault management 
techniques relate more to the communication network of the SGS. Moreover, 
fault management is essential to reduce synchronization problem and to im-
prove the system economically. However, most fault management techniques 
require a control room to monitor and analyze the behavior of the system during 
the run time, as well as fault indicators, local automation, and communication 
devices. In addition, it is important to detect and locate the fault in the SGS ra-
pidly enough to avoid a complete breakdown in the system [12] [13] [14]. Ac-
cording to [9], there are several fault diagnosis techniques can be used in the 
SGS including the intelligent devices that monitor current and voltage signals in 
the system. Another technique to diagnose faults is using the wavelet analysis or 
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Markov model analysis to analysis the latest sensing data over the system [15] 
[16] [17]. This technique requires using smart meters distributed among the 
system, not only at load ends to diagnose faults in the SGS. Therefore, SGS 
should provide instantaneous diagnostic information and reasons for faulty 
conditions in the system. 

2.2. Protection 

Protecting the system components is important to keep the reliability of the sys-
tem. According to [4], the structure of SGS allows it to detect over-current and 
over-voltage events in the SGS especially at the storage battery in the system and 
at the converter circuits. Moreover, in case of short circuit or high impedance 
faults, the SGS should operate in a stand-alone mode to protect the power net-
work [4]. The protection scheme can be divided into three levels as shown in 
Table 1. Moreover, digital relays are used for distribution lines protection in the 
power system with the cooperation of the global positioning system to isolate 
faulty lines [18]. Thus, the SGS should follow the three levels of protection to 
prevent major components failure in the system. 

2.3. Power Failure in Smart Grid 

According to [19] [20], high-speed wind, flying objects, falling trees, physical 
contact by animals, lightning, snow storms, contamination of insulators, human 
errors, overloads, bad insulation, and protection failure are some reasons of 
faults in the SGS. Also, the balance three-phase SGS has the majority of power 
failure studies as reported in [10]. In addition, power failure is defined as an ab-
normal electric current in the power system which split into two types [19]. The 
first type is the external fault such as open circuits or short circuits such as 
phase-to-ground or phase-to-phase types of faults. The second type is the inter-
nal fault which may occurs at the storage system, DC bus, or at the AC side of 
the converter [4] [8]. To sum it up, the power failure in the SGS has unpredicta-
ble locations since it can occur at the generating side, transmission side, or at the 
load side of the system. 

2.4. Common Types of Power Failures 

According to [20] [21], external power failure that occurs in the power network 
of the SGS is categorized into two types. The first one is the series fault (open 
circuit fault) that occurs when two conductor (phases) open in the system due to 
a broken line. The second type is the shunt fault (short circuit fault) which oc-
curs when two or more phases come into contact to the ground or to each other. 
According to [20] [22], 75% - 80% of failures in the power network of the power 
circuit are either a line-to-ground short circuit fault or transient fault. Single 
line-to-ground faults are the most occurring type of fault in power systems. 
Moreover, the shunt fault is classified as a balanced fault (symmetrical fault) or 
as an unbalanced fault (unsymmetrical fault). Listing the short circuit faults in 
order from most common to least common are:  
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Table 1. Protection levels. 

 Warning Isolating Shutdown 

Indication 

Unusual behavior that 
exists but does not have 

immediate 
harm to the system 

Separating part of the 
system for protection 

purpose 

Prevents 
Fault that may cause damage 

if left uncorrected 

Needed  
equipment 

Communication devices 
Relays, breakers and 

switches 
Relays, breakers,  

and switches 

 
• Phase-to-ground  
• Phase-to-phase 
• Two phases-to-ground  
• Three phases  
• Three phases-to-ground fault 

2.5. Power Failure Categories 

For this paper, faults in the SGS are categorized into three types: incipient, ab-
rupt, and intermittent faults. According to [23], an incipient fault is considered 
an arc fault that lasts for a harmless period of time in the SGS. Authors in [24], 
described the abrupt fault as the abrupt signals change due to power failure in 
the system [24]. Finally, the intermittent fault is a short duration transient that is 
deemed to be an incipient event which leads to a permanent fault in the system 
[25]. There are several reasons for these types to occur such as severed conduc-
tors, loose contacts, or wire degradation. These three aforementioned power 
failure categories can appear at different locations in the SGS and result in se-
rious power problems. These types may appear at transformers, induction mo-
tors, underground cables, or at transmission and distribution lines. Moreover, 
they are able to cause electric fires or fuel tank explosions ignited by arcs and 
sparks, power interruption, system damage, or power outages. On the other 
hand, conversion of an incipient fault to a permanent failure is a gradual phe-
nomenon and may take several months. The SGS will perform and behave nor-
mally as if no interruption occurs, after a short duration of transient time. This 
fact makes it necessary to detect these aforementioned types of fault early stages 
[23] [24] [25] [26] [27]. As shown above, there are several factors that can cause 
the three mentioned types of fault, in which their impact may last for a long pe-
riod of time without causing major accidents. 

There are different techniques which deal with incipient, abrupt and intermit-
tent types of faults. First to mention is the wavelet transform analysis which is 
used to detect and classify incipient faults by detecting the amplitude and dura-
tion of a disturbance in the system [23]. In addition, to detect and locate an inci-
pient fault in underground cables, the impedance-based distribution method is 
recommended [26]. For intermittent faults, distance relays are used to monitor 
changing conditions which help detect intermittent faults [24]. Another method 
to detect an intermittent fault in the system is monitoring the carrier signal be-
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tween buses in the SGS [25]. Finally, to detect abrupt changes in the SGS, digital 
relays or the wavelet transformative and adaptive filter method can be used as 
reported in [24]. Equally important, authors in [28], reported that the temporary 
deviations of the load circuit model coefficients and wiring parameters is a 
promising method to detect arc fault in the system. Moreover, to detect arc 
faults, a comparison of reference load currents and measured load currents can 
be used [27]. In short, the power failure in SGS is categorized into three types in 
this paper. This section explained promising techniques to deal with these types 
of power failure in the SGS. However, the detecting methods are considered sen-
sitive to frequency, size of the power system, and they require communication 
techniques. 

3. Impact of Renewable Energy Resources on the Stability of  
a Smart Grid System 

According to [12], to ensure the stability and the reliability of the SGS under 
steady and transient operations, there are several factors must be acknowledged 
including the location of the RERs in the SGS, integrating RERs to the power 
grid, topology of inverters in the system, frequency deviation, cascading failures, 
the structure of the storage system and much more. To illustrate, the fast re-
sponse of RERs and their locations in the SGS affect the dispatch mode based on 
the penetration level [12]. In a grid-connected SGS, integrating RERs at low vol-
tage level increase the possibility of power failure in the system due to the bidi-
rectional power flow [19] [29]. Variation of active and reactive power due to 
RERs in the SGS leads to a change in current and voltage fluctuations which af-
fect the stability and reliability of the system [30]. Also, the stability of the SGS is 
affected by the topology of inverters in the system as reported in [28] [31]. 
Moreover, the oscillation of the SGS can be affected by the change of the damp-
ing ratio of RERs depending on control parameters including the gain of real 
and reactive power [13]. The frequency deviation leads to drop some loads in the 
system after tripping generators. This event occurs during post-fault conditions 
when the SGS switch from grid-connected to the stand-alone mode of operation 
[32] [33]. Equally important, cascading failures lead a severely conditions. The 
cascading failure can be split into two types: the load propagation failure that 
occur due to an overloaded in the SGS, and the interdependent failure that oc-
curs due to the nature of the relation between the two networks [2]. Moreover, 
the uncertainty from RERs affects the cascading failure and increase the number 
of load shedding and tripped lines in the system [34]. 

Availability of generated power from RERs is not certain due to the topology 
of the SGS, sensitivity of components, possibility of equipment failures, changes 
in weather, and much more. Also, it is important to acknowledge that lack of 
equipment maintenance and undesired weather such as high speed wind could 
cause fires, damages in systems’ components, and they put the systems stability 
and human safety under threat. For example, a failure of a single PV cell can se-
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verely affect the output of a whole string which may lead to fire or power losses 
of the PV module [22] [35] [36]. Additionally, weather fluctuation affects the 
operation of PVs which increase the level of danger in the system [37]. Also, 
high speed wind affects the gearbox, frequency, and the reactive power generated 
by the WT [38] [39]. Therefore, the structure of RERs has an impact over the 
operation of the SGS. 

4. Detecting and Locating Faults in the Smart Grid System 
4.1. Techniques to Detect Different Faults in the Smart Grid  

System 

Fault detection techniques must be fast enough to detect a power failure in order 
to keep the stability of the system. The following are explanations of different 
methods that some researchers studied to detect different types of power failure 
in the system. Measurement devices can be used to read important data at every 
node in the system which helps in detecting abnormal changes in the system. 
According to [4] [39], voltages and currents in the power network must be 
maintained within safe limits during faulty and normal operation, and they must 
be self-adjustable to pre-event values to ensure the stability of the system during 
faulty conditions. However, measurement units can be negatively affected by the 
size of the power network, so the efficiency of these fault detection techniques 
can be affected by the size of the power network too. Another method to detect a 
fault in the system is using the data-driven computational approach based on 
machine learning as mentioned in [1]. Also, phasor measurement units can be 
used to determine the response time after the current exceeds its safe limit which 
helps to detect the fault in the SGS. Yet, the phasor measurement unit could not 
provide enough information about the power failure in the system [40] [41]. 
Furthermore, the Petri Net method is used to detect a power failure in the SGS. 
This method requires measurements of transient voltages and voltage sags dur-
ing faulty conditions in the system. On the other hand, the Petri Net method can 
face a strong penetration of distributed generators in the system [42] [43]. Au-
thors in [44] discussed the possibility to detect fault in the system by combining 
the wavelet analysis with neural network or support vector. But, the wavelet 
analysis requires a high sampling rate which causes it to decrease the accuracy of 
the method [44]. Moreover, changes in system matrices of the state space model 
can be used to detect a fault in the system, where the small changes can be de-
tected using the Local Optimum method and the large changes detected using 
the Generalized Likelihood Ratio method as explained in [45]. Authors in [46], 
state that the fault can be detected by studying changes in the impedance cha-
racteristics after injecting a high-frequency current to the system. The weakness 
of these techniques is that they require high-quality smart meters in order to ac-
curately detect these changes in the system [45]. Although there are a considera-
ble amount of researches investigates fault detection methods to improve the 
stability of the power system, they still have weakness points that can be ad-
dressed for improvement. 
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4.2. Techniques to Locate Different Faults in the Smart Grid  
System 

It is important to locate the geographical position of power failure in the system 
to deal with it in order to keep the stability of the system after detecting a fault 
incident [9]. According to [10], there are several techniques are used to locate a 
fault in the system. Figure 2 shows a diagram helps to choose some promising 
techniques to locate the power failure in the system [10] [47]. According to [11], 
frequency component and line parameters are used in the phasor-based method, 
while transient components of signals and distributed line parameters are used 
in the time-domain based method to locate a fault in the SGS. To illustrate, the 
phasor-based method depends on the traveling waves for high-frequency com-
ponents and it depends on the phasor quantity for fundamental frequency. On 
the other hand, the time domain-based method depends on expert systems, 
neural network, or fuzzy logic to locate power failure in the SGS. Moreover, 
phasor angle measurements across buses in the system are used in the Gaussian 
Markov method to locate the fault [1] [11]. Authors in [48], state that inspecting 
lines in the system from one or two ends can be used to locate the fault using the 
source impedances. According to [4] [11], voltage sags and swell measurements 
can be used to locate a fault in the SGS which appears in the system during a 
short circuit event, switching off a large load, switching on or off a large shunt 
capacitor bank, switching off a transmission line. The Root Mean Square (RMS) 
voltage in the faulty line decreases during the faulty condition which is known as 
the voltage sags, and the RMS voltage in the un-faulty line increases to deter-
mine the voltage swell. Another method to locate the fault in the system is the 
State Estimate which is a mathematical method. It is used to determine voltages 
in every node in the SGS and only analysis faulty current with considering cur-
rent from the main grid and ignoring all other sources as mentioned in [10] [49]. 
It is important to know that most of these presented methods are subject to lack 
of accuracy based on the size of the power network. 
 

 
Figure 2. Fault locations techniques. 
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5. The Investigated Smart Grid System 

The proposed SGS is validated by [50] as shown in Figure 3. It represents a three 
buses SGS which supplies a small town, and consists of a 100 MV A power 
plants, a 275 KV A WT, a 200 kilometer transmission line and approximately 5 
MV A loads. Table 2 represents the parameters of the transmission line. Ac-
cording to [8] [49], voltages and currents change should be within (+/−) 10% to 
keep the stability of the system. This fact is applied in this study to detect power 
failure after current exceeds rated values at any location in the system. Moreo-
ver, the location with the highest increase of faulty current during faulty condi-
tion is considered the faulty load in this study. Equally important, power failure 
must be detected within 10 ms - 50 ms and located within three cycles. It is im-
portant to isolate the faulty load after three cycles to ensure the stability of the 
un-faulted parts of the SGS [8] [49]. In addition, indicators P1, P2, P3 and P4 in 
Figure 3 represent the measurement locations which are defined as the substa-
tion (SS), wind turbine (WT), load 1 (L1), and faulty load (L4) respectively. 
These measurements units used to provide the measured currents at each loca-
tion during normal operation, faulty condition, and after isolating the faulty 
load. Indicators S1, S2, S3, and S4 represent the circuit breaker which pro-
grammed in Matlab file to isolate the faulty load after determining the faulty lo-
cation. Matlab/Simulink allows the user to choose the type of fault and the loca-
tion to apply it in the system. A three phase-to-ground is considered the most 
severe type of power failure and it applied to the proposed SGS at t = 1 s and 
cleared at t = 2 s where the system runs for 3 s. The location of the fault is at the 
distribution line of load 4. Furthermore, the system has been investigated in 
RTDS to ensure the robustness of the proposed fault management technique. 
The RTDS platform allows users to apply fault at the desired time during run-
time. 
 

 
Figure 3. Proposed smart grid system. 
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Table 2. Transmission line parameter. 

R1 R0 L1 L0 C1 C0 

(Ω/km) (Ω/km) (H/km) (H/km) (F/km) (F/km) 

0.012 0.386 0.933e-3 4.126e-6 12.7e-9 7.75e-9 

6. Simulation Softwares 
6.1. Matlab Simulink 

There are several softwares used to test power systems. Matlab/Simulink and 
RTDS/RSCAD are wildly used software in terms of protection and control power 
systems including SGSs. Moreover, these softwares have a large library of com-
ponents which make it handy for users. According to [51], the Matlab design is 
known as Matlab file (*.fig). This Matlab file consists of a coded program using 
Matlab language which stores as (*.m) file, and a power system designs in Simu-
link model and stores as (*.SLX) file. These files interface to run the system and 
provide user with simulation results for user’s study. Thus, user can build and 
run the system in Matlab Simulink; where he/she can code and control the de-
signed system using the Matlab/Code. Figure 4 shows the proposed system in 
this paper as designed in Matlab Simulink. 

6.2. Real Time Digital Simulation 

RTDS is a digital power system simulator that consists of advanced computer 
hardware and softwares which operates in real time [52] [53]. The RTDS has 
been proven as an ideal protection and control tool to build and design power 
systems and SGSs. According to [53], procedures in RTDS are executed in pa-
rallel which makes it be considered as a fast processor simulator. The RTDS in 
utilized by the RSCAD, which is a Graphical User Interface. In addition, the 
RSCAD has a wild library that makes it capable to simulate a SGS. RSCAD soft-
ware consists of two major environments linked together which allow users to 
run and execute the simulated model. First, the draft allows the user to build the 
system and compile it and check for compilation errors. After compiling the 
model without errors, the model will be able to run in the second environment 
known as the Runtime of the RCSCAD software. RCSCAD has a library of 
components that allows users to control and interact with the simulated model 
such as push bottoms, controlling switches, meters and much more. In case of 
using breakers, switches should be used to control opening and closing breakers 
in the Runtime file [53]. Moreover, a hardware in the loop (HIL) can be imple-
mented in the RTDS. The hardware can be a PV or a relay. In fact, the RTDS 
provides HIL scheme, but it does not include communication interface [54]. 
Furthermore, user can introduce more functions and events to the system at 
runtime after translating the system to a C program using the Unified Modeling 
Language (UML) in RSCAD. This feature allows users to communicate and link 
RTDS to RSCAD. So, users can apply more condition statements such as for 
loop, if-else, and while statements [52] [55]. This fact has been implemented in 
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this paper to isolate faulty load after three cycles from detecting a power failure 
in the system. The power failure determined after current exceeds rated values. 
According to [8], current must not exceed rated values which are determined as 
(+/−) 10%. Figure 5 presents the interacting between the RSCAD, draft, run-
time, and RTDS. Therefore, the RTDS interface with the RSCAD isolates faulty 
load and ensures the protection in the SGS. Detail steps to complete the study in 
this paper are as follows: 
• Measure current at all locations P and store them as rated

PI . 
• Apply the short circuit fault. 
• Detect fault when current exceeds rated

PI  at any location P. 
• Re-measure currents at all locations P and store them as fault

PI . 
• Calculate rate of change at all locations P as fault rated

P PI I I∆ = − . 
• Find the location P with maximum rate of change ( )( )max I∆  and consider 

it as faulty location.  
• Isolate faulty load using the circuit breaker associate with faulty line and 

re-measure currents at all locations P. 
 

 
Figure 4. Proposed smart grid system/Matlab-Simulink. 
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Figure 5. RTDS setup to interface with RSCAD. 

7. Simulation Results 
7.1. Matlab Simulink 

Figure 6 depicts current at SS (Ia-SS), WT (Ia-WT), L1 (Ia-L1), and at L4 (Ia-L4). 
Currents at load 2 and load 3 measured similar to load 1. Also, it is observable 
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that currents increase during faulty condition, and returned within their accept-
able ranges at SS, WT, and L1 after isolating the faulty load from the SGS. Cur-
rent at L4 return to zero after isolating faulty line.  

Figure 7 illustrates current values at all locations Ps for all three conditions 
which are currents before fault, during faulty condition, and after isolating faulty 
load. Figure 8 shows the time needed to detect the fault at L4 after applying the 
fault in the system. The pre-event rated current at this location measured as 
350.3 Amper, and the highest safe limit at this location is 385.3 Amper. The fault 
detecting time is found to be equal to 12 ms which is the time when the current 
exceeded the limit at this location and the time at the peak of the pre-event val-
ue. Moreover, a protection warning should be provided at the time when the 
faulty condition detected. The highest increase of faulty current was measured at 
L4 which indicate the faulty location in the system. The rated current at L4 was 
350.3 Amper and the faulty current reached 954.5 Amper. Figure 9 shows the 
current waveform at L4 during normal operation, faulty condition, and after 
isolating the load from the system. Also, it can be shown how the faulty load L4 
was isolated after three cycles as shown in the same figure. 

7.2. RTDS Results 

The behavior of the results that excluded in RTDS met with results of the SGS 
designed in Matlab/Simulink. RSCAD allows user to apply fault during the run-
time. The fault is applied to the system and the current waveform displayed in 
Figure 10. Moreover, Figure 10 shows the time needed to detect the failure in 
the SGS as designed in RTDS. The peak value of the last normal signal measured 
at 0.026 s as 389 A and fault current exceeded maximum rated current 383 at 
0.040 s. The system needed about 14 ms to detect the fault. Figure 11 shows that 
faulty line isolated after three cycles within 45 ms.  
 

 
Figure 6. Current at all locations P. 
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Figure 7. Measured currents at all locations P before fault, during fault condi-
tion, and after isolating faulty load. 

 

 
Figure 8. Current waveform at faulty load during fault condition using Matlab/Simulink. 

 

 
Figure 9. Isolating faulty load after three cycles using Matlab/Simulink. 
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Figure 10. Current waveform at faulty load during fault condition using RTDS. 

 

 
Figure 11. Isolating faulty load after three cycles using RTDS. 

 
Table 3, concludes the time taken to detect the faulty condition in the system, 

the faulty location, and the time needed to isolate the faulty load after three 
cycles in both simulation softwares which are the Matlab/Simulink and RTDS. 

8. Conclusion 

This paper discussed failures in the SGS from different aspects. First, this paper 
discussed the topology of the SGS and what distinguishes the SGS from the con-
ventional power system. Also, the impact of RERs on the stability of the SGS is 
explored in chapter 3. Then, power failures in the SGS including reasons of oc-
currence, types of power failures, protection, and fault management are illustrated  
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Table 3. Results table. 

 Detecting Time Faulty Load Isolating Load 

 (ms) Location (ms) 

Matlab 12.9 Load 4 50 

RTDS 14 Load 4 45 

 
in this paper. Immediate response to power failures is important to protect 
components and to avoid power outages in the SGS. Fault management study 
including detecting, locating, and isolating faulty line has been investigated in 
this paper using Matlab/Simulink and RTDS software. Both softwares are ex-
plained in this paper. A phase-to-ground short circuit fault was applied to the 
SGS and was detected within milliseconds which allow initiating a warning to 
operators. Measured currents at locations P are used to locate the fault in the 
SGS. After that, faulty line was isolated from the system using breakers for pro-
tection purposes. This study applies a grid-connected SGS. Simulation results 
show the importance of shedding faulty load and improving the stability of the 
SGS to reach customer satisfaction. To sum it up, this paper focuses on illustrat-
ing different types of power failures that are subject to occur in an SGS along 
with promising solutions to these types of faults. Also, a fault management in-
cluding fault detection, locations and isolation of faulty line has been investi-
gated in this paper by using Matlab/Simulink and RTDS softwares. For further 
study, more details about fault in the communication/control network of SGS 
could be provided. Also, a physical relay could be interfaced with the RTDS 
software to form a HIL study. The HIL will enhance results about fault detecting 
and isolating. Therefore, studying power failures in the SGS from different as-
pects are important for stability study of the SGS. 
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