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Abstract 
In the present study, the imitation of heavy rainfall event which occurred over 
Jharkhand during 18 August 2016 was taken as a case study. Weather Re-
search and Forecasting (WRF) model has been utilized for this study. National 
Centers for Environmental Prediction (NCEP) analysis data is compared with 
GSMaP data with different combination of physical parameterization scheme 
like microphysics (MP) and cumulus parameterization (CP). In the present 
study, three MP schemes: Kessler scheme, Lin et al. scheme and WRF Sin-
gle-moment 6-class scheme with combination of three CP schemes: 
Betts-Miller-Janjic scheme, Multi-scale Kain-Fritsch scheme and New simpli-
fied Arakawa-Schubert scheme have been used. The model predicted humidi-
ty, temperature and precipitation were compared with the GSMaP product. 
The model nicely depicted the cloud pattern and recognized the rain event 
spatially. The obtained result shows that the model overestimates the precipi-
tation for all the schemes. 
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1. Introduction 

Numerical Weather Prediction (NWP) models, which include the Weather Re-
search and Forecasting (WRF) model, have gained large attention in climate and 
weather prediction over the twenty first century. Solving atmospheric governing 
equations and producing simulation is the main objective of any NWP model 
[1]. They’ve dynamical cores that represent atmospheric techniques and physical 
schemes that clear up the physics in sub-grid scale method. Resolving sub-grid 
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techniques requires parameterization which include the cumulus parameteriza-
tion schemes [2] [3] and the microphysical schemes [3] [4]. They play an im-
portant role in figuring out the vertical structure of moisture and temperature 
fields of the ecosystem [4]. The use of NWP models in precipitation forecasting 
is already mounted in lots of operational weather and prediction centers. This 
will be partially defined with the aid of the demand of progressed precipitation 
prediction due to the fact that precipitation impacts many financial sectors, in-
cluding agriculture [5] [6], fisheries [7], transport and different economic activi-
ties [8] [9]. Correct precipitation monitoring and prediction is consequently es-
sential for spatial and temporal variability evaluation [9] in addition to weather 
change studies [10]. 

Many different parameterization schemes have been developed by various re-
searchers. These schemes have some limitations in predicting of the intensity 
and track of cyclones. Chang et al. (2009) [11] considered affectability of land 
surface parameterization on imitation of substantial precipitation occasions with 
two mesoscale models, in particular MM5 and WRF, recommending that the 
precipitation prediction is better simulated by WRF as distinguished with MM5 
model [12] [13] [14]. Cloud microphysics parameterization schemes desperately 
impact on forecasted track [15]. Microphysics schemes also considered a key 
parameter in so many fields like: hydrology, environment and meteorology, be-
cause it merges energy fluxes between the surface and the atmosphere [16] [17] 
[18] [19] [20]. 

An objective of this study is to evaluate microphysics and cumulus paramete-
rization scheme sensitivity in WRF model over Jharkhand and adjoining region 
during 0000 UTC 18 August 2016 to 0000 UTC 19 August 2016. 

2. Model Description and Physical Parameterization Scheme  
Options 

2.1. Model Description 

The WRF version 3.7.1 and its three dimensional variational (3D-Var) assimila-
tion system were utilized for an extreme rainfall event over Jharkhand. Model is 
non-hydrostatic, primitive equation and multiple nesting capabilities to enhance 
resolution over the area of interest. The model which uses horizontal grid is an 
engaged with Arakawa C-grid staggering and it is fully compressible system of 
equations. The model domain used in this study has been depicted in Figure 1 
with 10 km spatial resolution and 32 vertical levels over Jharkhand and adjoin-
ing region using the boundary condition of NCEP. The detailed configuration of 
WRF model is given in Table 1. 

2.2. Physical Parameterization Schemes 

The microphysics schemes give the information about the precipitation, cloud 
and water vapor process. In this study, three different MP schemes have been 
used to imitate the precipitation event over Jharkhand during 18 August 2016. 
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Figure 1. The model domain used in this study. 

 
Table 1. The model configuration used in this study. 

Number of domains 1 

Dynamics Non-hydrostatic 

Horizontal grid resolution 10 km 

Integration time step 90 s 

Number of grid points 300 × 300 

Horizontal grid distribution Arakawa C-grid 

Map projection Mercator 

Time integration 3rd order Runge-Kutta 

Microphysics (MP) 
Kessler Scheme 
Lin et al. Scheme 
WRF Single-moment 6-class Scheme 

PBL parameterization Yonsei University scheme (YSU) 

Cumulus parameterization schemes 
Moisture-advection-based Trigger 
Multi-scale Kain-Fritsch Scheme 
New Simplified Arakawa-Schubert Scheme 

 
The details of the three MP schemes are given below: 

Kessler Scheme: The research displays the character of all likelihood associa-
tions among circulations of rain, cloud, water vapor and snow with vertical and 
horizontal winds, compressibility of the surroundings, divergence of the wind 
and the energy distribution. The discoveries additionally asset translation of 
perceptions and they provide instructions to efforts towards synthetic augmen-
tation of precipitation. 
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Lin et al. Scheme: It uses two-dimensional, time-based cloud model. It simu-
lates water substance in six distinctive forms: cloud water, water vapor, snow, 
rain, snow and hail, i.e. graupel. The majority of water microphysical paramete-
rization methods which have been used by the model to symbolize the precipita-
tion fields are all assumed to observe exponential size distribution capabilities. 

WRF Single-moment 6-class Scheme: In this scheme revised ice-microphysics 
is used in addition to the simple (WRF Single-Moment 3-class Microphysics 
scheme; WSM3) and mixed-phase (WRF Single-Moment 5-class Microphysics 
scheme; WSM5). The WSM6 was developed for the incorporation of graupel as 
another predictive variable. 

Three MP schemes with combination of three CP schemes have been used to 
simulate the heavy rainfall event. The details of three CP schemes have been 
given below: 

Betts-Miller-Janjic Scheme: Betts and Miller proposed a convective adjust-
ment scheme that consists of both shallow and deep convection. The deep con-
vection in the Betts–Miller scheme is much like the opposite modification 
schemes. It makes use of experimentally based quasi-equilibrium thermody-
namic profiles as a kind of perspective state in place of a wet adiabatic condition. 
The fundamental form of those quasi-equilibrium reference profiles is con-
structed absolutely in light of the various perceptions. The production of the 
reference profiles and the determination of the unwinding timescale are funda-
mental additives substances of the Betts-Miller scheme. Perceptions display that 
quasi equilibria are one of a kind for uncommon convective areas; in this man-
ner, for appropriate production of reference profiles, it is essential to track the 
alteration parameters for various convective regions. 

Multi-scale Kain-Fritsch Scheme: An updated Kain-Fritsch (KF) scheme is 
based on the study of sub grid-scale, cloud-radiation interactions for improving 
high-resolution precipitation forecast. In this scheme grid resolution dependen-
cy is introduced, the adjustment entrainment process and timescale that influ-
ence surface precipitation are modified. 

New Simplified Arakawa-Schubert Scheme: The Simplified Arakawa-Schubert 
scheme parameterizes the impact of deep convection at the surroundings 
(represented through the model state variables) within the following way. First, 
an easy cloud model is used to determine the alternate in model state variables 
because of one entraining/detraining cloud type, according to unit cloud-base 
mass flux. Subsequently, the entire trade in state variables is retrieved via figur-
ing out the real cloud base mass flux, the usage of the quasi-equilibrium assump-
tion, wherein convection is assumed to be steady-state. This means that the tech-
nology of the cloud work feature (interpreted as entrainment-moderated convec-
tive available potential energy (CAPE)) by way of the big scale dynamics is in bal-
ance with the consumption of the cloud work feature by way of the convection. 

A detailed study on the impact of different combinations of MP and CP 
schemes on rainfall event using WRF-ARW model is carried out. Total 9 expe-
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riments were performed by using three different MP schemes coupling with 
three CP schemes. The details of the experiments are reported in Table 2. 

3. Case study and Data Used 
3.1. Case Study 

We have taken an extreme rainfall event which occurred at Jharkhand during 
18th August, 2016 as the case study. From GSMaP data 24 h accumulated rain-
fall during 0000 UTC 18 July 2016 - 0000 UTC 19 July 2016 is shown in Figure 
2. From Figure 2, we can see that there was 110 mm rainfall in 24 h at Jhark-
hand and adjoining region. 
 
Table 2. Description of the numerical experiments with their combinations. 

Experiment Name MP scheme CP scheme 

a1 KS Betts-Miller-Janjic Scheme 

a2 KS Multi-scale Kain-Fritsch Scheme 

a3 KS New Simplified Arakawa-Schubert Scheme 

b1 Lin Betts-Miller-Janjic Scheme 

b2 Lin Multi-scale Kain-Fritsch Scheme 

b3 Lin New Simplified Arakawa-Schubert Scheme 

c1 WSM-6 Betts-Miller-Janjic Scheme 

c2 WSM-6 Multi-scale Kain-Fritsch Scheme 

c3 WSM-6 New Simplified Arakawa-Schubert Scheme 

 

 
Figure 2. 24 h accumulated rainfall from GSMaP. 
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3.2. Data Used 

The thermodynamic profiles are retrieved from INSAT-3D data at 43 pressure 
levels and the retrieved data is available at L2B product from Meteorological & 
Oceanographic Satellite Data Archival Centre (MOSDAC) of Indian Space Re-
search Organization (ISRO) (url: http://www.mosdac.gov.in/). For generating 
the initial and boundary conditions the Global Forecast System (GFS), 
0.5 0.5×   resolution model forecast data from NCEP have been used. The 
Global Satellite Mapping of Precipitation (GSMaP) data is supported by Japan 
Science and Technology Agency (JST) and Japan Aerospace Exploration Agency 
(JAXA). The GSMaP data is used for the comparison. 

4. Data Assimilation Methodology 

The data assimilation is an improvement strategy for enhancing the initial con-
ditions by combination of the high-resolution perception information and mod-
el background information (GFS initial condition) through iterative methods. 
The 3D-Var assimilation procedure is a calculus-based technique and minimiz-
ing the error through minimizing the cost function ( )J x , characterized in Eq-
uation (1). The 3D-Var assimilation procedure is used conjugate gradient strat-
egy for minimizing the objective function. The subtle elements of the 3D-Var as-
similation strategies are accessible. 

( )

( ) ( ) ( )( ) ( )( )1 1        

b o

T Tb b o o

J x J J

x x B x x y H x R y H x− −

= +

= − − + − −
      (1) 

where 
( )J x  = total error 
bJ  = error in background 
oJ  = error in observation 

x  = current state 
bx  = background state 
oy  = observation vector 

B  = error covariance matrix of background state 
R  = error covariance matrix of observation 
( )H x  = observation operator 

5. Experimental Design 

Total ten experiments are performed for the present study, i.e. control (CNT) 
and experiment (EXP). In EXP there are nine cases already discussed. In both of 
the experiments initial model forecast has been configure for six hour started 
from 0018 UTC 17 August 2016 to 0000 UTC 18 August 2016 and take that as 
first guess (FG). For CNT run only GFS data is assimilated at 0000 UTC 18 Au-
gust 2016 to 0000 UTC 19 August 2016, while in EXP run GFS data along with 
INSAT-3D retrieved temperature and humidity profiles are assimilated. For 
both the experiments the WRF model has been integrated for 24 h starting from 
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0000 UTC 18 August 2016 to 0000 UTC 19 August 2016. The design of the expe-
riments can find in following Figure 3. 

6. Results and Discussion 

Vertical profile of domain average Root Mean Square Deviation (RMSD) for 24 
h temperature and humidity forecast for 500 hPa are shown in Figure 4 and 
Figure 5 respectively. Some experiment gives positive impact throughout the 
domain at 500 hPa. While vertical profile of domain average RMSD for 24 h 
temperature and humidity forecast for 850 hPa are shown in Figure 6 and Fig-
ure 7 respectively. It shows that temperature profile at 850 hPa gives negative 
improvement throughout the domain and humidity profile at 850 hPa gives pos-
itive improvement throughout the domain. 

Model simulated precipitation at 0000 UTC 18th August 2016 to 0000 UTC 
19th August 2016 using different MP schemes coupling with Betts-Miller-Janjic 
Scheme, Multi-scale Kain-Fritsch Scheme and New Simplified Arakawa-Schubert 
Scheme with the initial condition at 1800 UTC 17 August 2016 have been 
represented pictographically. The Figure 8 suggests that all the experiment overes-
timates the precipitation. In addition, experiment b2 and c2 match with the ac-
tual result taken from GSMaP data. All other results are also fine but b2 and c2 
are good results. The Lin et al. and WSM-6 MP scheme with combination of 
Multi-scale Kain-Fritsch CP scheme gives best results. 
 

 
Figure 3. Schematic diagram of the experiment design shows the data assimilation 
process and forecast. 

 

 
Figure 4. Vertical profile of domain average RMSD of 24 h temperature forecast 
from all experiments at 500 hPa. 
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Figure 5. Vertical profile of domain average RMSD of 24 h humidity forecast from all experi-
ments at 500 hPa. 

 

 
Figure 6. Vertical profile of domain average RMSD of 24 h temperature forecast from all experiments at 
850 hPa. 

 

 
Figure 7. Vertical profile of domain average RMSD of 24 h humidity forecast from all experiments at 850 
hPa. 
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Figure 8. Spatial distribution of improvement parameter in 24 h (0000 UTC 18 August 
2016 to 0000 UTC 19 August 2016) precipitation forecast for all experiments. 

7. Conclusion 

The present study utilizes the performance of the different parameterization 
schemes in WRF model at Jharkhand during 0000 UTC 18 August 2016 - 0000 
UTC 19 August 2016. It has been observed from the numerical experiments that 
the experiment b2 and c2 gives best match with actual rainfall. So, we conclude 
that Lin et al. Scheme and WRF Single-moment 6-class MP scheme with com-
bination of Multi-scale Kain-Fritsch CP scheme give good result for rainfall. 
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