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ABSTRACT 

This paper is concerned with the stability characteristics of nonlinear surface waves propagating along a left-handed 
substrate (LHM) and a non-linear dielectric cover. These characteristics have been simulated numerically by using the 
perturbation method. The growth rate of perturbation is computed by solving the dispersion equation of perturbation. I 
found that the stability of nonlinear surface waves is affected by the frequency dependence of the electric permittivity εh 
and magnetic permeability μh of the LHM. The spatial evolution of the steady state field amplitude is determined by 
using computer simulation method. The calculations show that with increasing the effective refractive index nx at fixed 
saturation parameter μp, the field distribution is sharpened and concentrated in the nonlinear medium. The waves are 
stable of forward and backward behavior. At higher values of nx, attenuated backward waves are observed. 
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1. Introduction 

Recently, there has been great interest in new type of 
electromagnetic materials called left-handed media [1]. 
Over fifty years ago, Veselago was the first to consider 
the left-handed meta-material (LHM) which he defined 
as media with simultaneously negative and almost real 
electric permittivity and magnetic permeability in some 
frequency range [2]. The electric and magnetic fields 
form a left-handed set of vectors with the wave vector [3]. 
These materials have been shown to exhibit unique 
properties, such as Snell law and Doppler shift. Smith, et 
al. [4] have built these materials by using two dimen- 
sional arrays of splitting resonators and wires and are 
operating the microwave range. Nonlinear surface waves 
propagating along the interface of linear and nonlinear 
media have a number of novel extraordinary properties 
which attracted attention of many investigators [5-8]. 
Understanding the stability of nonlinear surface waves is 
essential for the exploitation of these waves in various 
devices. There are numbers of approaches to the problem 
both using numerical simulations methods by Akhme- 
diev et al. [8] and Moloney et al. [5] and analytical meth- 
ods by Tran [6] which has been based on steady-state 
solutions to a nonlinear wave equation which contains an 
intensity dependent refractive index. The question is 
whether these wave solutions are stable on propagation 
of waves. Akhmediev et al. [8] had shown when the 
growth rate of perturbation of waves   is real, the sur- 

face waves are unstable and when   is imaginary, the 
waves are stable. Akhmediev et al. [7] explained the sta- 
bility behavior of antisymmetric and symmetric solutions 
of a linear core sandwiched between two nonlinear media. 
They showed that the antisymmetric wave is stable at 
high values of the propagation constant, in contrast to the 
symmetric wave. Hasegawa [9] studied the soliton ef- 
fects in various fibers, he reported that, optical soliton is 
formed by a balance between the dispersion velocity of 
the waves and the Kerr nonlinearity of the fiber. Sukho-
rukov et al. investigated the Spatial optical solitons in 
waveguide arrays, they predicted, two-dimensional (2D) 
networks of nonlinear waveguides which allow a possi- 
bility of realizing useful functional operations with dis- 
crete solitons such as signal switching, blocking, routing, 
and time gating [10,11]. Setzpfandt et al. described dis- 
crete solitons in quadratic waveguide arrays [12]. Their 
results demonstrated that a power threshold may appear 
for soliton formation, leading to a suppression of beam 
self-focusing which explains recent experimental obser- 
vations. Shabat and Mousa have studied the stability of 
nonlinear surface waves along the boundary of linear 
semiconductor [13] and along the boundary of lateral an- 
tiferromagnetic/nonmagnetic superlattice (LANS) [14]. 
These studies were carried out in a media with positive 
refractive index. Such media are called right handed ma- 
terials. 

This paper is concerned with the stability of nonlinear 
surface waves propagating along the boundary of left- 
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handed media [1] (LHM). 
To study the stability of the corresponding surface 

waves, it is necessary to select a particular form of the 
frequency dependence of the electric permittivity h  and 
magnetic permeability h  of the LHM, I solve this pro- 
blem by using computer simulation method [15]. 

The geometry is shown in Figure 1. It consists of a 
non-linear semi-infinite cladding contact everywhere to a 
linear, semi-infinite LHM substrate at  planar inter-
face. The coordinate system is such that, the y axis is 
normal to the interface and the wave vector is directed 
along the 

0y 

x  axis. 

2. Theoretical Analysis 

Since the wave propagation is in x-direction then, the 
Maxwell equations for S-polarized wave (TE) are re- 
duced to the following Equation [8] 

 22 ,E y E E   0           (1) 

The dielectric constant of the linear medium in the re-
gion  is 0y  h , while the dielectric function in region 

 is: 0y 
2

3
l E                 (2) 

Assuming that the nonlinear medium is self-focusing, 
the solution of the wave equation which is polarized along 
the z-axis is: 

    (1/2, , xi n x t
zE A ex y x y )         (3) 

where  ,A x y  is a slowly varying field envelope, xn  is 
the effective refractive index. 

By substituting Equation (3) into Equation (1), the 
equation for the slowly varying amplitude  ,A x y  is 
then [5] 
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Figure 1. Configuration of a single interface nonlinear 
cover/LHM substrate structure. 

is the decay constant of the nonlinear medium, 3  is the 
linear part dielectric function of the non linear medium, 
the coordinates x  and  are normalized by the factor y

c , and the fields are normalized by the factor 1 2
0 , 

where   is the wave angular frequency, c  is the light 
velocity in free space, and 0  is the non-linearity coeffi- 
cient. 

The investigation of the stability of nonlinear surface 
wave (NSW) propagation along the interface between the 
linear and non linear medium has been focused in look- 
ing for the steady-state solution    0,A x y A y  of 
Equation (4a) in the proposed structure as: 
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- At the interface between the two media  we as
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where  

 2 2
1 x h hk y n             (6b) 

is the decay constant of the linear medium
 and perme- 

ab

. 
Both a negative dielectric permittivity
ility are written as [3]: 

2 2

2 2 2
0

( ) 1 , ( ) 1p
h h

F   
  

   


     (6c) 

with plasma frequency  and resonance frequency 0 p . 
To determine th

m
e stability criterion for NSWs, I -nu

erically stimulated the steady-state solution of Equation 
(4a) with small perturbation as [8]: 

    
0

, ,p A x y A y f x y           (7) 

where  ,f x y  i
lution, 

s a perturbation function of the steady-
state so p  is the saturation parameter. 

Substituting uation (7) into Equation (4a), we canEq  
obtain: 
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We shall consider the  dependence of the perturba-
tio
form [8]: 

z
n function, so that the function can be written in the 
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2   

where  and  are functions of  only. We take
case 

1
, ,

x i r zx i r zf x y z u v e u v e

         (9) 

u v y  the 
2 2r 
tit

 for nonl
E

inear medium

et of d

. 
uSubs uting quation (9) into Eq ation (8), we obtain 

the s ifferential equations which have solutions 
decay as y   for self focused waves in nonlinear 
medium of the form: 

 

2
1 2 tanh 2 tanh

p y

u c e i p y y
 

    
2

2

1

2

2 tanh 2 tanh

2 2 tanh

2 2 tanh

p y

p y

p y

c e i p y y

v c e i p y

c e i p y












 

 

     
  

    

   (10) 

where  

  2
2 0 2, , 2 xy k y y k n        , 

where  1 2
1 ,p i   1 2,c c

cond
ect to

 are constants to be deter- 
mined from the boundary ition, and primes denote 

vatives with respthe deri  y . 
In a linear medium, the solutions are decaying as 

y   , 

1 2 1 2,s y s y s y s yu A e A e v A e A e
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 and 1 2,A A  are const

from the bo cond

ants to be  

determined undary itions. For a surface 
wave   is either real or im y, thus byaginar  a bit of alge- 
bra we can obtain a dispersion relation for determining   
of the form [8]: 

   

 

222 31 2 3 2p i i t p t t s p t      

2 221 2 0t p t s    
 (12a) 

where y  which implies  and  2 0tanht k 0 1t 

  1
0 0

2

h zk k y
k

      tan      (12b) 

Equation (12a) may be solved analy
ing each of the two expressions under the absolute value 
in

k

tically by expand- 

 terms of   up to the fourth order and by calculating 
the absolute values of these expressions, one obtains that 
[8] 

 2 0.533 1 2r t              (13) 

when 21 2, 0r rt      is real,  the growth rate   is 
related to r  by Reference [8], 2

2 
 th o be unsta

2r xk n  which 
causes ble. 

When 
e NSW t

21 2, 0r rt     is imaginary where    
becomes im ginary and NSW is staa ble. At 1 2t  , xn  is 

the critical refractive index in this case. 
olution of the perturbThe ev ed field amplitude  A y  

at the propagation distance x  is calculated b r-
mination of the constants 1 2 1 2, , ,c c A A  t

y th
hrough appl

tio

l

e dete
ica-

n of the boundary conditions at y = 0 as [5]: 

(1) 
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It is found by substituting Equations (5) & (7) into 
Equation (3), which  results in

(2) znl zlE E

y y

 


 
          (15a) 

Since the wave function u vanishes at the boundary, 
say y =10 then (3) 0 at 10

lNu y   

(4) 0 at 10lu y         (15b) 

At the initial pe  rturbation where , it is conven- 
ient to take 1

0x 
 2 1 andc c A2A   , 

ons (14) and (15), we can obt

dy the evolution

th
Equati
co

en by so
ain the 
 simu

lving the two 
values of the 

nstants 1 2 1 2, , ,c c A A . By numerical lation method 
it is easy to stu  of the steady-state field 
amplitude 

 , , , at 0, 2.9, and 3A x y z x x x   . 

The variation of the energy integral of the nonlinear 
surface waves with xn

h
 is also calculated analytically for 

different values of t e wave frequency through the inte-
gral of square perturbed field amplitude in linear and 
nonlinear medium as [8] 

   
0

2 2
, d , dl NL

0
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          (16) I

where  ,lA x y ,  ,NLA x y  
inear m

are the perturbed field ampli- 
tude i edium respect

 simu- 
struc- 

-

n linear and nonl ively. 

3. Computer Simulation and Discussion 

Some numerical calculations are presented for the
lation of the stability Equation (7) of the proposed 
ture, which consists of LHM substrate and a nonlinear di
electric cover. Computer simulation software (Maple) [15] 
is used in our computation, where the run takes a reasonable 
usage time. The parameters are [3] as follows: 

02π 10 , 2π 4p GHz GHz   , and 0.56F   and for 
the non-linear medium, 3 2.25  . Figures 2(a)-(c) show 
that for this set of parameters, the frequency ra

h

nge in which 
both and are negat

h
m 4 G Hz. 

For increasing values of wave frequency (
 ive is fro Hz to 6 G

2π ), Fig-
ures 2(a)-(c) display the spatial evolution of steady state 
field amplit  ude  ,lA x y ,  ,NLA x y  as a function of 
the wave frequency ( 2π ). I found that at 4xn   and 
wave frequency ( 2π 4.3 GHz  ), ( ,h h  ) are of values 
(–4.4, –3.185) res y as co ted from Equation 
(6c). The perturbed wa are unstable where owth 

pe
ves  the gr

ctivel mpu
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(a) 

 
(b) 

 
(c) 

Figure 2. The field distribution of the nonlinear surface 
waves A(y, z) for (a) ω/2π = 4.3 GHz,  growth rate  = 0.626; 
(b) (ω/2π) = 5.6 GHz,  = 1.337*I & (c) ω/2π = 5.9 GHz,  = 
1.347*I for μp = 0.3, ωp/2π = 10 GHz, ω0/2π = 4 GHz, ε3 = 
2.25 & propagation distance x = 3. 

rate of perturbation   is real (  = 0.626). The decay 
constant of NSW in nonlinear medium  2k y  = 3.708 
and the decay constant of NSW in linear medium  1k y  
= 1.39, t = 0.3755 as computed from Equations (4b), (6b) 
& (12b), respectively. For increasing value  (s of 2π ) 
to (5.6GHz and 5.9 GHz) the h  changes to the values (–
2.19, –1.875) while h  changes to the values (–0.144, –
0.037), the  1k y  is increased to (3.96, 3.99) and  2k y  
is constant because xn  is constant, t is increased to 
(1.0679, 1.076) so, the growth rate   becomes imagi-
nary of values (1.337*I, 1.347*I) respectively. The field 
distribution is sharpened where the wave’s turns from 
unstable to stable waves and concentrated in the non lin-
ear medium. This means that the stability of the waves is 
affected with the wave frequency. 

Figures 3(a)-(c) display the spatial evolution of  steady 
state field amplitude  ,lA x y ,  ,NLA x y  as a function 
of the refractive index xn . I found that at wave fre- 
quency ( 2π 4.9GHz  ), h  is of value (–3.169) & h  
is of value (–0.682). At xn  = 3, t

ate
he perturbed waves are 

stable where the growth r  of perturbation   is imagi- 
nary (  = 0.8266*I). The decay constant of NSW in 
nonlinear medium  2k y  = 2.598 and the decay constant 
of NSW in linear medium  1k y  = 2.615, t = 1.006. For 
increasing value of xn  to (4.5) the  2k y  is increased to 
(4.253) &  1k y  is in reased to (4.242) and t is de- 
creased to (1.002) so, the growth rate 

c
  still imaginary 

of value (1.463*I) respectively where the waves shifted 
to the nonlinear medium, with the subsequent excitation 
of the nonlinear stable surface waves of high energy (so- 
liton). At xn = 5, the perturbed waves still stable of de- 
creasing energy, the growth rate of perturbation (  = 
1.664*I). The decay constant of NSW in nonlinear me- 
dium  2k y  = 4.778 and the decay constant of NSW in 
linear medium  1k y  = 4.769, t = 1.0019. Figure 4, il- 
lustrates the energy flow I  of the nonlinear surface 
waves as a function of xn  for various values of p . For 

p  = 0.1, the wave’s energy is increased by increasing 

xn  where the waves are forward traveling. For increasing 
value of p  to (0.3), the high wave energy is concen-
trated at xn = 4.5 of forward traveling & then decreases 

increasing by xn . It shows that at values of 6xn  , the 
energy becomes negative, where the waves can be switched 
to the backward propagation as an effect of the LHM. 

These results are different from that obtained for the 
magnetic medium such as lateral antiferromagnetic/non- 
magnetic superlattice (LANS) [14] and gyrodielectric me- 
dium as a semiconductor [13]. The existence of the mag- 
netic matter causes the growth rate to be always real and 
the waves are always unstable. For a semiconductor sub- 
strate, the waves are stable of forward traveling. 

4. Conclusions 

The stability characteristics of nonlinear surface waves  
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Figure 3. The field distribution of the nonlinear su
waves A(y, z) for (a) nx = 3, th rate  = 0.8266; (b) nx = 



rface 
grow
4.5,  = 1.463*I and (c) nx = 5,  = 1.664*I for μp = 0.3, ωp/2π 

= 10 GHz, ω/2π = 4.9 GHz, ω0/2π = 4 GHz, ε3 = 2.25 and 
propagation distance x = 3. 

 

Figure 4. The energy flow I of the nonlinear surface waves 
as a function of nx for (1) μp = 0.1 and (2) μp = 0.3, ωp/2π 
10 GHz, ω/2π = 4.9 GHz, ω /2π = 4 GHz, ε  = 2.25 an

are investigated. I found that, 

= 
d 0 3

propagation distance x = 3. 
 
propagating along a left-handed substrate(LHM) and a 
non-linear dielectric cover 
the stability of the waves in LHM can be controlled by 
the frequency dependence of the electric permittivity and 
magnetic permeability of the LHM. By increasing the 
effective refractive index at fixed saturation parameter, 
the field distribution is sharpened which is implying the 
possibility of optical switching and the field concentrated 
in the nonlinear medium (optical soliton) which is useful 
for practical ultrahigh-speed communications. At higher 
values of xn , attenuated backward waves are observed. I 
believe that the stability which has been investigated and 
reported here may provide new opportunities for the 
design of future microwave-photonic devices. 
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