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Abstract 

The study aims at modelling and assessment of survival probability of a 
component experiencing two kinds of shocks namely, damage shock and fatal 
shock. Shocks are occurring randomly in time as events of a Poisson Process. 
The two cases of fixed/random threshold of components are studied. Survival 
probabilities of proposed models are derived. Maximum likelihood estimators 
(MLEs) of survival probabilities are obtained using the data from life testing 
experiments. Fisher information and asymptotic distribution of MLEs of pa-
rameters are obtained when a constant threshold is considered. Computation 
and comparison of estimators of two cases (constant threshold and random 
threshold) are made through simulation studies. The study recommends the 
consideration of threshold as a random variable. 
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1. Introduction 

Study of reliability can be broadly classified into two major aspects i.e. reliability 
modelling and reliability assessments. Modelling reliability aims at development 
of reliability model under certain assumptions. Here one discusses about confi-
guration of associated components, methods of reliability enhancement, the 
conditions under which the system functions at its best, etc. Here the point of 
interest is “system survival” and compensatory measures to increase system sur-
vival. 

On the counter part, reliability assessment involves processes such as identifi-
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cation of various modes of system failure, accordingly defining life testing expe-
riments, assigning parameter values to life distributions, repair distributions, 
threshold distributions and inferential procedures to evaluate the modelled re-
liability. To assess reliability, one needs data pertaining to system functioning or 
failure and is obtained through life testing experiments. 

Shock models have been studied by several authors. Here are a few references 
of contributions towards these models. Esary et al. (1973) studied the life distri-
bution properties of a device subjected to a sequence of shocks occurring ran-
domly in time according to a homogeneous Poisson process [1]. Abdel-Hameed 
and Proschan (1973) extended the results of [1] by assuming shocks that occur 
according to a nonhomogeneous Poisson process [2]. Barlow and Proschan 
(1975) discussed different varieties of general and cumulative shock models [3]. 
Abdel-Hameed and Proschan (1975) and Klefsjo (1981) considered general case 
in which shocks occur according to a nonstationary pure birth process [4] [5]. 
Ross (1981) presented a generalized Poisson shock model using increasing fail-
ure rate average (IFRA) stochastic processes [6]. Posner and Zuckerman (1986) 
proposed a replacement model for a semi-Markov shock model with additive 
damage [7]. Anderson (1987) considered a general shock model in which the 
time intervals between shocks have infinite expectations [8]. Savits (1988) stu-
died nonhomogeneous Poisson shock processes and the effect of different 
mean functions for the shock processes on the distributional properties of the 
joint component lifetimes [9]. Gut (1990) considered theory for stopped 
two-dimensional random walks to describe cumulative shock models [10]. 
Skoulakis (2000) studied system reliability subjected to shocks generated by re-
newal point process [11]. Mallor and Santos (2003) introduced a new shock 
model by considering the magnitude of the shock and interarrival time between 
shocks, which generalizes some of the classical shock models [12]. Munoli and 
Bhat (2011) derived the reliability function of non-accumulating damage shock 
model with successive shocks causing greater damage. They obtained Maximum 
Likelihood and Bayes estimators of reliability functions using the data from a 
type II censored sample without replacement life testing experiment [13]. 
Lindskog and McNeil (2003) studied Poisson shock models in the context of in-
surance loss modelling and credit risk modelling [14]. 

In most of the works cited above, it is observed that shocks are of one type, 
causing damage to the component (damage shock). But there are some cata-
strophic shocks whose impact is very high and the component fails at the occur-
rence of such shocks (fatal shock). The present study endeavours to model and 
assess survival probability of a component experiencing two kinds of shocks 
namely, damage shock and fatal shock. The two cases of fixed/random threshold 
of components are considered. Section 2 deals with the model description and 
discussions on real life examples. Assessment of Survival function is explained in 
Section 3. Section 4 deals with validation of derived results through simulation 
studies. The case of threshold being a random variable is considered in Section 5. 
Comparison of estimators obtained in two cases of fixed and random threshold 
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is outlined in Section 6. Results and findings are also discussed in the same Sec-
tion. 

2. Modelling Survival Probability 

A component or system is experiencing shocks occurring randomly in time as 
events of a Poisson process with intensity , 0λ λ > . Shocks are of two types. One 
is fatal shock, which causes failure of the system or component. Another is 
damage shock, which causes some amount of damage to the component. Dam-
ages are non-accumulating. Damages (X) are assumed to be independent and 
identical exponential random variables with parameter , 0θ θ > . The system or 
component fails either due to experiencing a fatal shock or whenever the 
amount of damage due to a damage shock exceeds its threshold u. If the damage 
does not exceed its threshold, the component functions as good as new one. The 
probability of occurrence of fatal shock is ( )1 p−  and that of damage shock is 
p. 

Let us consider threshold of the component as a known constant. The survival 
probability of the component at time t is given by: 

( )
( ) ( ) ( ) ( )1

1 0

e
1 e e

!

kp t
k p tu

k

p t
S t

k

λ
λθλ−

∞ − −−
=

= −∑              (1) 

The first part of above expression under summation represents the probability 
that the component experiences k number of damage shocks during ( )0, t , 
second part is the probability that the damages due to all k shocks are less than 
its threshold u. The third component is the probability that during ( )0, t  the 
component do not experience a fatal shock. During ( )0, t , the component may 
experience 0 shock or 1 shock or 2 shocks and so on … and hence the summa-
tion with 0,1,2, .k =   

Taking the terms independent of k outside the summation and further simpli-
fication leads to 

( ) ( )1 1 e

1 e
ut p

S t
θλ − − − −  =                     (2) 

( ) ( ) ( )1 1 10 1, 0,S S S t t/= ∞ = ↑ , implying that the survival probability of the 
component is non-increasing function of time t. 

The proposed model can be used to describe following real life examples: 
Example 1: Heart disease is the leading cause of death for both men and wom-

en. Heart is a muscular organ. Most common heart diseases are heart attack and 
cardiac arrest. But heart attacks don’t always kill instantly. Heart attacks occur 
when blood flow to the heart muscle is temporarily blocked, starving the muscle 
tissue of oxygen which causes scarring and damage to heart muscle (damage 
shock with amount of damage tolerable and the person survives with this heart 
attack). For a heart attack to quickly lead to death, the damage due to the heart 
needs to be great enough to cause the heart to beat irregularly and eventually stop 
entirely (damage due to a damage shock exceeding threshold). On the contrary, 
cardiac arrest occurs suddenly and often without warning. Cardiac arrest is ab-
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rupt loss of heart function, breathing and consciousness. It results from an elec-
tric disturbance in the heart that disrupts its pumping action, stopping blood flow 
to different organs and can lead to death (fatal shock). In this scenario, one will 
be interested to study the probability that the patient survives or fails with heart 
attack (damage shock) or with what probability the patient succumbs to cardiac 
arrest (fatal shock). By studying this, physicians, nutritionist can suggest remedial 
measures for: avoiding heart attack; if not avoidable, reducing the amount of 
damage and to make the cardiac arrest (fatal shock) a null event. 

Example 2: Credit-scoring systems aid the decision of whether to grant credit 
to an applicant or not. Traditionally, this is done by estimating the probability 
that an applicant will default. In recent years the aim has been changing towards 
choosing the customers of higher profit. In this case it is important to know that 
when a customer will default (fatal shock). It is possible that if the time to default 
is long, the acquired interest will compensate or even exceed losses resulting 
from default. Another factor that affects profitability is the case in which cus-
tomers close their account early or pay off the loan early by switching to another 
lender. Depending on when the actual repayment occurred, the lender will lose a 
proportion of the interest on the loan [15]. One can consider the number of 
times partial repayments made as damage shocks and the amount repaid is as 
damage caused due to damage shock. On the other hand, if a customer pays off 
the loan early then it will be considered as amount of damage due to a damage 
shock exceeding the threshold (outstanding loan amount). In this case, one will 
be interested to investigate the probability that a customer will default or the 
probability that a customer pays off the loan early. 

3. Assessment of the Survival Probability 

Suppose r components each with threshold u having life distribution 
( ) ( )11H t S t= −  are subjected to life testing experiment and the experiment is 

conducted until all of them fail. Out of r components, let 1r  components fail 
due to damage shock i.e. damage exceeding the threshold u and 2r  ( )1r r= −  
components fail due to occurrence of fatal shock. It is assumed that damage 
due to fatal shock is not observable. Let the ith component fail at th

in  shock, 
1,2, ,i r=  . Let , 1, 2, , ; 1, 2, ,ij iX i r j n= = 

 be a random variable (r.v.) 
representing the amount of damage due to jth damage shock to ith component. 

ijX ’s are assumed to be independent exponential random variables with pa-
rameter , 0θ θ > . 

Whenever a component fails due to a damage shock, it is assumed that the 
damage due to a shock at which the component fails is not observable but is 
known to exceed the component’s threshold u. Let ijt  be the time epoch at 
which jth shock has occurred to ith component, 1,2, , ; 1, 2, ,ij n i r= =  . The 
inter arrival times ( )1ij ijt t −−  are exponential random variables with parame-
ter pλ . For 1r  components that fail due to damage exceeding threshold, the 
joint distribution of r.v.s 1 2 1 1, , , , , , ,

i ii i i in i inn t t t X X −   is  
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( )
1

1 11
1 e e e

ni
ijni ji i

xp tr n n u
i p θλ θλ θ

−
=−− − −

=

∑∏                (3) 

Similarly, for 2r  components that fail due to fatal shock at th
in  shock, the 

joint distribution of r.v.’s 1 2 1 1, , , , , , ,
i ii i i in i inn t t t X X −   is  

( ) ( ) ( ) ( )1
112 11 11

1 e e 1 e e
ni

ij n nni j i ii i
x t tp tr n pn

i p pθλ λλ θ λ
−

−− =− −−− − −−
=

∑ −∏       (4) 

Combining the two cases, the joint distribution 1L  of all the involved r.v.’s 
is given by 

( ) ( )2 .. 1. 2 . . .. .
1 1 e e er x r un r n n r p t tL p p θλ λλ θ − +′− − − −= −             (5) 

where,  

( )2
. 1 2 . 11, ,

i i

r
n nin n n t t t −=

′= + = −∑  

1 2 21
.. .. 11 1 1 1 1, 2 .i

i i i

r n r r r
ij n n ni j i i ix x t t t t−

−= = = = =
= = + −∑ ∑ ∑ ∑ ∑  

Taking logarithm of sample likelihood ( 1L ), equating partial derivatives of 
( )1log L  with respect to , pθ  and λ  to zero, we get maximum likelihood 

estimators of , pθ  and λ  as 

( )

( )
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. . 2

. . .. 2
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ˆ

ˆ

ˆ
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′ − = ′ + 
′+

= 
′ ′+ 

                        (6) 

MLE ( )1̂S t  of survival function ( )1S t  is obtained using the MLEs of pa-
rameters [16] in expression (2). 

Asymptotic Distribution: To obtain the asymptotic distribution of 
ˆ ˆˆ, ,pθ λ , let us denote the Fisher Information Matrix of , ,pθ λ  as ( ), ,I pθ λ  

 ( ) ( )

( )

.
2

..

.
.. 2

0 0

, , 0

0

n r

I p b E t
n

E t

θ
θ λ

λ
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=  
 
 
  

                (7) 

where, 

( ) ( )
1 2 2

.. 1 1 1

1 1 12 ,
1

r r ri i i
i i i

n n n
E t

p p p pλ λ λ λ= = =

 − −
= + − +  − 
∑ ∑ ∑       (8) 

 
( )

. 2
2 21

n r rb
p p
−

= +
−

                       (9) 

From the asymptotic properties of MLE under regularity conditions and 
multivariate central limit theorem we have, 

( ) ( ) ( ) ( )1
3

ˆ ˆˆ, , 0,p p N Iθ θ λ λ − − − − →   
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1I −  is inverse of Fisher Information Matrix “ ( ), ,I pθ λ ” and it is given by 

( )( )
( )

( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )
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− 
=   − −    
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    − −       

   (10) 

4. Simulation Study 

Validation of proposed model and computation of estimators for different 
combinations of parameter values is done using Monte-Carlo Simulation. For 
the ith component, the random variables 1 2 1 1, , , , , ,

i ii i in i int t t X X −   are gener-
ated as follows: 

Step 1: A random number iV  is generated from ( )0,1U . If 

00 iV p p< < = , then it is considered that component has failed due to a 
damage shock.  

Step 2: Initialize 0in = ; for 0 0,λ λ θ θ= =  the exponential random varia-
ble 1iX  with parameter 0θ  is generated and the value of in  is incre-
mented by one. The process of generation of exponential random variables 
and incrementation of in  is carried out until 

iinX  is greater than u.  
Step 3: in  number of inter arrival times having exponential distribution 

with parameter 0 0p λ  are generated. Addition of these inter arrival times re-
sults in 

iint . Thus we get 1 1, , , ,
i ii i in nn X X t− . 

Step 4: If 0iV p≥ , it is considered that the component failure is due to a 
fatal shock. The process of generation of 1 1, , ,

ii i inn X X −  is same as Step 2. 
1in −  number of inter-arrival times having exponential distribution with pa-

rameter 0 0p λ  are generated. Using these inter arrival times, 1iint −  is ob-
tained. One inter-arrival time ( )1i iin int t −−  having exponential distribution 
with parameter ( )0 01 p λ−  is generated. 

Steps 1 to 4 are repeated for 20,25,35,50r = . The real life examples that 
are quoted in Section 2 justifies the consideration of r as 20, 25 (moderate 
sample) and 30,50r =  (large samples). In the example of heart disease, the 
number of patients will be moderately large and among them the cases of car-
diac arrests (death due to fatal shock) will be small. To get the non-zero 
number of cases of failure due to fatal shocks, r needs to be moderately large. 
The example of credit scoring systems, the number of loan (credit) accounts 
in any financial company is large and hence, the use of values of r as 35, 50.  

The statistics . .. .., ,n x t  and .t′  are computed using which estimators of 
( )1S t  are obtained and for given set of parameters, the survival probability 
( )1S t  is computed for ( )0.5 0.25 2.0t =  units of time. 
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5. Modelling Survival Probability When Threshold (Ui) Is  
Random Variable 

The threshold of the component or system is considered as random variable 
by many researchers. It is trivial assumption as the damage sustaining capaci-
ty depends on threshold and threshold of the component may vary due to raw 
materials used in its manufacturing, technology with which it is manufac-
tured, inbuilt capacity, physical properties, random factors that influence its 
shock sustaining capacity, etc. It is assumed that threshold iU  of the com-
ponent is exponential random variable with parameter , 0σ σ > . 

The survival probability of the component at time t is given by:  

( )
( ) ( ) ( )

( ) ( )
( )

1
2 0

1
0

1

e
e

!

e e
!

e

kp t k
p t

k

k
k

p t p t
k

pt

p t
S t

k

p t

k

λ
λ

λ λ

θλ
σ θ

λ θ
θ σ

θ λ
θ σ

−
∞ − −
=

∞− − −
=

 − − + 

 =  + 

 
 + =

=

∑

∑             

(11)

 

( ) ( ) ( )2 2 20 1, 0,S S S t t/= ∞ = ↑ , implying that the survival probability of the 
component is non-increasing function of time t.  

5.1. Assessment of the Survival Probability 

Suppose r components each with threshold , 1, 2, ,iU i r=   having life distri-
bution ( ) ( )21H t S t= −  are subjected to life testing experiment and the expe-
riment is conducted until all of them fail. Continuing the life testing experiment 
as in Section 3. 

The joint distribution 2L  of all the involved r.v.’s is given by  

( )
1

2. 2 . . .. . .. .
2 1 e e e e

r
rn r n n r p t t x urL p p λ λ θ σλ θ σ

σ θ
′− − − − − − = −  + 

      (12) 

where,  

( )2 1
. 1 2 . 1 ..1 1 1, , ,i

i i

r r n
n n iji i jn n n t t t x x−

−= = =
′= + = − =∑ ∑ ∑  

1 2 2
.. 1 .1 1 1 1, .

i i i

r r r r
n n n ii i i it t t t u u−= = = =

= + − =∑ ∑ ∑ ∑  

and the maximum likelihood estimators of , ,p λ σ  and θ  are obtained as 
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where σ̂  and θ̂  are to be obtained numerically using Newton-Raphson me-
thod. MLE ( )2Ŝ t  of survival function ( )2S t  is obtained using the MLEs of 
parameters in expression (11). 

5.2. Simulation Study 

The estimators are computed using Monte-Carlo simulation for random thre-
shold iU  case. For the ith component, the random variables  

1 2 1 1, , , , , , ,
i ii i i in i inU t t t X X −   are generated as follows: 

For given value of 0σ σ=  an exponential random variable iU  is generated 
and the remaining procedures are same as in Step 1 to Step 4 of Section 4. On 
the same lines estimators of ( )2S t  are computed for same set of r and t values 
of Section 4. 

6. Comparison of Estimators  

10000M =  simulations are carried out to compute mean square errors (MSEs) 
of ( )ˆ , 1, 2iS t i =  using the formula  

( )( ) ( ) ( )( )2

1
ˆ

ˆ , 1, 2
M

i ijj
i i

S t S t
MSE S t i

M
=

−
= =
∑

            (14) 

Table 1 and Table 2 provide the relative efficiencies (E) of ( )2Ŝ t  as com-
pared to ( )1̂S t  which is computed as the ratio of ( )( )1 1̂MSE S t  to 

( )( )2 2
ˆMSE S t  [17].  

 
Table 1. Survival probabilities, MSEs and Efficiencies for 0.4,  0.8,  1.2,p uλ= = =

0.83,  0.6σ θ= = . 

t ( )1S t  ( )2S t  
20r =  25r =  35r =  50r =  

MSE & E MSE & E MSE & E MSE & E 

0.50 0.73 0.72 
0.0051 

1.37 
0.0044 

1.66 
0.0037 

2.14 
0.0034 

2.95 
0.0037 0.0026 0.0017 0.0012 

0.75 0.62 0.61 
0.0076 

1.32 
0.0066 

1.60 
0.0056 

2.06 
0.0053 

2.84 
0.0058 0.0041 0.0027 0.0019 

1.00 0.53 0.51 
0.0090 

1.27 
0.0079 

1.53 
0.0068 

1.99 
0.0064 

2.73 
0.0071 0.0052 0.0034 0.0024 

1.25 0.45 0.43 
0.0094 

1.21 
0.0083 

1.47 
0.0072 

1.91 
0.0069 

2.62 
0.0078 0.0057 0.0038 0.0026 

1.50 0.39 0.37 
0.0091 

1.15 
0.0081 

1.41 
0.0071 

1.83 
0.0068 

2.51 
0.0079 0.0058 0.0039 0.0027 

1.75 0.33 0.31 
0.0083 

1.09 
0.0075 

1.34 
0.0066 

1.75 
0.0064 

2.40 
0.0076 0.0056 0.0038 0.0027 

2.00 0.28 0.26 
0.0074 

1.03 
0.0067 

1.28 
0.0059 

1.68 
0.0058 

2.30 
0.0072 0.0052 0.0035 0.0025 

Figures in bold represents ( )( )2 2
ˆMSE S t . 
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Table 2. Survival probabilities, MSEs and Efficiencies for 0.6,  0.4,  0.9,p uλ= = =  
1.1,  0.7σ θ= = . 

t ( )1S t  ( )2S t  
20r =  25r =  35r =  50r =  

MSE & E MSE & E MSE & E MSE & E 

0.50 0.87 0.86 
0.0027 

1.55 
0.0021 

2.07 
0.0019 

3.51 
0.0018 

4.84 
0.0017 0.0010 0.0005 0.0004 

0.75 0.81 0.79 
0.0048 

1.50 
0.0039 

2.02 
0.0035 

3.42 
0.0035 

4.71 
0.0032 0.0019 0.0010 0.0007 

1.00 0.75 0.74 
0.0068 

1.44 
0.0057 

1.98 
0.0053 

3.34 
0.0052 

4.57 
0.0047 0.0029 0.0016 0.0011 

1.25 0.70 0.68 
0.0087 

1.38 
0.0073 

1.93 
0.0068 

3.25 
0.0068 

4.44 
0.0063 0.0038 0.0021 0.0015 

1.50 0.65 0.63 
0.0102 

1.32 
0.0088 

1.88 
0.0082 

3.17 
0.0082 

4.32 
0.0077 0.0047 0.0026 0.0019 

1.75 0.60 0.58 
0.0113 

1.26 
0.0099 

1.82 
0.0094 

3.09 
0.0093 

4.19 
0.0090 0.0054 0.0030 0.0022 

2.00 0.56 0.54 
0.0121 

1.21 
0.0107 

1.77 
0.0102 

3.01 
0.0102 

4.07 
0.0101 0.0061 0.0034 0.0025 

Figures in bold represent ( )( )2 2
ˆMSE S t . 

7. Results and Conclusion 

From the tables it is clear that survival functions ( )1S t  and ( )2S t  decrease as 
t increases. MLEs of parameters maximize the likelihood of the joint distribution 
function. Further, using invariance property of MLE, it is easy to obtain the MLE 
of survival function. In case of random threshold, the MLEs of parameters are 
obtained numerically and hence asymptotic distribution of MLEs cannot be ob-
tained which is a limitation of this study. MLE, ( )2Ŝ t  overestimates the true 
value of survival function ( )2S t  and ( )1̂S t  underestimates the true value of 
survival function ( )1S t , the reason for which may be simulated random va-
riables in case of simulation study/a chance error if we are considering the real 
data. As the value of r increases, MSEs decrease. ( )2Ŝ t  performs better than 

( )1̂S t , so the study advocates consideration of threshold as a random variable 
and is a realistic assumption also. 
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