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Abstract 
The consideration of the time-varying covariate and time-varying coefficient 
effect in survival models are plausible and robust techniques. Such kind of 
analysis can be carried out with a general class of semiparametric transforma-
tion models. The aim of this article is to develop modified estimating equa-
tions under semiparametric transformation models of survival time with 
time-varying coefficient effect and time-varying continuous covariates. For 
this, it is important to organize the data in a counting process style and 
transform the time with standard transformation classes which shall be ap-
plied in this article. In the situation when the effect of coefficient and cova-
riates change over time, the widely used maximum likelihood estimation 
method becomes more complex and burdensome in estimating consistent es-
timates. To overcome this problem, alternatively, the modified estimating 
equations were applied to estimate the unknown parameters and unspecified 
monotone transformation functions. The estimating equations were modified 
to incorporate the time-varying effect in both coefficient and covariates. The 
performance of the proposed methods is tested through a simulation study. 
To sum up the study, the effect of possibly time-varying covariates and 
time-varying coefficients was evaluated in some special cases of semiparame-
tric transformation models. Finally, the results have shown that the role of the 
time-varying covariate in the semiparametric transformation models was 
plausible and credible. 
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1. Introduction 

In many experimental and observational studies such as randomized clinical tri-
als, agricultural experiments, and engineering and industrial production com-
monly we obtain time-to-end outcomes so-called survival time or failure time. 
In biomedical researches, the main concern is usually on the survival time, 
which is a time from defined origin until the defined endpoint or outcome [1]. 
The survival data have missing value raised through the censoring mechanisms. 
Censoring is the problem of not finding the exact time of an event during the 
experimental or observational studies, which makes the analysis much more 
complex. 

Central to the entire discipline of survival analysis, mostly right censoring ex-
ists. Besides, a time-varying covariate is a classical problem in modeling survival 
time. The semiparametric transformation models which have been attracted by 
several authors have been an important concept in the study of right censored 
survival time. The another important concept in analysing survival data is pro-
portionality assumption. Sometimes, in our experimental study, we have no 
warrantee of the fulfillment of this assumption. Because the effect of covariate 
may vary over time breaking the proportionality assumption for Cox proportional 
hazards model of [2]. In this situation, we need to consider the time-varying coeffi-
cient to our model. Due to this, the time-dependent effect and time-dependent 
covariates have been given attentions these days. Generally, someone may need to 
extend this model to more general model that can incorporate both time-varying 
covariate and time-varying effect. Thus the combination brings more general 
version. 

A key role of semiparametric transformation models (STM) is that the model 
provides a framework for deriving the effect of time-varying covariates and the 
effect of time-varying coefficients on failure time. In this model, since the model 
consists of different special cases inside, the failure of proportionality assump-
tion might not be much problem. 

The remaining part of this paper is organized as follows. Section 2 introduces 
the methods and model framework which are going to be used in the whole pa-
per and proposes a modified estimating equation for robust semiparametric 
transformation models. Section 3 presents a large sample theory and regularity 
conditions for the consistency and asymptotic properties of the proposed esti-
mators. Section 4 devotes simulation studies to check the performance of the 
proposed techniques. Finally, the conclusion is presented in Section 5. 
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2. Methods and Model Framework 

Here we start with some basic notations that are used throughout this paper. 
0T ≥  which is T +∈  be the survival time of interest, and ( )X t  be 1p×  

vectors of possibly time-varying covariates, where p is number covariates in-
cluded in the model. 

Where the covariate is allowed to vary over time, possibly the furthermost in-
stant tactic is to use the step-function as follows.  

( )
1, if ,
0, ,

r

r

t T
X t

t T
>

=  ≤
                       (1) 

where rT  is transaction time for change. 
Whenever the covariate only changes once at fixed time point and do not 

change after that, the step function is used. However, in some situations it is 
common to have covariate that change over time continuously and frequently at 
a time with the only requirement that the intervals of the observation need not 
be contiguous. Therefore, in this situation a simple way to code time-dependent 
covariates is using intervals of time and recorded in to two columns as the start, 
stop or time 1, time 2, entry, end and so forth. The “tmerge” package in R can do 
this arrangement in the survival library. 

When the censoring time is denoted by C, the failure or censor time represented 
by Y  is the minimum of failure time of censoring time and failure time; i.e.; 

( )min ,Y T C= . We write ( )T Cδ = ≤  for the event indicator. Finally, the 
summarized n independent random vectors of observations are formulated as 

( ){ }, , .i i i iO Y X tδ=                          (2) 

2.1. The Semiparametric Transformation Models 

The flexibility extended general class of semiparametric transformation models 
with the effect of time-varying coefficients is formulated 

( ) ( ) ,  log ,t t Xϑ ε ε′= − + =                    (3) 

where X is a set of covariates, the set of time-varying regression coefficients or 
parameters ( ) ( )logt Tϑ = , where ( )log T  is a natural logarithm or logarithm 
of base e 2.71828=   and the unspecified continuously differentiable mono-
tone arbitrary transformation function ( ) ( )0. log .= Λ  satisfying ( )0 = −∞ , 
are unknown and the extraneous random error term |log Xε = ⊥  comes 
from unrestricted well-known parametric distributions εF ; see [3]. The unspe-
cified monotonically increasing transformation function ( ) ( )0 00

d
t

t u uλΛ = ∫  is 
cumulative baseline hazard function satisfying ( )0 0 0Λ = . Then the conditional 
distribution is formulated as 

( ) ( ) ( ) ( )( )| | | .T X t x Pr T t X x t t Xε ϑ′= ≤ = = +F F          (4) 

However, the model (3) does not applicable for time-varying covariate. Then, 
with the extension of time-varying covariates, the special cases of the transfor-
mation models consider proportional hazards (PH) model and proportional 
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odds (PO) model. These special models are based on the given distribution of 
random error term ε  corresponds to extreme value distribution and the stan-
dard logistic distribution respectively [4] [5] [6]. 

Let ( )i t  be the counting process recording the number of events that have 
occurred by time t and let ( )X t  be a set of predictors which contains a vector 
of possibly time-varying covariates. We specify that the cumulative intensity 
function for ( )i t  conditional on ( ) ( ): ; }X t X u u t≤  and therefore, equiva-
lent formulation of model (3) can be expressed as  

( ) ( ){ } ( ) ( ) ( ){ }( )0
| d ,

t
t X t x t u u X uε ϑ′Λ = = Φ Λ +∫         (5) 

where ( ) ( ){ }|t X t x tΛ =  is subject-specific cumulative hazards function under 
completely specified continuous monotonically increasing transformation func-
tion ( ).Φ  satisfying for ( )0 0Φ =  and ( )Φ ∞ = ∞ . Here the independent 
identically distributed (i.i.d) random variable   with known distribution is 
unobservable positive noise associated to random biological features. 

For strictly increasing transformation function ( ).Φ , the class of Box-Cox 
transformations which was recently used by [7] is also considered here. For the 
two special cases of transformation model classes namely Proportional hazards 
(PH) and proportional odds (PO) models, we reflect on the Box-Cox transfor-
mation functions  

( )
( )

( )

1 1
,   0,

log 1 ,     0,

x
x

x

ρ

ρ
ρ

ρ

 + −
>

Φ = 
 + =

                    (6) 

and the class of logarithmic transformation  

( )
( )log 1

,   0,

,                  0.

rx
rx r

x r

 +
>Φ = 

 =

                    (7) 

Therefore, the choice of ( )x xΦ =  when either 1ρ =  or 0r = , the special 
case of transformation model indeed yields PH model for survival data. Equiva-
lently, the choice of ( ) ( )log 1x xΦ = +  for either 0ρ =  or 1r = , the special 
case of transformation model indeed yields PO model for survival data.  

Remark: Specifying the function Φ  while leaving the function 0Λ  unspeci-
fied is equivalent to specifying the distribution of ε  while leaving the function 
  unspecified. Non-identifiability arises if both Φ  and 0Λ  (or both   and 
ε ) are unspecified and 0ϑ =  ([3], p. 169) which was quoted by [8]. 

The Modified Estimating Equations 
Before developing estimating equations, let us impose on the following two un-
ignorable assumptions. 

Assumption 1: The parameter space of Θ  of ϑ  is bounded open subset of 
k . 
Assumption 2: The random variable censoring time C is the independent of 
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random variable time of failure or event T given possibly time varying covariates 
( )X t  i.e.; ( )| |C T X t⊥ . 
To develop the estimating equations to estimate the unknown parameter ϑ  

and unknown strictly increasing monotonic function ( )u , estimating equa-
tions of [5] which has been lately used by several authors for example [9] [10] 
[11] and [12] is modified for the effect of time-varying coeffcients and time-varying 
covariates. 

In this paper we suppose, 1 20 rt t t≤ ≤ ≤ ≤ ≤ ∞  for the r failure times among 
the n observations. Furthermore, we suppose ( ).ελ  and ( ).εΛ  be the known 
hazard and cumulative hazard functions of ε , respectively. Let us propose the 
true values of ( )t  and ( )tϑ  denoted by ( )0 .  and ( )0 .  respectively. 
Therefore, following the usual counting process notation, let 

( ) ( ) ( ) ( ), , 1 ,i i i iY t I Y t N t I Y tδ δ= ≥ = ≤ =                (8) 

are an at-risk indicator process and the distinct ordered uncensored failure times 

1, , ry y  respectively. Suppose ( ) ( ) ( ){ }, ,i i iY t N t M t  be the sample analogues 
of ( ) ( ) ( ){ }, ,Y t N t M t . Thus, the martingale decomposition can minimize the 
complexity of the estimation of equations by constructing the following easily 
tractable formula.  

( ) ( ) ( ) ( ) ( ) ( ){ }( )0 00
d ,

t
i i iM t N t Y u u u X uε ϑ′= −Φ Λ +∫          (9) 

for complete σ-field   since  

( )( )
( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }( )0 00

d |

ˆ ˆ d ,

i

t
i i i i

E N t t

Y t t X t t Y u u u X uε ελ ϑ ϑ

 − 

′ ′= + Φ Λ +∫


 
 (10) 

where ( ) ( )d. .
dt

Φ = Φ , ( )ˆ tϑ  and ( )ˆ t  denote the estimators of ( )tϑ  and  

( )t  and the mean of a martingale process with respect to   is zero. 
Lemma 1: The mean of the derivative of regular martingale process is zero. 

( )( )d 0.iE M t =                         (11) 

Thus, slightly modified estimating equations of [5] are proposed by making 
possibly time-varying covariate under consideration. The two modified estimat-
ing equations are  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 |0
1

, . d 0,
i

n t
i i iT X t

i
Q t X u N u u X u uϑ λ ϑ

=

 ′= − + = ∑∫  (12) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ){ } ( )2 |
1

, . d 0, 0 ,
i

n

i T X it
i

Q t N t t X t t tϑ λ ϑ
=

 ′= − + = ≥ ∑   (13) 

where  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }( )

|

0
d ,

iT X it

t
i i i i

t X t t

Y t u X u u Y u u X u uε ε

λ ϑ

λ ϑ ϑ

′ +

′ ′= + Φ Λ +∫


 
  (14) 

is the intensity function for ( )iN t  and ( ).  is nondecreasing function satis-
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fying ( )0 = −∞ . Therefore, this requirement in turn ensures that for any fi-
nite number k, ( ){ }0 0kεΛ + = . 

For the special case when we assume the Cox’s proportional hazards model of 
[5] in which ( ) ( ) ( )expt t tλ = Λ = , while ( )x xΦ = , and  

( )( )( ) ( ) ( )( ) ( )
( ) ( ) ( )( )

1

1

d
d exp exp

exp

n
ii

n
i ii

N t
t t t

Y t t X t
ϑ

ϑ
=

=

′+ ∗ =
′∗

∑
∑

  , 

therefore, by plugging this in (12) we simply obtain  

( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( )1

0
1 1

exp
d .

exp

n
n j j ji

i in
i j ji

X t Y t t X t
X t N t

Y t t X t

ϑ

ϑ

∞ =

=
=

 ′ ′ − 
′  

∑
∑∫ ∑

       (15) 

Someone may use computationally easiest alternative versions of (12) which 
were first mentioned by [5] and lately by [11]. 

Finally, the survival function of T given possibly time-varying covariates ( )X t  
can easily be derived from the model (5) as follows.  

( ) ( ){ } ( ) ( ) ( ){ }( ){ }| 0
| exp d .

t

T X tS t x t u u X uε ϑ′= −Φ Λ +∫          (16) 

Therefore, the cumulative hazard function is given by 

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )( )ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ , , .; | log , , .; | ,T n n i T n n it t t X t S t t t X tϑ ϑ ϑ ϑΛ = −  (17) 

thus,  

( ) ( )( ) ( )( )( )
( )( ) ( ) ( ){ }( ){ }0

ˆ ˆ ˆˆ , , .; |

ˆ ˆ ˆlog exp d ; .

T n n i

t
n n i

t t t X t

u u u X uε

ϑ ϑ

ϑ ϑ

Λ

 ′= − −Φ Λ +  ∫




       (18) 

Thus, the true induced intensity (hazard) function for failure time T given 
possibly time-varying covariates ( )X t  is the derivative of the true cumulative 
intensity function of Equation (18) which is defined as  

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )( )d, , .; | , , .; | ,
dT i T it t t X t t t t X t

t
λ ϑ ϑ ϑ ϑ= Λ   (19) 

therefore, to ease the notations without lose of truth, here we propose some re-
presentations  

( ) ( )( ) ( )( )( ) ( )( )( ) ( ) ( ) ( ), , .; | , , | ,   ,T i it t t X t h t X t t t t
t

λ ϑ ϑ ϑ ∂
= ∗ =

∂
       (20) 

where  

( ) ( )( )
( )( ) ( ) ( ){ }( ) ( )( ) ( ) ( ){ }0

, , |

ˆ ˆ ˆ ˆ ˆ ˆd ; ; ,

i

t
n n i n n i

h t t X t

u u u X u u u u X uε ε

ϑ

ϑ ϑ λ ϑ ϑ′ ′= Φ Λ + ∗ +∫







 
(21) 

where ( ) ( )t t
t
∂

Φ = Φ
∂

 . 

Now, we set a zero-mean martingale process with respective filtration   of 
complete ( ) ( ) ( ){ }, , ,0i iY u N u X u u tσ ≤ ≤  as  
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( ) ( ) ( ) ( ) ( )( ) ( )( )( )0
, , .; | d .

t
i i i T iM t N t Y u t t t X t uλ ϑ ϑ= − ∫        (22) 

Thus, by imposing at Lemma 1, we modify the estimating Equation (12) and 
Equation (13) as  

( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )( )( )
1

0
1

, .

d , , .; | d 0,
n t

i i i T i
i

Q t

X u N u Y u u u u X u u

ϑ

λ ϑ ϑ
=

 = − = ∑∫




 (23) 

( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( ) ( )

2

1

, .

d , , .; | d 0 0 .
n

i i T i
i

Q t

N t Y t t t t X t t t

ϑ

λ ϑ ϑ
=

 = − = ≥ ∑




   (24) 

3. Large Sample Theory and Conditions 

Some regularity conditions are necessarily imposed here. 
C1: The covariate vectors are bounded in the sense that ( ). 1Pr L< =  for 

some constant 0L >  and the possibly time-varying covariate ( )X t  has a un-
iformly bounded variation on [ ]0,  and its left limit exists with any t where 
  is the maximum follow-up time. 

C2: The true value of ( )tϑ  denote by ( )0 tϑ , lies in the interior of a known 
compact set Θ  in kR  and the true value of ( ).  denote by ( )0 .  is con-
tinuously positive differentiable on the closed interval [ ]0, . 

C3: The transformation ( ).Φ  is at least thrice continuously differentiable on 
interval [ )0,∞  with ( )0 0Φ =  and ( ) ( ). 0,kΦ > Φ ∞ = ∞ , and  

( )0sup . , 1, 2,3k
u k≥ Φ < ∞ = , where ( ).kΦ  denotes kth derivatives of ( ).Φ . 

C4: ( ).εΛ  is a strictly increasing positive function on interval [ ]0,  and 

( ).εΛ  is continuously differentiable. 
C5: For any given finite scalar k, ( ).ελ  is strictly positive and ( ).ελ  is 

bounded and continuously differentiable on interval ( ], k−∞ , where the super-
script dot always refers derivatives. 

C6: Both the variance covariance matrices Ψ  and Σ  are nonsingular. 
Theorem 1: Under some suitable regularity conditions C1-C6 in order to en-

sure CLT for counting process martingale holds, ( )n̂ tϑ  is consistent estimator 
of the true parameter ( )0 tϑ , i.e.;  

( ) ( )( ) ( ) ( )
1

1 12
0

ˆ 0, .d
nn t t Nϑ ϑ − − ′− → Ψ Σ Ψ 

 
            (25) 

Thus, similar to [5] [9] [12] and others, the asymptotic variance of estimator 
( )n̂ tϑ  can be estimated consistently by estimating Ψ  and Σ  consistently. 

Theorem 2: Under some suitable conditions C1-C6, ( )( )ˆ ˆ;n nt tϑ  is consistent 
under the metric ( ),d ⋅ ⋅ , where for any two nondecreasing functions ( )( )ˆ ˆ;n nt tϑ  
and ( )t  on interval [ )0,∞  such that ( ) ( )0

ˆ 0 0n = = −∞  ,  

( )( ) ( )( ) ( )( ) ( ) [ ]( )0 0
ˆ ˆ ˆ ˆ; , sup ; : , 0,P

n n n nd t t t t t t t bϑ ϑ= − ∈ →      (26) 

for any fixed ( ]0,b∈  , where ( )( )inf : 0t P Y t= > = . The following theo-
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rem establishes the asymptotic distribution of the estimated distribution. 

4. Simulation Study 

The data is simulated from Cox model in four cases, such as with fixed cova-
riates, with fixed covariates and time-varying coefficients, with time-varying co-
variates and with time-varying covariates and time-dependent effects simulta-
neously. The data was generated by using sim.survdata() under R package “coxed” 
based on the flexible hazard methods described by [13]. The survival time data 
with three continous covariates was generated with sample size n = 200 and 
maximum duration 50 units using sim.survdata(). By default sim.survdata() ge-
nerates the survival time and three covariates from standard normal distribu-
tion. However, we can adjust for other characteristics of covariates from differ-
ent distributions for fixed covariate case. 

Required data structure for time-dependent covariate is technically different 
from the survival data structure with baseline covariates. The dependent variable 
for Cox model in survival data can be arranged by using “Surv()” function in 
survival package of R software. Commonly it has two arguments survival time 
and a censoring time variables. However, for in the case of time-varying cova-
riates the survival time variable setup is divided in to two sections referring start 
and end of discrete intervals, which in turn permits a covariate to be measured 
in different values across different intervals for the same observations. Thus, in 
the case of time dependent covariates, we set type = “tvc” in “sim.survdata()” 
function to generated survival time data with time varying covariates. Then the 
survival durations are generated again using proportional hazards, and are 
passed to the “permalgorithm()” functionin the “permAlgo” package to generate 
the time-varying data structure [14]. In the case of time-dependent covariates, 
the type = “tvc” option of sim.survdata does not allow to use user supplied data 
for the covariates, as a time-varying covariate is expressed overtime frames 
which themselves convey part of the variation of the times, and then the time is 
generated [15]. 

The usual proportionality assumptions of Cox proportional hazard model fails 
when the coefficient effect varies through over time. The data for time-dependent 
coefficients can similarly generated using sim.survdata() function by setting the 
type = “tvbeta” option inside the function. Whenever this option sets, the first 
coefficient, whether coefficients are user-supplied or randomly generated, is in-
teracted with natural logarithm of the time counter from 1 to maximum time T 
[15]. Then the sim.survdata() function generates survival time from proportion-
al hazards model, and saves the coefficients in designed matrix form to allow 
their dependence on time. So to generate the data with the time-dependent coef-
ficients we set type = “tvbeta”. 

The data for more flexible and general cox model with the time-dependent 
coefficients and the time-dependent covariates can similarly generated using 
sim.survdata() function by setting the type = c(“tv”, ”tvbeta”) option inside the 
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function. Finally, semiparametric transformation models are applied for the si-
mulated data. The different models were compared based on their performance 
in precision. 

4.1. Computational Algorithm 

Since we have more than one unknown items to be estimated, it is necessary to 
apply some sophisticated iterative algorithms to handle the iteration problem. 
Thus, in this paper expectation-maximization (EM) algorithm is proposed to es-
timate unknown true parameter ( )0 tϑ  and nondecreasing monotone function 

( )( )0 .; tϑ . In this concept, it is necessary to fix one of them and estimate the 
another one and in terms of the fixed one and vice versa. Therefore, as it was 
done in [5], it is not difficult to show the unique solution of (12), (13) in H, for 
every fixed value of ( )tϑ . Consequently, Equation (3) and Equation (5) logically 
suggest the following iterative algorithms for computing ( ) ( )( )( )ˆ ˆ ˆ, .;n n nt tϑ ϑ . 

Step 0: Opt an initial value of ϑ , denoted by ( )0ϑ . 
Step 1: For each kt , obtain ( ) ( )0 tϑ  and ( ) ( )0

1t  by solving Equation (12) 
and Equation (13) by setting  
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Step 2: Then obtain new estimate of ( )tϑ  by solving (12) with  
( ) ( ) ( )0ˆ

k kt t=   as obtained in Step 1. 
Step 3: Set ( ) ( )0 tϑ  to be the estimator obtained in Step 2 and repeat Steps 1 

and 2 until prescribed convergence criteria are met based on Equation (12) and 
Equation (13). 

4.2. Numerical Results 

This subsection explores the numerical results based on simulation studies through 
figures and numerical analysis. This numerical result is expected to evaluate the 
performance of the proposed model.  

Figure 1 illustrates about the baseline characteristics of survival data. The top 
panel of the figure refers the feature of probability density function, cumulative 
distribution function, hazard function, and cumulative hazard function of failure 
time. The bottom panel shows the feature of simulated duration in terms of his-
togram of failure time or duration, linear predictor and exponentiated linear 
predictors respectively. The left panel of Figure 1 is when the survival data are 

https://doi.org/10.4236/ojs.2019.92013


Y. H. Fissuh et al. 
 

 

DOI: 10.4236/ojs.2019.92013 178 Open Journal of Statistics 
 

 
(a)                                                          (b) 

Figure 1. Plots of baseline feature of simulated survival data. (a) Plot with 25% censoring rate; (b) Plot with 45% censoring rate. 
 
assumed to have 25% censoring rate and the right side panel is when the survival 
data are assumed to have 45% censoring rate.  

Table 1 illustrates the results of simulation based on four different cases under 
special cases of semiparametric transformation models. The result has shown, the 
performance of the model reduces as censoring rate increases. The standard er-
rors in the bracket indicated the precision level of the estimators. The estimators 
with small standard errors have high precision. In these simulations, the effect of 
time-varying coefficient did not improve the model performance. However, the 
effect of time-varying covariates did improve the performance of the model.  

5. Conclusions 

The study is basically concerned on comparisons of the semiparametric trans-
formation models with and without the effect of the time on covariates and coef-
ficients. The summary review of other works was done and the result of simula-
tion was included to come up with reasonable review of the study. The data were 
generated in four different cases under the “sim.survdata()” function of R pack-
age called “coxed”. Then the results of semiparametric transformation models 
for four types of simulation studied were compared based. Three special cases of 
semiparametric transformation models such as PH, PO and model when r = 0.5 
were considered. 

The results have shown that the semiparametric transformation models with 
time-dependent covariates did relatively better perform with small standard errors. 
However, the effect of time-varying coefficient did not improve the performance 
of the semiparametric transformation models in our simulation studies. The last 
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Table 1. Estimates of Regression Coefficients with their respective standard errors in the brackets for Semiparametric Transfor-
mation models for n = 200. TCV and TVbeta refers time-varying covariates and time-varying coefficients. 

Predictors 

r = 0 
 

r = 0.5 
 

r = 1 

  Censoring    

25% 45%  25% 45%  25% 45% 

Baseline         

X1 0.058 (0.078) −0.133 (0.098)  0.078 (0.109) −0.177 (0.126)  0.099 (0.142) −0.221 (0.155) 

X2 −0.007 (0.086) 0.687 (0.086)  −0.008 (0.116) 0.906 (0.122)  −0.010 (0.147) 1.134 (0.167) 

X3 0.203 ( 0.070) −0.014 (0.085)  0.266 (0.095) −0.045 (0.122)  0.330 (0.122) −0.071 (0.158) 

TVbeta         

X1 −0.282 (0.100) −0.091 (0.098)  −0.382 (0.139) −0.135 (0.124)  −0.473 (0.176) −0.178 (0.150) 

X2 −0.297 (0.089) −0.277 (0.097)  −0.396 (0.121) −0.371 (0.127)  −0.502 (0.159) −0.465 (0.160) 

X3 0.314 (0.071) −0.063 (0.104)  0.453 (0.109) −0.107 (0.136)  0.593 (0.146) −0.147 (0.167) 

TCV         

X1 −0.038 (0.028) 0.007 (0.004)  −0.018 (0.023) 0.002 (0.029)  −0.013 (0.032) 0.051 (0.042) 

X2 0.002 (0.003) −0.053 (0.003)  0.011 (0.004) −0.035 (0.012)  0.021 (0.005) −0.031 (0.010) 

X3 −0.004 (0.003) −0.026 (0.003)  −0.022 (0.012) −0.016 (0.006)  −0.030 (0.024) −0.011 (0.013) 

TCV, TVbeta         

X1 −0.058 (0.005) −0.037 (0.008)  −0.061 (0.004) −0.039 (0.009)  −0.091 (0.003) −0.088 (0.007) 

X2 −0.005 (0.004) −0.062 (0.006)  −0.026 (0.005) −0.019 (0.008)  −0.027 (0.002) −0.033 (0.006) 

X3 0.122 (0.005) 0.181 (0.007)  0.163 (0.002) 0.156 (0.005)  0.145 (0.002) 0.136 (0.006) 

 
two cases such as the semiparametric transformation models with time-varying 
covariates and both time-varying covariates and time-varying coefficients have 
shown better performance. Therefore, we can give the general conclusion that 
when the proportionality assumption fails to fulfill, incorporating the time-varying 
coefficient effect in the model is advisable. Considering only baseline covariate 
may not be always true; because there is the time when the covariate changes 
throughout the time. Therefore, incorporating time-varying covariate in the 
model may help us to get reasonable results. Sometimes it can be happened that 
both covariate and coefficient effect changes over time. Thus, incorporating both 
time-varying covariates and time-varying coefficients shall give us more reason-
able results. 
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