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Abstract 
The purpose of this paper is to combine the estimation of output price risk 
and positive mathematical programming (PMP). It reconciles the risk pro-
gramming presented by Freund with a consistent estimate of the constant ab-
solute risk aversion (CARA) coefficient. It extends the PMP approach to cali-
bration of realized production outputs and observed input prices. The results 
of this specification include 1) uniqueness of the calibrating solution, 2) eli-
mination of the tautological calibration constraints typical of the original PMP 
procedure, 3) equivalence between a phase I calibrating solution and a solu-
tion obtained by combining phase I and phase II of the traditional PMP pro-
cedure. In this extended PMP framework, the cost function specification in-
volves output quantities and input prices—contrary to the myopic cost func-
tion of the traditional PMP approach. This extension allows for a phase III ca-
librating model that replaces the usual linear technology with relations cor-
responding to Shephard lemma (in the primal constraints) and the marginal 
cost function (in the dual constraints). An empirical example with a sample of 
farms producing four crops illustrates the novel procedure. 
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1. Introduction 

The treatment of risk in a mathematical programming setting has interested re-
searchers for several decades. It all began with Markowitz [1] who presented the 
problem of portfolio selection in a mean-variance framework. Freund [2] dis-
cussed a quadratic programming approach to deal with output price risk in a 
mean-variance specification of revenue. Hazell [3] followed with a linear pro-
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gramming minimization of total absolute deviation (MOTAD) of income. Hazell 
justified his proposal by citing the difficult access—at that time—to a quadratic 
programming software necessary to solve the mean-variance model.  

When dealing with risk, the major issue involves the decision of how to cha-
racterize the risk preferences of an economic agent. Pratt [4] proposed a general 
way to characterize absolute risk aversion—known as the Arrow-Pratt measure 
of risk—which is defined as the negative ratio of the second derivative to the first 
derivative of a utility function of wealth. The utility function of an economic 
agent exhibits decreasing, constant or increasing risk aversion if the Arrow-Pratt 
risk aversion is decreasing, constant or increasing as a function of wealth. Very 
often, economists have chosen a negative exponential utility function of wealth 
( ) [ ]1 expU w wφ= − −  that exhibits a constant absolute risk aversion (CARA) 

coefficient 0φ > . This is the utility function selected also by Freund to represents 
North Carolina farmers’ preferences. It remains to decide how to estimate the 
CARA parameter. Freund wrote (Source: [2], 258). “The estimation of the risk 
aversion constant φ  is a purely subjective task, and any chosen value is ex-
ceedingly difficult to defend.” Fortunately, the task of estimating φ  can be 
made defensible by adopting a chance-constrained approach as presented in 
Section 3.  

The objective of this paper, therefore, is twofold: 1) to estimate the CARA pa-
rameter in an empirical way that is consistent with the available sample informa-
tion; 2) to combine the CARA risk analysis with a positive mathematical pro-
gramming (PMP) approach that uses all the available information.  

2. Freund Risk Programming 
Freund [2] assumed a ( )1J ×  random vector of market output prices, p� , dis-

tributed as a normal random vector variable ( ) , pN E Σ p p� �∼ . He assumed 

that farmers’ preferences toward risk were characterized by a negative exponen-
tial utility function ( ) [ ]1 expU r rφ= − −� � , with CARA coefficient 0φ >  and  

random revenue r� . Finally, Freund assumed that farmers made decisions by 
maximizing their expected utility subject to a non-random linear technology A 
and a known quantity ( )1I ×  vector of limiting inputs b . Given these as-
sumptions, expected utility corresponds to the following integral 

( ) ( ) ( )

( )

1 exp var
2

1 exp
2 p

EU r E r r

E

φ
φ

φ
φ

  = − − −    
  ′ ′= − − − Σ    

p x x x

� � �

�
              (1) 

where ≥x 0  is a ( )1J ×  vector of decision variables, ( )E ′p x�  is expected  

revenue, 
2 p
φ ′Σx x  is the risk premium and ( )

2 pE φ ′ ′− Σ 
 

p x x x�  is the cer- 

tainty equivalent (CE) of the risky prospect. Maximization of the certainty 
equivalent corresponds to the maximization of the expected utility in Equation 
(1). Therefore, primal and dual specifications of farmer’s risk programming un-
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der this CARA model are stated as 

Primal    ( )max
2 pCE E φ′ ′= − Σp x x x�                    (2) 

subject to Demand Supply≤  
A ≤x b                               (3) 

Dual    min
2 pTC φ′ ′= + Σb y x x                        (4) 

subject to MC MR≥  
( )pA Eφ′ + Σ ≥y x p�                         (5) 

where TC is total cost, MC is marginal cost, MR is marginal revenue, ≥y 0  is 
the ( )1I ×  vector of input shadow prices, the primal constraints represent the 
technological relations between limiting input and output levels, while the dual 
constraints express the equilibrium relations between marginal cost and margin-
al revenue of producing and selling outputs. Marginal cost has two components: 
A′y  is the marginal cost associated with the production technology and fixed 

limiting inputs; pφΣ x  is the marginal risk premium, that is, the marginal cost 
associated with farmer’s awareness of operating in the face of risky output prices. 

The solution of the risk problem stated in relations (2)-(5) requires either a 
priori knowledge of the CARA parameter φ  or a procedure to estimate it si-
multaneously with the optimal output levels x  and input shadow prices y .  

3. Chance Constrained Risky Revenue 

With some probability, a farmer may survive unfavorable events such as total 
revenue being less than total cost. Charnes and Cooper [5] proposed a useful 
approach to deal with this case. Consider the following probabilistic proposition: 

( ) 1Prob A β′ ′≤ ≤ −p x y x�                      (6) 

where the probability that uncertain (risky) total revenue ′p x�  be less than or 
equal to certain total cost A′y x  should be smaller than or equal to 1 β− . In-
tuitively, for how many years could a farmer survive while operating in the red? 
As an example, say once every twenty years. In this case, we could estimate the 
probability 1 1 20 0.05β− = = .  

To derive a deterministic equivalent of relation (6) it is convenient to stan-
dardize the random variable ′p x�  by subtracting its expected value ( )E ′p x�  
and dividing it by the corresponding standard deviation ( )1 2

p′Σx x : 

( )

( )
( )

( )
( )

( )
( )

( ) ( )( )

1 2 1 2

1 2

1 2

1

1

1

1

p p
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p
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′ ′≤ ≤ −

 ′ ′′ ′− − ≤ ≤ −
 ′ ′Σ Σ 
 ′′ − ≤ ≤ −
 ′Σ 
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           (7) 
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By choosing a value of the standard normal random variable τ , say τ τ= , 
that corresponds to probability 1 β− , the deterministic equivalent of relation (6) 
assumes the specification 

( ) ( )1 2
.pE Aτ′ ′ ′+ Σ ≤p x x x y x�                   (8) 

There remains to establish a relation between the τ  parameter and the 
CARA coefficient φ . This relation is obtained by subtracting the complemen-
tary slackness condition of the dual constraints (5) from relation (8): 

( ) ( )
( )

1 2

.

p

p

E A

E A

τ

φ

′ ′ ′+ Σ ≤

 ′ ′ ′− − Σ =  

p x x x y x

p x x x y x

�

�
                      (9) 

With simplification, relation (9) corresponds to 

( )1 2
0.pτ φ′Σ + ≤x x                         (10) 

Relation (10) defines the CARA parameter φ  simultaneously with the deci-
sion variables x , once the value of τ  is selected by the researcher. As an ex-
ample, if the survival probability is determined to be 1 0.05β− = , the one tail 
value of the normal random variable is 1.645τ = − .  

The solution of the risky output price problem—a la Freund—is finally 
achieved by solving the following set of relations (using the linear complemen-
tarity problem (LCP) approach, for example) 

dual constraints  ( )p A Eφ ′Σ + ≥x y p�                  (11) 

primal constraints  , ,  A ≤ ≥ ≥x b x y0 0                  (12) 

chance constraint  ( )1 2
0pτ φ′Σ + =x x                 (13) 

and the associated complementary slackness conditions. This programming 
framework resolves the dilemma posed by Freund as to the difficulty of “de-
fending any chosen value of the risk aversion constant φ .” 

4. CARA and Positive Mathematical Programming 

Good empirical research requires the use of all the available information. When 
dealing with a sample of farms, for example, the most accessible piece of infor-
mation consists in the output levels of crop activities realized in the previous 
production cycle. Such information is the end result of a decision-making 
process by an entrepreneur facing technological and market environments. Un-
der the assumption that this economic agent attempted to maximize profit (mi-
nimizing cost), the realized (observed) output levels incorporate information 
about marginal cost and marginal revenue as the fundamental components of 
his opportunity costs. The research challenge is to unpack the marginal costs 
hidden in those observed output levels. Another readily available piece of infor-
mation regards the price of limiting inputs. For example, a farmer has a pretty 
good idea about the price of his land. Even if his measure is imprecise, the price 
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of land known to him can be used to anchor the model. We assume, therefore, 
that the output levels of a previous production cycle are observed (measured), 

obsx , as are the prices of limiting inputs, obsy . These pieces of information de-
fine calibration constraints that take on the following structure 

obs= +x x h                           (14) 
obs= +y y u                           (15) 

where h  and u  are unrestricted deviations. This specification of the calibra-
tion constraints admits that the observed quantities and prices may be measured 
with error by either overstating or understating them. The choice approach to 
deal with h  and u , therefore, is to minimize the sum of squared deviations 
weighed by appropriate weight matrices, say diagonal W and V, respectively. 
The necessity of introducing matrices W and V is justified by the different na-
ture of the measurement units involving h  and u —in constraints (14) and 
(15)—and the corresponding dual variables that are indicated with vector va-
riables λ  and ϕ , respectively. Constraint (14) is defined in terms of quantity 
units and, therefore, the dual variable λ  is defined in price units, say dollars. 
The self-duality of the least-squares approach [6] dictates that the matrix W me-
diates between the deviation vector h  and the dual vector λ  to establish the 
equation W= hλ , as demonstrated in the following discussion: 

min 2LS W′= h h  

subject to obs= +x x h  dual variable λ  
with Lagrange function corresponding to 

( )2 obsL W′ ′= + − −h h x x hλ  

and the first order condition 

L W∂
= −

∂
h

h
λ 0= .                       (16) 

Therefore, W= hλ , as asserted. Since λ  is measured in price units and h  
is measured in quantity units, an appropriate choice for the diagonal terms of 
the W matrix corresponds to the expected output prices. Analogous discussion 
involves the deviations u  and the corresponding dual variable ϕ . In this case, 
the least-squares relation turns out to be Vuϕ = . Since u  is measured in input 
price units and ϕ  is measured in quantity units, an appropriate choice of the 
diagonal terms of the V matrix is ( )obs

i ib y . Notice that the self-duality of the 
least-squares method allows for the elimination of vector variables λ  and ϕ  
from the model to be solved, as shown in the following intermediate step whose 
goal is the derivation of the dual constraint: 

( )max
2 pCE E φ′ ′= − Σp x x x�  

subject to A ≤x b  
obs= +x x h  
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with Lagrange function 

( ) ( ) ( )
2

obs
pL E Aφ′ ′ ′ ′= − Σ + − + + −p x x x y b x x h x� λ

 
 

and Karush-Kuhn-Tucker (KKT) condition 

( ) p
L E Aφ
∂ ′= − Σ − − ≤
∂

p x y
x

� λ 0  

but since W= hλ  under a least-squares approach, the final specification of the 
dual constraint takes on the following structure 

( )p A W Eφ ′Σ + + ≥x y h p� .                    (17) 

The left-hand-side of relation (17) represents the total marginal cost of pro-
ducing output x  under technological and risky output price conditions. Ana-
logous discussion involves the primal constraint of the following dual problem  

min
2 pTC φ′ ′= + Σb y x x  

subject to ( )p A W Eφ ′Σ + + ≥x y h p�  

obs= +y y u  

with Lagrange function 

( )( ) ( )
2

obs
p pL E A Wφ

φ′ ′ ′ ′ ′= + Σ + − Σ − − + − −b y x x x p x y h y y u� ϕ  

and KKT condition  

L A∂
= − + ≥

∂
b x

y
ϕ 0  

but since Vuϕ = , the primal constraint assumes the following structure 
A V≤ +x b u .                        (18) 

Finally, phase I model of the PMP approach under a CARA specification of 
output price uncertainty can be stated as a weighted least-squares problem of 
finding nonnegative vectors x  and y  such that 

min 2 2LS W V′ ′= +h h u u                    (19) 

subject to 

A V≤ +x b u      primal constraints          (20) 

( )p A W Eφ ′Σ + + ≥x y h p�    dual constraints            (21) 

obs= +x x h      calibration constraints       (22) 
obs= +y y u      calibration constraints       (23) 

( ) 0V A′ + − =y b u x     primal CSC                (24) 

( )( ) 0p A W Eφ′ ′Σ + + − =x x y h p�  dual CSC                  (25) 

( )1 2
0pτ φ′Σ + =x x    chance constraint           (26) 

where CSC stands for complementary slackness conditions. 
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The solution of model (19)-(26) produces unique least-squares estimates of 
output quantities *x  and input shadow prices *y  that are as close as possible 
to the observed information obsx  and obsy . This is the meaning of calibration 
in the novel PMP approach. Furthermore, the estimates of output quantities and 
shadow prices maximize the certainty equivalent corresponding to expected util-
ity under a CARA specification of risky output prices.  

5. Estimation of a Cost Function—Phase II of PMP 

Phase II of the PMP approach estimates a cost function. The specification of 
such a function follows the familiar theoretical properties: it is non-decreasing 
in output quantities and input prices; it is concave and homogeneous of degree 
one in input prices. The following specification meets all these properties: 

( ) ( )( ) ( ) ( ) ( )1 2 1 2, 2C Q G ′′ ′ ′ ′ ′= + +   
x y f x g y g y x x f x y y         (27) 

where Q is a symmetric positive definite matrix of dimensions ( )J J× . The  

term ( )1 2 1 2G ′
  

y y  follows a generalized Leontief specification. The ( )I I×   

G matrix has elements , , 0, , , 1, ,i ii ii iG G i ii i ii I= ≥ ≠ = � . The diagonal elements 

,i iG  can take on either positive or negative values. The components of vectors 
f  and g  are free to take on any value as long as 0′ >f x  and 0′ >g y . The 

reason for introducing a term like ( )( )′ ′f x g y  is to add flexibility to the cost 
function.  

The marginal cost function assumes the following specification 

( ) ( ) ( )1 2 1 2C Q G∂  ′′ ′= + +  ∂  
g y f g y x f y y

x
              (28) 

while Shephard lemma is stated as 

( ) ( ) ( ) ( )1 2 1 22C Q G−∂  ′ ′ ′= + + ∆ ∂
f x g g x x f x y y

y
          (29) 

where the ∆  matrix is diagonal with elements ( )1 2
iy− . 

The estimation of the cost function is performed by combining the elements 
of phase I and phase II and using all the information for N farms in a weighted 
least-squares problem:  

1 1
min 2 2

N N

n n n n n n
n n

LS W V
= =

′ ′= +∑ ∑h h u u                 (30) 

subject to 

n n n n nA V≤ +x b u       primal constraints      (31) 

( )n p n n n n n nA W Eφ ′Σ + + ≥x y h p�    dual constraints        (32) 

obs
n n n= +x x h        calibration constraints   (33) 

obs
n n n= +y y u        calibration constraints   (34) 
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( ) 0n n n n n nV A′ + − =y b u x      primal CSC            (35) 

( )( ) 0n n p n n n n n nA W Eφ′ ′Σ + + − =x x y h p�   dual CSC             (36) 

( )1 2
1.645 0n p n nφ′− Σ + =x x     chance constraint      (37) 

( ) ( ) ( )1 2 1 2
n n n n n n n n n n p n n n n nQ G A Wφ ′′ ′ ′+ + = Σ + +  

g y f g y x f y y x y h  

marginal cost function  (38) 

( ) ( ) ( ) { }1 2 1 22n n n n n n n n n n n nQ G A− ′ ′ ′+ + ∆ = f x g g x x f x y y x
 

Shephard lemma       (39) 

Q LDL′=        Cholesky factorization   (40) 
1QQ I− =        positive definiteness     ( 4 1 ) 

where L is a unit lower triangular matrix and D is a diagonal matrix with ele-
ments , 0j jD ≥ . The Cholesky factorization guarantees symmetry and positive 
semidefiniteness of the Q matrix. 

The solution of problem (30)-(41) produces least-squares estimates of all un-
known variables and parameters, namely ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , , , ,n n n n n n n Q Gφx y h u f g . In par-
ticular, the optimal quantity levels ˆnx , input shadow prices ˆny  and CARA 
coefficient n̂φ  are identical to *x , *y  and *φ  of phase I. 

6. Calibrating Model—Phase III of PMP 

Using estimates of the cost function parameters, ˆ ˆ ˆˆ, , ,n n Q Gf g , it is possible to set 
up a calibrating model—without calibration constraints—that reproduces out-
put levels and shadow input prices that are identical to those obtained with 
model (30)-(41). This equivalence is achieved because Shephard lemma is equal 
to the demand for inputs, Ax , as stated in the primal constraint (3) of the 
CARA risk model. Furthermore, the marginal cost function is equal to the dual 
constraints (5) of the same problem. In other words, the equivalence between the 
solution of the calibrating model and the solution of model (30)-(41) reveals the 
operation of unpacking the information contained in the observed quantities 

obsx  and prices obsy  in the form of effective marginal cost and input demand, 
respectively.  

A calibrating linear complementarity problem for the n-th farm, therefore, 
can be stated as 

min 0n n n n nCSC ′ ′= + =y zp x zd                    (42) 

subject to 

( ) ( ) ( ) { }1 2 1 2ˆ ˆ ˆ ˆˆ ˆ ˆ2n n n n n n n n n n n n n nQ G V− ′ ′ ′+ + ∆ + = + f x g g x x f x y y zp b u    (43) 

( ) ( ) ( ) ( )1 2 1 2ˆ ˆ ˆ ˆˆ ˆn n n n n n n n n n nQ G E ′′ ′+ + = +  
g y f g y x f y y p zd�        (44) 

where nzp  and nzd  are primal and dual slack variables, respectively.  
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The solution of model (42)-(44) produces estimates of the output quantities 

nx  and shadow input prices ny  that are identical to the corresponding solu-
tions obtained in solving the phase II model, ˆnx , ˆny . These estimates are as 
close as possible to the observed counterparts obs

nx  and obs
ny . This is no sur-

prise: the PMP process has transferred the same amount of information from the 
calibration constraints to the cost function while revealing the marginal cost le-
vels and the input shadow prices that presumably influenced the economic agent 
in making the output and price decisions observed in obs

nx  and obs
ny . Model 

(42)-(44) can now be used to evaluate a series of policy scenarios that may con-
sider changes in expected output prices, changes in the quantity of limiting in-
puts, the introduction of crop subsidies and other analyses.  

7. Empirical Example  

The PMP procedure discussed in previous sections was applied to a sample of 
fourteen farms producing four crops (sugar beets, soft wheat, corn and barley). 
Land is the only limiting input. Given the large amount of information involved 
in this example, only the quantities of observed output levels and land prices are 
reported in Table 1. 

In any computation of nonlinear models scaling of the original information 
series is of crucial importance for obtaining a feasible solution. The observed 
outputs are measured in hundred pound units. The land prices are measured in 
thousand dollars per acre. 

Table 2 presents the optimal quantities of the crop activities and the optimal 
land prices obtained from the solution of model (30)-(41). 

The discrepancy between the observed (Table 1) and the optimal quantities 
and prices (Table 2) is rather miniscule as reported in Table 3. The specification 
of the calibration constraints proposed in this paper is similar to a statistical spe-
cification of a regression function with non-zero residuals terms. It avoids the 
tautological specification of the original PMP procedure [7] that concerned only 
output quantity levels and assumed that ( )1obs ε≤ +x x , where ε  is a us-
er-determined small positive number. In the context of this paper, an analogous 
specification of the calibration constraints involving both output quantities and 
input prices would result in an infeasible solution. 

The CARA coefficients of the fourteen farms are presented in Table 4. 
The CARA coefficient φ is measured in 1/$ units, as can be determined by 

examining the certainty equivalent in equation (2). Its reciprocal is measured in 
$ units and is called the risk tolerance coefficient. From Table 4 and the fact that 
the certainty equivalent in this sample of farms is measured in 1000 dollar’s units, 
the risk tolerance varies from $50,000 to $190,000. 

Table 5 presents the estimate of the cost function Q matrix. The estimate of 
30.136728G = − . 

The estimates of parameters f  and g  of the cost function are presented in 
Table 6. 
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Table 1. Observed output quantities and land input prices. 

Farm Sugar beets Soft wheat Corn Barley Land price 

1 504.5735444 131.8516870 84.6009465 37.318422 4.420 

2 1.104714E+3 227.3716893 170.6113699 160.635734 4.380 

3 219.2252678 68.7407972 127.9742464 20.830048 6.980 

4 461.6310506 142.0742197 242.8885443 45.183529 5.730 

5 208.6798754 135.7471938 140.5032126 67.603589 4.400 

6 404.9995585 199.6544443 208.5671230 151.913204 1.860 

7 366.4540670 135.1811808 109.6308118 152.626625 3.650 

8 797.9674267 275.9245897 281.5503619 223.063227 3.360 

9 490.3185004 104.3344125 61.7579721 97.661838 2.750 

10 631.0874113 173.0509823 140.7525054 152.621481 4.280 

11 226.8972352 138.1438216 75.7103492 44.793613 3.280 

12 364.3215499 284.1360960 171.5371026 209.310564 1.930 

13 208.1638673 124.2246509 172.3633094 195.480751 2.320 

14 548.2546367 5.7848668 215.1269290 144.275131 4.030 

 
Table 2. Optimal output quantities and land shadow prices from model (30)-(41). 

Farm Sugar beets Soft wheat Corn Barley Land price 

1 505.1616492 131.7329218 84.8750463 37.6490230 4.4225740 

2 1.105203E+3 227.3625884 170.6166030 160.9130470 4.3807052 

3 219.5485933 68.4038351 128.0378231 21.1275634 6.9705991 

4 461.9538383 141.8359299 242.8747039 45.4503259 5.7267979 

5 209.2409352 135.5255149 140.5989446 67.8536568 4.3988190 

6 405.5311788 199.7898075 208.7723823 151.9960629 1.8615342 

7 367.0045125 135.2946501 109.6568822 153.0808524 3.6532873 

8 798.2835964 276.1611250 281.8218767 223.3780990 3.3628474 

9 490.6916027 104.4486563 61.9777544 98.1270571 2.7548143 

10 631.5795384 173.0692788 140.9199329 153.0530028 4.2829270 

11 227.4152993 138.1382281 75.6567255 45.0690629 3.2806049 

12 364.8672585 284.2731904 171.6110101 209.6107451 1.9312171 

13 208.5959726 124.2237233 172.7516541 195.7541549 2.3224979 

14 548.6847154 135.4960354 215.1608054 144.3305401 4.0274390 

 
The parameters f  and g  can be interpreted as the individual farm devia-

tions from the sample marginal cost function and the sample Shephard lemma, 
respectively. The conditions 0′ >f x  and 0′ >g y  are satisfied for all farms. 
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Table 3. Percentage difference between observed and estimated quantities and land prices. 

Farm Sugar beets Soft wheat Corn Barley Land price 

1 0.12 −0.09 0.32 0.89 0.06 

2 0.04 −0.01 0.01 0.17 0.02 

3 0.15 −0.49 0.05 1.43 −0.13 

4 0.07 −0.17 −0.01 0.59 −0.06 

5 0.27 −0.16 0.07 0.40 −0.03 

6 0.13 0.07 0.10 0.05 0.08 

7 0.15 0.08 0.02 0.30 0.09 

8 0.04 0.09 0.10 0.14 0.08 

9 0.07 0.12 0.36 0.47 0.18 

10 0.08 0.01 0.12 0.28 0.07 

11 0.23 −0.01 −0.07 0.61 0.02 

12 0.15 0.05 0.04 0.14 0.06 

13 0.21 0.00 0.22 0.14 0.11 

14 0.08 −0.21 0.02 0.04 −0.06 

 
Table 4. Estimated CARA coefficients. 

Farm CARA coefficient 

1 0.0167798 

2 0.0077125 

3 0.0193674 

4 0.0097989 

5 0.0115821 

6 0.0071769 

7 0.0101664 

8 0.0052523 

9 0.0160589 

10 0.0089072 

11 0.0152088 

12 0.0058456 

13 0.0080894 

14 0.0084931 

 
Table 5. Estimate of the cost function Q matrix. 

Crops Sugar beets Soft wheat Corn Barley 

sugar beets 0.2338022 0.2808199 0.2808199 −0.4166719 

soft wheat 0.2808199 0.9460122 0.0251200 0.2306682 

corn 0.2808199 0.0251200 1.6973863 0.5659044 

barley −0.4166719 0.2306682 0.5659044 3.3958875 
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Table 6. Estimates of the f and g parameters of the cost function. 

Farm Sugar beets Soft wheat Corn Barley Land 

1 0.0071435 0.0006357 0.0013500 −0.0165643 0.0018711 

2 0.0063619 0.0001176 0.0058446 −0.0079788 0.0009405 

3 0.0030809 −0.0039256 0.0032636 −0.0068791 0.0015219 

4 0.0037324 −0.0044640 0.0052501 −0.0077034 0.0009155 

5 0.0043117 0.0003649 0.0113597 0.0032635 0.0022478 

6 0.0126628 0.0064430 0.0360587 0.0385625 0.0041495 

7 0.0041590 0.0018215 0.0150229 0.0186909 0.0026143 

8 0.0074940 0.0014843 0.0190973 0.0091978 0.0013885 

9 0.0118794 0.0064000 0.0141610 −0.0027515 0.0040791 

10 0.0058013 0.0014733 0.0091470 0.0014500 0.0014626 

11 0.0103566 0.0078589 0.0103625 −0.0007786 0.0045920 

12 0.0078935 0.0128031 0.0249893 0.0509614 0.0035707 

13 −0.0008480 −0.0026132 0.0218021 0.0460496 0.0032396 

14 0.0050295 0.0006064 0.0115079 0.0063664 0.0015345 

8. Conclusions 

The extension of a PMP approach to include also the calibration of dual va-
riables around observed limiting input prices has required a modification of the 
notion of calibration itself as proposed in the original PMP procedure by Howitt 
[7]. In that seminal paper, calibration means that optimal output levels, say *x , 
are identically equal to the observed output levels obsx  (up to a user-deter- 
mined but very small ε  number). The research reported in this paper found 
that the simultaneous calibration of output levels and limiting input prices—as 
specified in Equations (14) and (15)—can be achieved only in a statistical man-
ner analogous to a statistical regression analysis where the error terms are mini-
mized by least-squares estimation. In other words, if the traditional specification 
of the calibration constraints were formulated also for the limiting input prices, 
say ( )1obs ε≤ +x x  and ( )1obs ε≤ +y y , an infeasible solution of the pro-
gramming problem would occur.  

A useful consequence of specifying the calibration constraints as in Equations 
(14) and (15), coupled with the adoption of a least-squares procedure to minim-
ize the deviations h  and u , is that the calibrating solution x̂  and ŷ  is 
unique. This extension of a PMP procedure was associated with the treatment of 
risky output prices according to a famous paper by Freund [2]. In that paper, 
Freund did not know how to estimate the CARA parameter of the selected utility 
function. In this paper, a chance-constrained relation involving random revenue 
is introduced to allow the derivation of a functional relation that ties the CARA 
parameter to the decision variables of the entrepreneur operating under a risky 
price environment.  

https://doi.org/10.4236/ojs.2018.81001


Q. Paris 
 

 

DOI: 10.4236/ojs.2018.81001 13 Open Journal of Statistics 
 

Another methodological advantage of extending the calibration to the limiting 
input prices concerns the specification of a complete cost function. In the tradi-
tional PMP approach, a cost function involved only the output levels and ig-
nored any input price. In this paper, a complete cost function is specified that 
satisfies all the theoretical properties. 

An empirical example involving fourteen farms, four crops and one limiting 
input confirms that the proposed PMP procedure is feasible without excessive 
computational burden. In general, however, not every farm produces all the 
sample crops. This means that, in reality, the matrix of observed output levels 
contains some zero observations. When this probable event occurs, the proposed 
PMP procedure can easily accommodate the zero observations with minimal 
adjustments. It is sufficient to restate the calibration constraints in two parts: one 
part dealing with the positive output levels and the second part dealing with the 
zero levels. The rest of the estimation procedure applies without modification.  

While the calibrating solution is unique, this cannot be said—in this numeri-
cal example—for the estimated parameters of the cost function. To obtain a 
unique solution of parameters , ,Q G f  and g  it is necessary to have access to 
at least two observations per farm. In that case, the marginal cost function and 
Shephard lemma will admit corresponding residuals that must be minimized 
according to a second level least-squares criterion.  Future research will attempt 
to extend the PMP approach to the estimation of general risk preferences where 
economic agents can be decreasingly risk averters, as wealth increases. 
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