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Abstract 
Let two separate surveys collect related information on a single population U. 
Consider situation where we want to best combine data from the two surveys 
to yield a single set of estimates of a population quantity (population parame-
ter) of interest. This Article presents a multiplicative bias reduction estimator 
for nonparametric regression to two sample problem in sample survey. The 
approach consists to apply a multiplicative bias correction to an estimator. 
The multiplicative bias correction method which was proposed, by Linton & 
Nielsen, 1994, assures a positive estimate and reduces the bias of the estimate 
with negligible increase in variance. Even as we apply this method to the two 
sample problem in sample survey, we found out through the study of it 
asymptotic properties that it was asymptotically unbiased, and statistically 
consistent. Furthermore an empirical study was carried out to compare the 
performance of the developed estimator with the existing ones. 
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1. Introduction 

Sometimes, it happens that two separate surveys gather related information on a 
variable of interest of a population, U, having perhaps distinct designs and mode 
of sampling. It becomes very important on how to combine the data from the 
two surveys. 

Take as example, the students of the sub-regional institute of statistics and 
apply economics (ISSEA), and those of the polytechnic institute, both in 
different ways with different importances to collect data on unemployment in 
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Cameroon. Researchers at the national institute of statistics (Cameroon) are 
faced with the following problem: how can the data from these two distinct 
surveys joined together to produce a single data and have a better representation 
of the population? 

Some great scientists have been looking into these problems for several years. 
The approach to this problem have been in different ways; one of which involve 
getting estimates of the two surveys separately and using the inverse of the 
estimated variances as weights to weigh them together as seen in [1]. [2] went 
further by using empirical likelihood method to combine information from 
multiple survey. Another option to this consist of putting the two data sets in a 
single data set, taking into account the weight on individual sample units. 
Developed in [3] are some of these methods which include; the pseudo- 
likelihood, missing information principle and iterated post-stratified estimator. 
After simulations on two different populations, it was concluded that, in neither 
population the design based ways of combining data yield best results. The 
iterated post-stratified estimator looks to be a very promising non-parametric 
way to combined data from two sources. 

Just recently [4] used the Nonparametric regression, which is the model-based 
sampler’s method of choice when there is a serious doubt about the suitability of 
a linear or other simple parametric models for the survey data at hand. The 
nonparametric regression supersedes the need for use of design weights and 
standard design-based weights. Recognition of this is especially helpful in 
confronting problems in sampling situations where design weights are missing 
or questionable. 

This study made use of kernel smoothers, especially the Nadaraya Watson 
smoother. However, estimators based on Nadaraya Watson smoothing weights 
are normally biased in small samples and at boundary points. 

There exist alternative techniques of reducing the bias. For a detailed review 
see [5]-[11]. These methods improve the performance of nonparametric 
regression at points of large curvature. But in this framework, we consider a 
multiplicative bias correction approach to nonparametric regression to have an 
estimate with a smaller bias than existing ones. 

Outline of the Paper 

The remaining part of this paper is organized as follows: In Section 2, a 
multiplicative bias corrected estimator M̂BCT  for the finite population totals is 
proposed. In Section 3, the asymptotic properties of the proposed estimator are 
derived. In Section 4, an empirical study of the derived properties is presented. 
In Section 5 we give a conclusion to the paper. 

2. Proposed Estimator 

Consider a finite population, 1,2, ,U N=   and let 1 2, , , ny y y  represent the 
combined random sample drawn from the population using different sampling 
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techniques. Suppose that to each of these iy s′ , there is an auxiliary information 

1 2, , , nx x x . 
Let consider the following model;  

( ) ( )i i i iE Y X x h x= =                      (1) 

( ) ( )2 ,
cov , ,

0,
i

i j i i j j
x i j

Y Y X x X x
i j

σ == = = 
≠

             (2) 

where ( )ih x  and ( )2
ixσ  are twice continuously differentiable functions (that 

is lipschitz continuous). With these assumptions on ( )ih x  and ( )2
ixσ , one 

can estimate ( )ih x  and ( )2
ixσ  non-parametrically. 

Let ( )i i iY h X= −  be i.i.d. with zero mean, and variance 2σ . We can refer 
to this set-up as the weak model. In this scheme, we can ignore which of the 
original samples, the iY s′  are available from. 

Usually in the computation of finite population total,we have the formula 
given by  

i i j
i U i s j r

T y y y
∈ ∈ ∈

= = +∑ ∑ ∑
                     

(3) 

where, s refers to the sample and r refers to the nonsampled part of the 
population. Since the values of the sample part is known, the process of 
estimating the finite population total is equivalent to predicting the nonsample 
part of the population. 

To do this, the multiplicative bias corrected technique is employed in which 
case the proposed estimator of the population total is now defined as  

( ) ( )
ˆ

ˆˆ i i
MBC j

i s j ri

y h x
T h x

π∈ ∈

−
= +∑ ∑

                  
(4) 

where 

iπ  is the inclusion probability 
( )ˆ

ih x  is the multiplicative bias corrected estimator. 
The principal objective of the multiplicative bias corrected technique is to 

correct the insufficiences of the kernel smoother that is the bias problem at the 
boundaries. Given a pilot smoother of the regression function 

( )
1

n

xj j
j

h x w Y
=

= ∑

                        
(5) 

The inverse relative estimation error of the smoother at each of the 

observations is given by ( )
( )

h x
h x

. 

A noisy estimate of the ratio, ( )
( )

h x
h x

, is given by  

( ) ( )
j

j

Y
x

h X
β =



                        
(6) 

Smoothing the noisy estimate ( )xβ  leads to 
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( ) ( )
1

n

xj
j

x w xβ β
=

=∑

                       
(7) 

Above gives a better estimate for the inverse of the relative estimation error at 
each particular observation and can therefore be used as a multiplicative 
correction of the pilot smoother.  

( ) ( ) ( )ĥ x x h xβ= 

                       (8) 

For both ( )h x  and ( )xβ , we use the same weighting scheme;  

1 j
xj

x X
w K

nh h
− 

=  
                        

(9) 

where 
h is the bandwidth 
K is a probability density function, symmetric about zero. 
n is the sample size 

Bandwidth Selection Techniques 

● Implement biased cross-validation (bcv).  
● Implement unbiased cross-validation (ucv).  
● Implements a rule-of-thumb for choosing the bandwidth of a Gaussian 

kernel density estimator (ndr0)  
● Can use a more common variation given by Scott (1992) (ndr) 

3. Properties of Proposed Estimator 
3.1. Assumptions 

The following assumptions are made in the estimation of ( )ˆ
ih x .  

● The regression function is bounded and strictly positive, that is, 
( ) 0b h x a≥ ≥ >  for all x 

● The regression function is twice continuously differentiable everywhere.  
●   has finite fourth moments and has a symmetric distribution around zero.  
● The bandwidth h is such that, 0h → , nh →∞  and ( )2nh →∞  as n →∞  

3.2. Asymptotic Unbiasedness of the Proposed Estimator 

We want to show that ( )ˆ 0MBCE T T− → as n →∞ . Under the model based, the 
bias of the estimator M̂BCT  is defined as follows;  

[ ]ˆ ˆ
MBC MBCE T T E T E T   − = −                     

(10) 

Now, we have the expected value of the proposed estimator for the finite 
population total given by; 

( ) ( )
ˆ

ˆˆ i i
MBC j

i s j ri

y h x
E T E h x

π∈ ∈

 −
  = +     

∑ ∑
             

(11) 

( ) ( )
ˆ

ˆi i
j

i s j ri

y h x
E E h x

π∈ ∈

 −  
= +   

    
∑ ∑

          
(12) 
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( )( ) ( )( )
|

1 ˆ ˆ
i i j

i s U si

E y h x E h x
π∈

= − +∑ ∑
         

(13) 

( )( )ˆ
jE h x  is obtained by analysing the individual terms of the stochastic 

approximation of ( )ĥ x . Let us then establish the stochastic approximatiom of 
( )ĥ x  as shown by (Hengartner 2009). 
From (8),  

( ) ( ) ( )ĥ x x h xβ= 

                                    (14) 

( ) ( ) ( )
( )1 1

n n
j

xj xj j
j jj j

Y h x
w h x w Y

h X h X= =

= =∑ ∑




 

               
(15) 

( ) ( ) ( )
( )1

where
n

xj j j j
j j

h x
w R x Y R x

h X=

= =∑




             
(16) 

Let define, ( )( )1 2, , , nh E h x X X X= 

  then we can express ( )jR x  as.  

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( )
( ) ( )( ) ( )( )

1

1

1

1 1

1 1

j
j

j j j

j j j

j j

j j

j j

j
j

h Xh x h x h x
R x

h xh X h X h X

h X h X h Xh x h x h x h x
h xh X h X

h X h Xh x h x h x
h xh X h X

h x
R x R X

h X

−

−

−

−

    
   = = ∗ ∗         

   − + − +
   = ∗ ∗         

   − −
   = ∗ + ∗ +         
 
 = ∗ + ∗ +
 
 



 











1

 

Through the series expansion,  

( )( ) ( ) ( )( ) ( )

( ) ( )

1

0

2

1 11
1 1

1

n

j j
nj j

j j

R X R X
R X R X

R X R X

∞−

=

 + = = = − + − −

= − + +

∑



 

( ) ( )
( ) ( ) ( ) ( )1 ,j j j j

j

h x
R x R x R X r x X

h X
 = ∗ + − +   

is an approximation of the quantity R. 
Replacing both jY  and jR  in (16), we obtain  

( ) ( )
( ) ( ) ( ) ( ) ( )( )
( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

1

1 1

1 1

ˆ 1 ,

,

n

xj j j j j j
j j

n n

xj j xj j j j
j jj j

n n

xj j j xj j j j j
j jj j

h x
h x w R x R X r x X h X

h X

h x h x
w h X w h X R x R X

h X h X

h x h x
w R x R X w r x X h X

h X h X

=

= =

= =

 = + − + + 

= + + −

+ − + +

∑

∑ ∑

∑ ∑





 

 

Using the assumption nh →∞  the remainder term turns to zero in 
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probability and the expression reduces to;  

( ) ( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )
( ) ( ) ( )( )

1 1

1

ˆ

10

n n

xj j xj j j j
j jj j

n

xj j j p
j j

h x h x
h x w h X w h X R x R X

h X h X

h x
w R x R X

nhh X

= =

=

= + + −

 + − +  
 

∑ ∑

∑





 

To solve Equation (16), we need to find ( )( )ˆ
jE h x  hence,  

( )( ) ( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( )
( ) ( ) ( )( )

( )
( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

( )
( )

1 1

1

1 1 1

1

1

ˆ

10

10

n n

j xj j xj j j j
j jj j

n

xj j j p
j j

n n n

xj j xj j xj j
j j jj j j

n

j xj j j p
j j

n

xj
j j

h x h x
E h x E w h X w h X R x R X

h X h X

h x
w R x R X

nhh X

h x h x h x
w E h X w E w h X

h X h X h X

h x
E R x R X w R x R X E

nhh X

h x
w

h X

= =

=

= = =

=

=


= + + −


 + − +  
 

= + +

 × − + − +  
 

=

∑ ∑

∑

∑ ∑ ∑

∑

∑









( ) ( )
( ) ( ) ( )

( )
( )
( )1

10
n j

j xj j p
j j j

h Xh x h x
h X w h X E

nhh xh X h X=

    + − +      
∑





 

since ( )0jE =  

( )( ) ( )
( ) ( ) ( ) ( )( )

1

1ˆ since
n

j xj j p
j j

h x
E h x w h X o h x E h x

nhh X=

 = + = 
 

∑ 

   
(17) 

Hence,  

( ) ( )
( )

( )

( )
( ) ( )

1

| 1

1 1ˆ

1

n

MBC i xj i p
i s ji i

n

xj j p
U s j i

h x
E T E y w h X o

nhh X

h x
w h X o

nhh X

π∈ =

=

    = − +       
   + +       

∑ ∑

∑ ∑
      

(18) 

The above expression can be reduced by considering a limited Taylor series of 

( )
( )

j

j

h X

h X
 about a point x. Hence  

( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

( )2
1j

j j p
j

h X h x h x h x
X x X x o

h x h x h xh X

′ ′′   
= + − + − +      

        
(19) 

Now, substituting the first two terms in (18) gives  

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( )| 1

1 ˆˆ (

1

n

MBC i i xj j
i s U s ji

p

h x h x
E T E y E h x w h x X x

h x h x

o
nh

π∈ =

 ′    = − + + −         
 +  
 

∑ ∑ ∑
(20) 

But 
1 1n

xjj w
=

=∑  and ( )1 0n
j xjj X x w

=
− =∑ , therefore  
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( )
|

1
M̂BC p

U s
E T h x o

nh
   = +     

∑
                  

(21) 

Furthermore,  

( ) ( ) ( ) ( )i j
i s j r i s j r

E T E y E y y h x
∈ ∈ ∈ ∈

= + = +∑ ∑ ∑ ∑  

Hence the asymptotic bis of the estimator is given by  

( )
ˆ 1 1ˆ MBC

MBC p
i s

T T
BIAS T E y o

N N nh∈

 −  = = +       
∑  

The bias of M̂BCT  will be of order 1
po

nh
 
 
 

. Thus it converges to zero at a 

faster rate compared to the existing non-parametric estimators which generally 
converge at the rate ( )2

po h . 

3.3. Asymptotic Variance of the Proposed Estimator 

The variance of the finite population total is given by;  

( ) ( )

( ) ( )

( )( ) ( )( )
2

|

ˆ
ˆˆ

ˆ
ˆ

1 ˆ ˆ

i i
MBC j

i s j ri

i i
j

i s j ri

i i j
i s U si

y h x
Var T Var h x

y h x
Var Var h x

Var y h x Var h x

π

π

π

∈ ∈

∈ ∈

∈

 −  = +     
 −  

= +   
    

 
= − + 

 

∑ ∑

∑ ∑

∑ ∑

 

Firstly,  

( )( ) ( )
( ) ( ) ( ) ( ) ( )( )

=1

ˆ 1 ,
n

j xj j j j j j
j j

h x
Var h x Var w R x R X r x X h X

h X

 
  = + − + +  

 
∑  (22) 

Using the assumption nh →∞ , the remainder terms converge to zero in 

probability. Therefore ( ) ( )( ) 1, 0j j j j pr x X h X
nh

 + =  
 

  and Equation (22) 

reduces to  

( )( ) ( )
( ) ( ) ( ) ( )( )

1

1ˆ 1 0
n

j xj j j j p
j j

h x
Var h x Var w R x R X h X

nhh X=

    = + − + +      
∑ 

(23) 

Truncating the binomial expansion at the first term yields  

( )( ) ( )
( ) ( )

( )
( ) ( )

( )

2
1

2

2
2

1

1ˆ 0

10

n

j xj j p
j j

n

xj j p
j j

h x
Var h x Var w y

h X nh

h x
w x

h X nh
σ

=

=

   
   = +

     

   
   = +

     

∑

∑
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Simplify the above expression by considering the first and second part of the 

Taylor series of 
( )
( )

2

2

j

j

x

h X

σ
. So we obtain  

( )( ) ( ) ( )
( )

2 2
2

1

1ˆ 0
n

j xj j p
j

Var h x w x
nh

σ
=

 
 = +
 
 

∑
            

(24) 

Therefore,  

( ) ( ) ( )
( )

2
22 2

2
1

1 1ˆ 0
n

MBC i xj j p
i s U ji

Var T x w x
nh

σ σ
π∈ =

     = + +       
∑ ∑∑

    
(25) 

Thus the asymptotic variance is given by  

( ) ( ) ( )
( )

2
22 2

2 2 2
1

ˆ 1 1 1 10
n

MBC
i xj j p

i s U ji

T
Var x w x

N N N nh
σ σ

π∈ =

    
 = + +          

∑ ∑∑
  

(26) 

This implies that M̂BCT  is more efficient than the usual non-parametric 
regression estimator proposed by Dorfman (1992). 

3.4. Asymptotic Mean Square Error 

The asymtotic mean square error of the estimator M̂BCT  is given by  

( ) 2ˆ ˆ ˆ
MBC MBC MBCMSE T Var T Bias T    = +                  

(27) 

( ) ( ) ( )

( )

2
22 2

2 2
1

2

2

1 1 1ˆ

1 1 10

n

MBC i xj j
i s U ji

p p
i s

MSE T x w x
N N

y o
N nhnh

σ σ
π∈ =

∈

   = +    
     + + +        

∑ ∑∑

∑
     

(28) 

As n →∞  and h →∞ , the M̂BCMSE T    turns to 0 indicating that, the 
proposed estimator is statistically consistent. 

4. Empirical Study 
4.1. Population 

In this section, the theory developed in the previous section was tested using a 
set of simulation studies, with a mix of survey designs, and employing various 
approaches to selecting the best bandwidths. We employ a population U of 
countries in the world of size, N = 188, with auxiliary variable x = gross national 
product (GNI) and variable of interest y = human development index(HDI), of 
interest is the population total of the HDI, ll Uy y

∈
= ∑ .  

Figure 1 below shows the scatter diagram of the population. Where HDI is on 
the vertical axis and GNI on the horizontal axis, where there exist a quadratic 
relationship between the two variables.  

We suppose, for each run of the experiment that two samples are taken: 
Sample 1 ( 1s ): srswor ( )1 32n =  
Sample 2 ( 2s ): stratsrs-four strata equal in each, and 8 units taken at random  
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Figure 1. Scatter diagram. 

 

in each, so that 2 32n = . The total experiment consists of 500 runs of pairs of 
samples. Table 1 gives the estimators considered. 

For an estimator T̂  we considered three measures of relative success across 
the 500 runs:  

i) Unconditional relative bias measured as ratio of mean value (across runs) to 
target  

( )ˆBias runs T T T= −∑  

ii) Unconditional relative root mean square error divided by target  

( )( )2ˆrmse runs T T T= −∑  

4.2. Results 

Results obtained are tabulated in Table 2.  
From the results obtained, we observe that the unbiased cross validation 

approach is a viable means of selecting bandwidth as it gives the lowest bias and 
root mean square error across all the estimators. The proposed estimator to the 
two sample problem gives better estimates of the population total compared to 
those realized using the estimator proposed by [12], and [4] respectively. 

Furthermore, we study the conditional performances of the selected 
estimators. 500 samples obtained were sorted by the values of the mean of the 
auxiliary variable and put in 25 groups each containing 20 values. We then 
compute the bias and root mean square error of each group. The plots of 
conditional performances against the average of the sorted mean auxiliary 
variable. We then report the behaviour of the conditional bias for the different 
bandwidth. 
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Table 1. Estimators. 

Estimator Formula Comment 

Non parametric (NP) 
Regression ( )ˆ

N̂P i ji s j r
T y h x

∈ ∈
= +∑ ∑   

Nonparametric (NPT) 
regression, twiced 

( ) ( )
ˆ

ˆˆ i i
NPT ji s j U

i

y h x
T h x

π∈ ∈

−
= +∑ ∑  iπ =  Inclusion probabilities 

Multiplicative (MBC) Bias 
Corrected 

( ) ( )
ˆ

ˆˆ i i
MBC ji s j U

i

y h x
T h x

π∈ ∈

−
= +∑ ∑  iπ =  Inclusion probabilities 

 
Table 2. Empirical results. 

Estimators Bandwidth Bias/T 10 rmse/T 

NP(one sample) ndr 0.25 19.63 

 ndr0 0.26 20.14 

 bcv 0.11 20.71 

 ucv 0.37 17.10 

NP(s1Us2) ndr 0.01 10.5 

 ndr0 0.01 10.49 

 bcv 0.45 11.19 

 ucv 0.05 8.22 

NPT ndr 0.05 9.93 

 ndr0 0.24 10.32 

 bcv 0.39 10.83 

 ucv 0.09 8.54 

MBC ndr 0.20 10.23 

 ndr0 0.02 9.97 

 bcv 0.23 10.17 

 ucv 0.01 8.20 

 
Figure 2 and Figure 3 indicate the conditional bias and conditional root 

mean square respectively, with each of the plot drawn at different bandwidth. 
The population mean of auxiliary variable x was found to be 1.701. Under the 
conditional bias plots, it is observed that, the proposed estimator outperforms 
the two currently used estimatorsin terms of conditional biases especially with 
the unbiased cross-validation and the biased cross-validation method of 

https://doi.org/10.4236/ojs.2017.76073


K. T. Stephane et al. 
 

 

DOI: 10.4236/ojs.2017.76073 1063 Open Journal of Statistics 
 

selecting bandwidth. This trend persist in the case of conditional root mean 
square error. 
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(d) 

Figure 2. Plots indicating the conditional biases of three estimators. (a) Biased cross-validation 
(bcv); (b) Rule-of-thumb for choosing the bandwidth of a Gaussian kernel density estimator 
(ndr0); (c) Common common variation given by Scott (1992); (d) Unbiased cross-validation (ucv). 
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(c) 

 
(d) 

Figure 3. Plots indicating the conditional root mean square error of three estimators. (a) Biased 
cross-validation (bcv); (b) rule-of-thumb for choosing the bandwidth of a Gaussian kernel density 
estimator (ndr0); (c) Common variation given by Scott (1992); (d) unbiased cross-validation (ucv). 

5. Conclusion 

The aim of this study was to develop an estimator with the lowest bias for the 
finite population total using the multiplicative bias corrected approach to non 
parametric regression. This study reveals that the proposed estimator is more 
efficient than the modified nonparametric estimator (NPT). With a suitable 
bandwidth selection (ucv), the proposed estimator has the smallest bias and root 
mean square error values. It has therefore proven to be efficient in resolving the 
boundary value problem that is associated with the existing nonparametric 
smoothers.  
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