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Abstract 
Non-response is a regular occurrence in Sample Surveys. Developing estima-
tors when non-response exists may result in large biases when estimating 
population parameters. In this paper, a finite population mean is estimated 
when non-response exists randomly under two stage cluster sampling with 
replacement. It is assumed that non-response arises in the survey variable in 
the second stage of cluster sampling. Weighting method of compensating for 
non-response is applied. Asymptotic properties of the proposed estimator of 
the population mean are derived. Under mild assumptions, the estimator is 
shown to be asymptotically consistent. 
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1. Introduction 

In survey sampling, non-response is one source of errors in data analysis. Non-
response introduces bias into the estimation of population characteristics. It also 
causes samples to fail to follow the distributions determined by the original 
sampling design. This paper seeks to reduce the non-response bias in the estima-
tion of a finite population mean in two stage cluster sampling. 

Use of regression models is recognized as one of the procedures for reducing 
bias due to non-response using auxiliary information. In practice, information 
on the variables of interest is not available for non-respondents but information 
on auxiliary variables may be available for non-respondents. It is therefore de-
sirable to model the response behavior and incorporate the auxiliary data into 
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the estimation so that the bias arising from non-response can be reduced. If the 
auxiliary variables are correlated with the response behavior, then the regression 
estimators would be more precise in estimation of population parameters, given 
the auxiliary information is known.  

Many authors have developed estimators of population mean where 
non-response exists in the study and auxiliary variables. But there exist cases 
that do not exhibit non-response in the auxiliary variables, such as: number of 
people in a family, duration one takes to go through education. Imputation 
techniques have been used to account for non-response in the study variable. 
For instance, [1] applied compromised method of imputation to estimate a finite 
population mean under two stage cluster sampling, this method however pro-
duced a large bias. In this study, the Nadaraya-Watson regression technique is 
applied in deriving the estimator for the finite population mean. Kernel weights 
are used to compensate for non-response. 

Reweighting Method 

Non-response causes loss of observations and therefore reweighting means that 
the weights are increased for all or almost all of the elements that fail to respond 
in a survey. The population mean, Y , is estimated by selecting a sample of size n 
at random with replacement. If responding units to item y are independent so that 
the probability of unit j responding in cluster i is ( )1,2, , ; 1, 2, ,ijp i n j m= =   
then an imputed estimator, Iy , for Y , is given by 

, ,,

1

r m

I ij ij ij ij
i j s i j siji j s

w y w y
w

y ∗

∈ ∈∈

 
= + 

 
∑ ∑∑

               (1.0) 

where 
1

ij
ij

w
π

=  gives sample survey weight tied to unit j in cluster i and  

[ ],ij p i j sπ = ∈  is its second order probability of inclusion, rs , is the set of r 
units responding to item y and ms  is the set of m units that failed to respond to 
item y so that r m n+ =  and ijy∗  is the imputed value generated so that the 
missing value ijy  is compensated for, [2].  

2. The Proposed Estimator of Finite Population Mean 

Consider a finite population of size M consisting of N clusters with iN  ele-
ments in the ith cluster. A sample of n clusters is selected so that 1n  units re-
spond and 2n  units fail to respond. Let ijy  denote the value of the survey va-
riable Y for unit j in cluster i, for 1, 2, ,i N=  , 1,2, , ij N=   and let popula-
tion mean be given by 

1 1

1 iMN

ij
i ji

Y Y
MN = =

= ∑∑                       (2.1) 

Let an estimator of the finite population mean be defined by 
ˆ

Y  as follows:
 

1 2

ˆ 1 1 1 1 ˆ1ij
ij ij ij

i s j s i s j sij ij

Y
Y Y

M n n
δ δ

π π∈ ∈ ∈ ∉

   = + −      
∑∑ ∑∑

         
 (2.2) 
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where ijδ  is an indicator variable defined by 
th th1, if unit in the cluster responds

0, elsewhereij
j i

δ


= 


 

and 1n  and 2n  are the number of units that respond and those that fail to re-
spond respectively. 

ijπ  is the probability of selecting the jth unit in the ith cluster into the sample. 

Let ( ) 1
ij

ij

w x
π

=  to be the inverse of the second order inclusion probabilities 

and that ijx  is the ith auxiliary random variable from the jth cluster. It follows 
that Equation (2.2) becomes 

( ) ( )( )
1 2

ˆ 1 1 1 ˆ1ij ij ij ij ij ij
i s j s i s j s

Y w x Y w x Y
M n n

δ δ
∈ ∈ ∈ ∉

  = + − 
  

∑∑ ∑∑        (2.3) 

Suppose ijδ  is known to be Bernoulli random variables with probability of 
success ijδ

∗ , then, ( ) ( )1ij r ij ijE pδ δ δ ∗= = =  and ( ) ( )1ij ij ijδ δ δ∗ ∗= − , [3]. Thus, 
the expected value of the estimator of population mean is given by 

( )( ) ( )( )( )
1 2

ˆ 1 1 1 ˆ1ij ij ij ij ij ij
i s j s i s j s

E Y E w x Y E w x Y
M n n

δ δ ∗

∈ ∈ ∈ ∉

    = + −  
    

∑∑ ∑∑   (2.4) 

Assuming non-response in the second stage of sampling, the problem is 
therefore to estimate the values of îjY . To do this, a linear regression model ap-
plied by [4] and [5] given below is used;  

( )ˆ ˆ ˆij ij ijY m x e= +
                      

 (2.5) 

where ( ).m  is a smooth function of the auxiliary variables and îje  is the resi-
dual term with mean zero and variance which is strictly positive, Substituting 
Equation (2.5) in Equation (2.4) the following result is obtained: 

( )( ) ( )( )
( )( ) ( )( )

1

2

ˆ 1 1 ˆ ˆ

1 ˆ ˆ1

ij ij ij ij
i s j s

ij ij ij ij
i s j s

E Y E m x e w x
M n

E w x m x e
n

δ

δ

∈ ∈

∗

∈ ∉

  = + 
  

+ − + 


∑∑

∑∑
        

 (2.6) 

Assuming that 1 2n n n= = , and simplifying Equation (2.6) we obtain the fol-
lowing  

( )( ) ( )( )
( )( ) ( )( )

ˆ 1 ˆ ˆ

ˆ ˆ1

ij ij ij ij
i s j s

ij ij ij ij
i s j s

E Y E m x e w x
Mn

E w x m x e

δ

δ

∈ ∈

∗

∈ ∉

  = + 
  

+ − + 


∑∑

∑∑
           (2.7) 

A detailed work done by [5] proved that ( )ˆ 0ijE e = . Therefore Equation (2.7) 
reduces to  

( )( ) ( )( )

( )( ) ( )( )

ˆ 1 ˆ

ˆ ˆ1

ij ij ij
i s j s

ij ij ij ij
i s j s

E Y E m x E w x
Mn

E w x E m x e

δ

δ

∈ ∈

∗

∈ ∉

  =  
  

+ − + 


∑∑

∑∑
          (2.8) 
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The second term in Equation (2.8) is simplified as follows: 

 

( )( ) ( )( )

( )( ) ( )

( )( )

*1 ˆ ˆ1

1 ˆ1

1 1

ij ij ij ij
i s j s

ij ij ij
i s j s

ij ij ij
i s j s

E w x E m x e
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E w x m x
Mn

E w x e
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δ

δ

δ

∉ ∉

∉ ∉

∉ ∉

  − + 
  
  = − 
  
  + − 
  

∑∑

∑∑

∑∑
           

 (2.9) 

But ( )( ) ( ) ( )ˆij ij ijE m x m x m x= = , [6]. Thus we get the following: 

( )( ) ( )( )

( ) ( ) ( )

( ) ( )( )( )
1 1

1 1

1 ˆ ˆ1

1

1

ij ij ij ij
i s j s
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ij ij ij ij ij
i m j n
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ij ij ij ij ij
i m j n

E w x E m x e
Mn

m x w x m x
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E e E w x e
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δ
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δ δ

∗

∉ ∉

= + = +

= + = +

  − + 
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∑∑
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          (2.10) 

( )( ) ( )( )

( )( ) ( )( ) ( ) ( ) ( ) ( ){ }
( )( ) ( )( ) ( ) ( ) ( ){ }
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1 1 1

1 1 1

ij ij ij ij
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δ
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∗
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  − + 
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 + − + − + − 
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  (2.11) 

But ( ) 0ijE e = , for details see [5]. 
On simplification, Equation (2.11) reduces to 

( )( ) ( )( )
( )( ) ( )( ) ( ) ( )( ){ }

1 ˆ ˆ1

1 1
1

ij ij ij ij
i s j s

ij ij ij

E w x E m x e
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δ

δ

∗

∉ ∉

  − + 
  
− + − +

= −

∑∑
        (2.12) 

Recall ( ) 1
ij

ij

w x
π

=  

so that Equation (2.12) may be re-written as follows: 

( )( ) ( )( )
( )( ) ( )( ) ( )

1 ˆ ˆ1

1 1 1

ij ij ij ij
i s j s

ij
ij ij

ij

E w x E m x e
Mn

M m N n
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δ

π
δ

π

∗

∉ ∉

  − + 
  

  − + − + − =       

∑∑
         (2.13) 

Assume the sample sizes are large i.e. as n N→  and m M→ , Equation 
(2.13) simplifies to 

( )( ) ( )( )

( )

1 ˆ ˆ1

11

ij ij ij ij
i s j s

ij
ij ij

ij

E w x E m x e
Mn

m x
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Combining Equation (2.14) with the first term in Equation (2.08) becomes; 

( )( ) ( )( ) 1ˆ 1 ˆij ij
ij ij ij

i s j s i s j sij ij

E Y E m x E m x
Mn

δ π
δ

π π∈ ∈ ∈ ∉

    −   = +                
∑∑ ∑∑    (2.15) 

Since the first term represents the response units, their values are all known. 
The problem is to estimate the non-response units in the second term. Let the 
indicator variable 1ijδ = , the problem now reduces to that of estimating the 
function ( )ˆijm x , which is a function of the auxiliary variables, ijx . Hence the 
expected value of the estimator of the finite population mean under 
non-response is given as;  

( )( ) 1ˆ 1 ˆ ij
ij ij ij

i s j s i s j s ij

E Y Y m x
Mn

π
δ

π∈ ∈ ∈ ∉

  −   = +           
∑∑ ∑∑          (2.16) 

In order to derive the asymptotic properties of the expected value of the pro-
posed estimator in 2.16, first a review of Nadaraya-Watson estimator is given 
below.  

3. Review of Nadaraya-Watson Estimator 

Given a random sample of bivariate data ( ) ( ), , , ,i i n nx y x y  having a joint pdf 
( ),g x y  with the regression model given by 

( )ij ij ijY m x e= +  as in Equation (2.5), where ( ).m  is unknown. Let the error 
term satisfy the following conditions: 

( ) ( ) ( )20, , , 0 forij ij ij i jE e Var e cov e e i jσ= = = ≠
        

 (3.0) 

Furthermore, let ( ).K  denote a symmetric kernel density function which is 
twice continuously differentiable with:  

( )

( )

( )

( )
( ) ( )

2

2

d 1

d 0

d

d k

k w w

wk w w

k w w

w k w w d

k w k w

∞

−∞

∞

−∞

∞

−∞

∞

−∞

=

= 
< ∞ 

=

= −


∫

∫

∫

∫

                    

 (3.1) 

In addition, let the smoothing weights be defined by 

( ) , 1, 2, , ; 1, 2, ,

ij

ij
ij

i s i s

x X
K

b
w x i n j m

x X
K

b∈ ∈

− 
 
 = = =

− 
 
 

∑ ∑
        (3.2) 

where b is a smoothing parameter, normally referred to as the bandwidth such 

that, ( ) 1iji j w x =∑ ∑ . 

Using Equation (3.2), the Nadaraya-Watson estimator of ( )ijm x  is given by: 
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( ) ( )ˆ , 1, 2, , ; 1, 2, ,

ij
iji s j s

ij ij ij
i s j s ij

i s j s

x X
K Y

b
m x w x Y i n j m

x X
K

b

∈ ∈

∈ ∈

∈ ∈

− 
 
 = = = =

− 
 
 

∑ ∑
∑∑

∑ ∑
   (3.3) 

Given the model ( ) ˆˆ ˆij ij ijY m x e= +  and the conditions of the error term as ex-
plained in 3.0 above, the expression for the survey variable ijY  relative to the 
auxiliary variable ijX  can be given as a joint pdf of ( ),ij ijg x y  as follows: 

( ) ( ) [ ]
( )
( )

, d
d

, dij ij ij ij

yg x y y
m x E Y X x yg y x y

g x y y
= = = = ∫∫ ∫        

 (3.4) 

where ( ), dg x y y∫  is the marginal density of ijX . The numerator and the de-
nominator of Equation (3.4) can be estimated separately using kernel functions 
as follows: 

( ),g x y  is estimated by;  

( ) 1 1 1ˆ , ij ij

i j

x X y Y
g x y K K

mn b b b b
 − −    

=          
∑∑           (3.5) 

and 

( ) 1 1 1ˆ , d dij ij

i j

x X y Y
yg x y y K K y y

mn b b b b
 − −    

=          
∑∑∫ ∫       (3.6) 

Using change of variables technique; let  

d d

ij

ij

y Y
w

b
y wb Y

y b w

− 
= 


= + 
=                         

 (3.7) 

So that  

( ) ( ) ( )1 1 1ˆ , d dij
ij

i j

x X
yg x y y K bw Y K w b w

mn b b b
− 

= + 
 

∑∑∫ ∫            (3.8) 

( ) ( )1 1d dij
ij

i j

x X
K wK w b w Y K w b w

mnb b b
−   = +     

∑∑ ∫ ∫
   

 (3.9) 

From the conditions specified in Equation (3.1), the following (3.9) simplifies 
to 

( ) 1ˆ , d 0ij
ij

i j

x X
yg x y y K Y

mnb b
− 

 = +   
 

∑∑∫            (3.10) 

which reduces to: 

( ) 1ˆ , d ij
ij

i j

x X
yg x y y K Y

mnb b
− 

=  
 

∑∑∫              (3.11) 

Following the same procedure, the denominator can be obtained as follows: 
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( )

1 1

1 1 1ˆ , d d

1 1 d

ij ij

i j

n m
ij ij

i j

x X y Y
g x y y K K y

mn b b b b

x X y Y
K K y

mnb b b b= =

 − −    
=          

− −   
=    

   

∑∑∫ ∫

∑∑ ∫
      (3.12) 

Using change of variable technique as in Equation (3.7), Equation (3.12) can 
be re-written as follows: 

( ) ( )
1 1

1 1ˆ , d d
n m

ij

i j

x X
g x y y K K w b w

mnb b b= =

− 
=  

 
∑∑∫ ∫          (3.13) 

which yields 

( )
1 1

1ˆ , d
n m

ij

i j

x X
g x y y K

mnb b= =

− 
=  

 
∑∑∫

             
 (3.14) 

Since ( )1 dK w b w
b∫  is a pdf and therefore integrates to 1. 

It follows from Equations ((3.11) and (3.14)) that the estimator ( )ˆijm x  is as 
given in Equation (3.3). Thus the estimator of ( )ijm x  is a linear smoother 
since it is a linear function of the observations, ijY . Given a sample and a spe-
cified kernel function, then for a given auxiliary value ijx , the corresponding 
y-estimate is obtained by the estimator outlined in Equation (3.3), which can be 
written as: 

( ) ( )ˆ ˆij NW ij ij ij ij
i j

y m x W x Y= =∑∑                 (3.15) 

where ( )ˆNW ijm x  is the Nadaraya-Watson estimator for estimating the un-
known function ( ).m , for details see [7] [8]. 

This provides a way of estimating for instance the non-response values of the 
survey variable ijY , given the auxiliary values ijx , for a specified kernel func-
tion.  

4. Asymptotic Bias of the Mean Estimator Ŷ  

Equation (2.16) may be written as  

( )
1 1 1 1

ˆ 1 ˆ
n m N M

ij NW ij
i j i n j m

E Y Y m y
MN = = = + = +

    = +  
    

∑∑ ∑ ∑             (4.1) 

Replacing x  by ijx  and re-writing Equation (3.15) using the property of 
symmetry associated with Nadaraya-Watson estimator, then  

( )ˆ , 1, 2, , ; 1, 2, ,

ij ij
iji s j s

NW ij
ij ij

i s j s

X x
K Y

b
m x i n j m

X x
K

b

∈ ∈

∈ ∈

− 
 
 = = =

− 
 
 

∑ ∑

∑ ∑
      (4.2) 

( )
1 1

ˆ
ij ij

ij
i jij

X x
K Y

mnb bg x
 −  

=   
   

∑∑
                 

 (4.3) 
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where ( )ˆ ijg x  is the estimated marginal density of auxiliary variables ijX .  
But for a finite population mean, the expected value of the estimator is given 

in Equation (4.1). The bias is given by  

ˆˆ ˆ
Bias Y E Y Y

   = −       
                     (4.4) 

( )
1 1 1 1

1 1 1 1

ˆ 1 ˆBias

1

n m N M

ij ij
i j i n j m

n m N M

ij ij
i j i n j m

Y E Y m x
MN

Y Y
MN

= = = + = +

= = = + = +

    = +   
    

 − +  
 

∑∑ ∑ ∑

∑∑ ∑ ∑
           (4.5) 

Which reduces to  

( )
1 1 1 1

ˆ 1 ˆBias
N M N M

ij ij
i n j m i n j m

Y m x Y
MN = + = + = + = +

    = −  
    

∑ ∑ ∑ ∑            (4.6) 

( ) ( )
1 1 1 1

1 ˆ
N M N M

ij ij
i n j m i n j m

m x m x
MN = + = + = + = +

  = − 
  
∑ ∑ ∑ ∑         (4.7) 

Re-writing the regression model given by ( )ij ij ijY m X e= +  as  

( ) ( ) ( )ij ij ij ij ijY m x m X m x e = + − +                 (4.8) 

So that from Equation (4.3) the first term in Equation (4.7) before taking the 
expectation is given as: 

( )

( ) ( )

( ) ( )

1 1

1 1

1 1

1 1

1
1

ˆ

1 1
ˆ

1

1

N M ij ij
iji n j m
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ij ij
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i n j mij

N M
ij ij

ij ij
i n j m

N M
ij ij
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X x
K Y
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MN g x

X x
K m x

MN bg x

X x
K m X m x

mnb b

X x
K e

mnb b

= + = +

= + = +

= + = +

= + = +

 −  
  
  
 
 
  
  −  =    

   
−   + −    

−   +  
  

∑ ∑

∑ ∑

∑ ∑

∑ ∑




          (4.9) 

Simplifying Equation (4.9) the following is thus obtained:  

( )
( ) ( ) ( ) ( )

( )

1 1

1 21 1

1 1
ˆ

ˆ ˆ ˆ1
ˆ

N M
ij ij

ij
i n j mij

N M
ij ij ij iji n j m
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X x
K Y

MN bmnbg x

g x m x m x m x

MN mnbg x

= + = +

= + = +

 −  
  

   
  + +  =  
  

∑ ∑

∑ ∑

    

 (4.10) 

where 

( ) ( ) ( )1
1 1

ˆ
N M

ij ij
ij ij ij

i n j m

X x
m x K m X m x

b= + = +

−   = −    
∑ ∑  
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( )2
1 1

ˆ
N M

ij ij
ij ij

i n j m

X x
m x K e

b= + = +

− 
=  

 
∑ ∑  

Taking conditional expectation of Equation (4.10) we get  

( )

( ) ( )
( )

( )
( )

1 1

1 2

1 1

ˆ

ˆ ˆ1 1
ˆ ˆ

N M
iji n j m

ij

N M
ij ij

ij
i n j m ij ij

M x
E

x

m x m x
E m x

MN mnb g x g x

= + = +

= + = +

 
 
 
 

  
  = + +
    

∑ ∑

∑ ∑

       (4.11) 

To obtain the relationship between the conditional mean and the selected 
bandwidth, the following theorem due to [6] is applied; 

Theorem: (Dorfman, 1992) 
Let ( )k w  be a symmetric density function with ( )d 0wk w w =∫  and 

( )2
2dw k w w k=∫ . Assume n and N increase together such that 

n
N

π→  with  

0 1π< < . Besides, assume the sampled and non-sampled values of x are in the 
interval [ ],c d  and are generated by densities sd  and p sd −  respectively both 
bounded away from zero on [ ],c d  and assumed to have continuous second de-
rivatives. If for any variable  , ( ) ( ) ( )E U u A u O B= = +  and  

( ) ( )Var U u O C= = , then ( )
1
2

pA u O B C=
 
+


+  


 . 
Applying this theorem, we have 

( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

2 2

2

22
4

2 2

4

2

2

2

ˆ d1

2

4

1

ij ij

ij ij
ij

ij

MN mn k w wYMSE
x mnbg xMN

g x m xMN mn
b k k m x

m n g x

MN mn
O b O

mnb mnb

   −  =    

 ′′ ′−
′′ + +

  
 − + + + 

  

∫

      

 (4.12) 

This theorem is stated without proof. To prove it, we partition it into the bias 
and variance terms and separately prove them as follows: 

From Equation (3.0) it follows that ( ) 0ij ijE e X = . Therefore, ( )2ˆ 0ijE m x  =  . 
Thus ( )1ˆ ijE m x    can be obtained as follows: 

( )

( ) ( )

1
1 1

1 1

ˆ

1 1

N M

ij
i n j m

N M
ij ij

ij ij
i n j m

E m x

X x
E K m X m x

MN mnb b

= + = +

= + = +

  

  −     = −          

∑ ∑

∑ ∑
    

 (4.13) 

Using substitution and change of variable technique below 

so that and d dij
ij

V x
w V x bw V b w

b
−

= = + =
        

 (4.14) 

Equation (4.13) can simplify to: 
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( )

( ) ( ) ( ) ( )

1
1 1

ˆ

1 d

N M

ij
i n j m

ij ij ij

E m x

MN mn k w m x bw m x g x bw b w
MN mnb

= + = +

  

−  = + − +   

∑ ∑

∫ ∫
  (4.15) 

( ) ( ) ( ) ( )1 dij ij ij
MN mn k w m x bw m x g x bw w

MN mn
−  = + − +   ∫

  
 (4.16) 

Using the Taylor’s series expansion about the point ijx , the kth order kernel 
can be derived as follows: 

( ) ( ) ( ) ( ) ( ) ( )2 2 21 1
2 !

k k k
ij ij ij ij ijg x bw g x g x bw g x b w g x b w O b

k
′ ′′+ = + + + + +  (4.17) 

Similarly,  

( ) ( ) ( ) ( ) ( ) ( )2 2 21 1
2 !

k k k
ij ij ij ij ijm x bw m x m x bw m x b w m x b w O b

k
′ ′′+ = + + + + +  (4.18) 

Expanding up to the 3rd order kernels, Equation (4.18) becomes 

( ) ( ) ( ) ( )2 2 3 31 1(
2 3!ij ij ij ij ijm x bw m x m x bw m x b w m x b w  ′ ′′ ′′′+ − = + +      (4.19) 

In a similar manner, the expansion of Equation (4.16) up to order ( )2O b  is 
given by: 

( )

( ) ( ) ( ) ( ) ( )( )

1
1 1

2 2

ˆ

1 1 d
2

N M

ij
i n j m

ij ij ij ij

E m x

MN mn k w m x bw m x b w g x g x bw w
MN mn

= + = +

  

 −  ′ ′′ ′= + +  
  

∑ ∑

∫
 (4.20) 

Simplifying Equation (4.20) gives; 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1

2 2

2 2 2

1ˆ d

d

1 d
2

N M

ij ij ij
i n j m

ij ij

ij ij

MN mnE m x g x m x b wk w w
MN mn

MN mn g x m x b w k w w
mn

MN mn g x m x b w k w w O b
mn

= + = +

 −   ′=     
−  ′ ′+  

 
−   ′′+ +  

  

∑ ∑ ∫

∫

∫

 (4.21) 

Using the conditions stated in Equation (3.1), the derivation in (4.21) can 
further be simplified to obtain: 

( )

( ) ( ) ( ) ( ) ( )

1
1 1

2 2

ˆ

1 1
2

N M

ij
i n j m

ij ij ij ij k

E m x

MN mn g x m x g x m x b d O b
MN mn

= + = +

  

 −    ′ ′ ′′= + +        

∑ ∑

 

 (4.22) 

Hence the expected value of the second term in Equation (4.11) then becomes: 

( )

( ) ( ) ( )
( ) ( )

1
1 1

2 2

ˆ

1 1
2

N M

ij
i n j m

ij ij
ij k

ij

E m x

g x m xMN mn m x b d O b
MN mn g x

= + = +

  

  ′ ′−   ′′ = + +  
      

∑ ∑

    

 (4.23) 
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( ) ( ) ( ) ( ) ( )1 2 21
2

ij
ij ij ij k

m xMN mn g x g x m x b d O b
MN mn

−  ′′−     ′ ′ = + +          
 (4.24) 

( ) ( )2 21
k

MN mn b d C x O b
MN mn

 −  = +  
                            

 (4.25) 

where 

( ) ( ) ( ) ( ) ( )11
2 ij ij ij ijC x m x g x g x m x

−
 ′′ ′ ′= +             

 (4.26) 

and kd  is as stated in Equation (3.1) 
Using equation of the bias given in (4.4) and the conditional expectation in 

Equation (4.11), we obtain the following equation for the bias of the estimator: 

( ) ( )

( ) ( )

2 2

2 2

ˆ 1Bias

1

k

k

MN mnY b d C x O b
MN mn

MN mn b d C x O b
MN mn

 −    = +    
    

 −  = +  
  

         (4.27) 

5. Asymptotic Variance of the Estimator, Ŷ  

From Equations ((4.9) and (4.11)), 

( )2
1 1

1 n m
ij ij

ij ij
i j

X x
m x K e

mnb b= =

− 
′ =  

 
∑∑

              
 (5.0) 

Hence  

( )
( )

( )
2

2 2
1 1 1 1

1ˆVar Var
N M n m

ij x
i n j m i j

MN mnm x D
mnbMN= + = + = =

−   =     
∑ ∑ ∑∑       (5.1) 

where  

ij ij
x ij

X x
D K e

b
− 

=  
 

 

Expressing Equation (5.1) in terms of expectation we obtain: 

( )
( )

( ) [ ] ( ){ }
2

22
2 2 2

1 1

1ˆVar
N M

ij x x
i n j m

MN mn
m x E D E D

mnbMN= + = +

 −   = −       
∑ ∑    (5.2) 

Using the fact that the conditional expectation  

( ) 0ij ijE e X = , the second term in Equation (4.13) reduces to zero. Therefore, 

( )
( )

( )
( )

2
2

2 2 2
1 1

1ˆVar
ij

N M

ij x
i n j m

MN mn
m x

mnbMN
σ

= + = +

 −  =      
∑ ∑          (5.3) 

where 

( ) ( )
2 2

ijij ij x
E e X σ=  

 Let ijX X= , and ijx x= , and making the following substitutions 
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d d

X xw
b

X x bw
X b w

− = 
− = 
= 

                        (5.4) 

( ) ( )
( ) ( ) ( )

2 2
2

2 22
1 1

ˆVar d
ij

N M

ij x
i n j m

MN mn X xm x K g X X
bmnb MN

σ
= + = +

− −   =     
∑ ∑ ∫    (5.5) 

( )
( )

( ) ( ) ( )
2

2 2
22

d
ijx

MN mn
K w g x bw b w

mnb MN
σ

−
= +∫

  
 (5.6) 

which can be simplified to get: 

( ) ( )
( )

( ) ( ) ( )

2
2 2

2 2
1 1

1ˆVar d
ij

N M

ij x
i n j m

MN mn
m x K w g x w O

mnbmnb MN
σ

= + = +

−    = +     
∑ ∑ ∫     (5.7) 

( )

( )
( ) ( )

1
1 1

2
1 1 1 1

ˆVar

1 1Var

N M

ij
i n j m

N M n m
ij ij

ij ij
i n j m i j

m x

X x
K M X m x

mnb bMN

= + = +

= + = + = =

  

 −    = −       

∑ ∑

∑ ∑ ∑∑
 (5.8) 

( ) ( )
( )

( ) ( )
2

1 22
1 1

ˆVar Var
N M

ij ij
ij ij ij

i n j m

X xMN mn
m x K M X m x

bmnb MN= + = +

−−     = −     
∑ ∑   (5.9) 

Hence  

( )

( )
( )

( ) ( ) ( )

1
1 1

2 2
2

22

ˆVar

d

N M

ij
i n j m

m x

MN mn X xE K M X m x g X X
bmnb MN

= + = +

  

 − − = −        

∑ ∑

∫
   

 (5.10) 

where X bw x= +  so that d dX b w= . 
Changing variables and applying Taylor’s series expansion then 

( )

( )
( )

( ) ( ) ( ) ( )

1
1 1

2
22

22

ˆVar

d

N M

ij
i n j m

m x

MN mn
K w m x bw m x g x bw w

mnb MN

= + = +

  

−
= + − +  

∑ ∑

∫
             (5.11) 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )( )
2

22
22

d
MN mn

K w m x m x bw m x g x g x bw w
mnb MN

−
′ ′= + + − +  ∫   (5.12) 

which simplifies to 

( ) ( )2 2

1
1 1

ˆVar
N M

ij
i n j m

MN mn b
m x O

mnb= + = +

 −  =      
∑ ∑

          
 (5.13) 

For large samples, as n N→ , m M→  and for 0b → , then mnb →∞ . 
Hence the variance in Equation (5.12) asymptotically tends to zero, that is, 

( )1
1 1

ˆVar 0
N M

ij
i n j m

m x
= + = +

  → ∑ ∑  
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( )
( )

( ) ( ) ( )
( )

2
1 2

2
1 1

ˆ
Var Var

ˆ

N M
ij ij

ij
i n j m ij

m x m xMN mn
Y m x

g xmnb MN = + = +

 ′ ′′+−   = + 
    

∑ ∑     (5.14) 

On simplification,  

( )
( ) ( )

( )
2

222 1 1

ˆ ˆVar Var
ˆ

N M

ij
i n j m

ij

MN mn
Y m x

mnb MN g x = + = +

 −     =            
∑ ∑

     

 (5.15) 

Substituting Equations ((5.7) into (5.15)) yields the following: 

( )

( ) ( ) ( )

( )( )
( )

2 2 2 2

2

dˆ 1 1Var ijx

ij

MN mn K w w MN mn
Y O

mnb mnbMN mnb g x

σ −  −   = + +   
      

∫
 (5.16) 

( )

( ) ( ) ( )

( )( )
( )

2 2 2

2

1 1ijx

ij

MN mn H w MN mn
O

mnb mnbMN mnb g x

σ −  − = + +  
    

     (5.17) 

where, ( ) ( )2 dH w K w w= ∫  
It is notable that the variance term still depends on the marginal density func-

tion, ( )ijg x  of the auxiliary variables ijX . It can also be observed that the va-
riance is inversely related to the smoothing parameter b. This implies that an in-
crease in b results in a smaller variance. However, increasing the bandwidth 
would give a larger bias. Therefore there is a trade-off between the bias and va-
riance of the estimated population mean. A bandwidth that provides a compro-
mise between the two measures would therefore be desirable. 

6. Mean Squared Error (MSE) of the Finite Population Mean 

Estimator Ŷ  

The MSE of 
ˆ

Y  combines the bias and the variance terms of this estimator that 
is,  

2ˆ ˆ
MSE Y E Y Y   = −   

                       
 (6.0) 

2ˆ ˆ ˆ ˆ
MSE Y E Y E Y E Y Y      = − + −                         

 (6.1) 

Expanding Equation (6.1) gives: 
22ˆ ˆ ˆ

ˆ ˆ ˆ
2

MSE Y E Y E Y E E Y Y

E Y E Y E Y Y

         = − + −               
     + − −          

          (6.2) 

 2ˆ
Var 0Y Bias = + + 

                       
 (6.3) 

Combining the bias in Equation (4.27) and the variance in Equation (5.17) 
and conditioning on the auxiliary values ijx  of the auxiliary variables ijX  then 
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( )

( ) ( ) ( )

( )( )
( )

( ) ( )

2 2 2

2

2 2

ˆ

1 1 1

1

ij

ij ij

x

ij

k

MSE Y X x

MN mn H w MN mn
O

MN mnb mnbMN mnb g x

MN mn b d C x O b
MN mn

σ

 = 
 

 −   −    = + +          
 −  + +  
  

  (6.4) 

( )

( ) ( ) ( )

( )( )
( )
( ) ( )

( ) ( ) ( )
( )

( )

2 2

2

22
4 2

2 2

4

ˆ

1

2

4

1 1

ij

ij ij

x

ij

ij ij
k ij

ij

MSE Y X x

MN mn H w

MN mnb g x

g x m xMN mn
b d m x

g xmn MN

MN mnO b O
MN mnb mnb

σ

 = 
 

 −= 


  ′ ′− ′′ + +
   

  −   + + +     
     

               (6.5) 

where ( ) ( )2 dH w K w w= ∫ , ( )2 dkd w K w w= ∫ ,  

( ) ( ) ( ) ( ) ( )11
2 ij ij ij ijC x m x g x g x m x

−
 ′′ ′ ′= +    as used earlier in the rest of the de-

rivations. 

7. Conclusion 
If the sample size is large enough, that is as n N→  and m M→  the 𝑀𝑀𝑀𝑀𝑀𝑀 of 

ˆ
Y 
 
 

 in Equation (6.5) due to the kernel tends to zero for sufficiently a small 

bandwidth b. The estimator 
ˆ

Y 
 
 

 is therefore asymptotically consistent since 

its MSE converges to zero. 
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