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Abstract 
The Cardinality Constraint-Based Optimization problem is investigated in 
this note. In portfolio optimization problem, the cardinality constraint allows 
one to invest in K N≤  assets out of a universe of N assets for a prespecified 
value of K. It is generally agreed that choosing a “small” value of K forces the 
implementation of diversification in small portfolios. However, the question 
of how small must be K has remained unanswered. In the present work, using 
a comparative approach we show computationally that optimal portfolio se-
lection with a relatively small or large number of assets, K, may produce simi-
lar results with differentiated reliabilities.  
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1. Introduction 

Although the portfolio optimization problem has been studied using various 
analytical and numerical techniques for more than half a century, recent 
development of computer based methods has opened new horizon to research in 
computation finance. The problem of portfolio optimization has been rendered 
to be complex for direct solving by traditional numerical approaches when 
constraints that model investors sentiments and frictions are included in the 
mathematical model. An optimal stock portfolio investment strategy should 
show the investor how much to invest in each asset in a given portfolio. The 
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decision variable of stock portfolio optimization is the weight of the asset in the 
portfolio. Once an optimal weight is obtained, the expected return and risk can 
be easily calculated. The solution to the stock portfolio optimization problem 
now lies in graphically obtaining the efficient frontier, which is a risk-return 
trade-off curve. Each point on the efficient frontier gives the minimum level of 
risk to take for an expected return or, alternatively, the maximum return one can 
expect for a given level of risk. Hence a rational investor would usually choose 
portfolios that occur on the efficient frontier, since these represent “optimal” 
portfolios. 

The Markowitz approach for the solution of the Portfolio Selection Problem 
assumed a perfect market, ignoring transaction costs, taxes and permitting 
trading of securities at any proportions. Under these assumptions, the mathematical 
model is reduced to a quadratic optimization which can be directly solved by 
classical numerical methods [1] [2]. However, in practice, the portfolio 
managers operate under stricter constraints. We consider here, as in [3] [4] and 
[5], the basic constraints and, in addition, non-universal constraints. Under 
basic constraints, the weight allocated to each asset lies between zero and one, 
and the total of all weights sums to one, indicating a full investment. In practice, 
it is often the case that an investor chooses to invest a definite proportion of 
weights bounded by a range in specific stock and/or chooses to invest a 
proportion of weights in stocks related to specific sectors such as bank, energy, 
technology and so on, with sum total weights in each specific sector bounded by 
a limit. In the former case, the constraints are referred to as bounding constraints 
and in the latter case as class constraints. 

We finally introduce the Conditional Value-at-Risk (CVaR) into the constraints 
and define the cardinality constraints to allow the investors to invest partially in 
smaller portfolios. The Cardinality Constraint, which is our main focus in this 
work, is adopted when the investor can only invest in K assets out of the universe 
of N assets, for a prespecified value of K. Choosing a small value of K forces the 
implementation of diversification in small portfolios. A cardinality constrained 
optimization portfolio may then be viewed as a significant research topic in 
computational finance since the inclusion of such constraints turns the problem 
mathematically speaking in a mixed integer quadratic programming problem 
rendering it to be complex for direct solving by numerical methods. However, in 
some complex cases, a Genetic Algorithm (GA) approach may be required. 

In this paper, we discuss the solution of complex cardinality constraint-based 
optimization problem but we also include all basic constraints (as part of the 
general constraints on portfolios over time), and implement a GA approach for 
investigating the solution of such a problem [1]. The GA is a member of the class 
of population-based stochastic search algorithms which are population-based 
and are developed from the ideas and principles of natural evolution. Our work 
is organized as follows: in Section two, we present the preliminary setup of the 
portfolio optimization problem; in Section three, we formulate the cardinality 
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constraint-based optimization. In Section four we display and comparatively 
analyse results for the values 3,4,7K =  and 8. We discuss our results in 
Section five and end this work with a short conclusion in Section six. 

2. Overview of the Portfolio Problem 

We present in this section the mathematical foundation, propositions and 
theorems, and previous analytical results which support and validate our 
computational approach. 

2.1. Preliminary Setup 

This subsection presents an overview of the portfolio problem with respect to 
previous references [6]-[12]. The aim of this paper is to focus more precisely on 
solving the core optimization problem with differentiated size of assets and 
introduce the reader to new insights provided by our method, the ultimate goal 
being to let the data speak for themselves as much as possible. In our setup we 
hold N assets 1 2, , , Nx x x�  at time t and wish to construct an optimal portfolio 
over given investment time periods. Our portfolio consists of N traded assets 
numbered 1,2, , N�  held over a period of time, with jR  the return on asset j 
assumed to be a random variable. Assume ( )jx t  is the proportion of asset j 
traded out of the total of all assets, and let 1 2, , , NR R R�  be the return rates of 
assets 1,2, , N� . We assume that jE R  < ∞   for all 1,2, ,j N= � . Our aim 
is to invest our capital in K N≤  assets in order to obtain some desirable 
characteristics of return rate on the investment. Denoting by 1 2, , , Nw w w�  the 
fractions of the initial capital invested in assets, we have  
( ) 1 1 2 2 N NR x R x R x R x= + + +�  and the set of possible asset allocations may be 

defined as  

{ }1 2, 1; 0, 1, 2, ,N
N jX x R x x x x j N= ∈ + + + = ≥ =� �

         
(1) 

In some applications one may introduce short selling; that is, allowing some 

jx  to be negative. Other restrictions may limit the exposure to particular assets 
in given groups, by imposing restrictions on upper bounds of the jx s or their 
particular subset sum. One can also limit the absolute differences between the 
proportion ( )jx t  of our assets and some reference proportion jx  (which 
may represent the existing benchmark portfolio). One of the main difficulties of 
the Portfolio Optimization Problem remains the type of constraint being applied 
to the problem. In the next subsection we will present the concept of a 
dominance constrained portfolio and show how it simplifies the portfolio 
problem to some extent. 

2.2. Dominance Constrained Portfolio 

We begin by assuming that the benchmark random return rate Y  having a 
finite expected value is available. It may have the form ( )Y R x=  for some 
benchmark portfolio x , which may be some expected average of our current 
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portfolio (see [7] [8] for details). Our intention is to have a return rate, ( )R x , 
of the new portfolio preferable (in some sense) over Y: therefore we introduce 
the following optimization problem: 

Find min f  

Subject to ( ) 2 ,R x Y x X≥ ∈  

Here 2≥  denotes dominance and :f X R→  is a concave continuous 
function. In particular, we may use ( ) ( )( )f x E R x= . Now we present some 
standard theorems and propositions which shall clarify our concepts. 

Theorem 1. Let P  be a randomly constructed portfolio and 1P  the benchmark 
portfolio. The second order stochastic dominance constraint is equivalent to the 
continuum of VaR constraints on portfolios. That is, ( ) ( )1CVaR P CVaR Pα α≥  for 
all ( ]0,1α ∈ , where CVaRα  is the conditional Value-at-Risk at level α .  

Proof (by analogy to [9]). Let P  be any randomly constructed portfolio 
defined as a function of its assets. Consider a function h  that obeys the 
inequality ( ) ( ),h P CVaR Pαα ≥ , ( ]0,1α ∈ . For 0α = , we get ( )0, 0h P =  
(for details see [7] [13] and [14]). 

The function ( ),h Pα  is a curve defined on the portfolio P such that  

( )( ) ( )( ){ } ( )( ){ }, ;sup suph P x E P x g P x
κ κ

α ακ κ ακ κ
+

 ≥ − − = −      
(2) 

Observe that ( )( ),h P x•  is the conjugate of the function ( )( )0 ;P x n  such 
that ( )( ) ( )( )0;g P x g P xκ ≤  for all Rκ ∈  (also notice that g  and h  are 
dual functions by the definition). This implies that ( )( ) ( )( )0, ,h P x h P xα α≥ , 
but, since ( )( )g P x  is continuous by duality of the conjugate, we conclude that 
the initial capital allowed for risk exposure at level 0α ≠  is given by the 
benchmark outcome 1P , and finally ( )1CVaR P Tα α− = , where Tα  is the tail 
conditional expectation equivalent or the expected shortfall at fixed level α .  

Remark 1. If the portfolio is discrete, the stochastic dominance constraint can 
be replaced by infinitely many inequalities.  

Proposition 1. Assume that the portfolio ( )1P x  defined as a linear function 
on assets has a discrete distribution with realisation { }ip , 1, ,i N= � . Then, 
the following equality holds:  

( )( ) ( )( )1i iE p P x E p P x
+ +

   − ≤ −                   
(3) 

where ( )( ) ( )( )max 0,i ip P x p P x
+

− ≡ − , recalling that P  denotes our 
portfolio.  

Remark 2. The above proposition does not imply that the continuum of 
CVaR constraints can be replaced by finitely many constraints of the form 

( )( ) ( )( )1CVaR P x CVaR P xα ≥ .  
Proposition 2. Let ( )P P x=  be the payoff or value of a portfolio at some 

future time and 0 1α≤ ≤ . If the underlying distribution of the portfolio P  is a 
continuous distribution then the Expected Shortfall ESα  is reduced to the Tail 
Conditional Expectation TCEα   
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( ) ( ) ( )TCE P ES P E P P VaR Pα α α= = − ≤ −               
(4) 

Let us now focus on extreme values of the portfolio. Basically a portfolio may 
have heavy tail distribution partly due to violent market movements. These large 
market movements, far from being accepted as simple outliers, focus the 
attention of all investor or players, since their magnitude may be such that they 
compose a fraction of the portfolio return aggregate over long period of time. 
These observations have motivated numerous theoretical and computational 
efforts to understand the intermittent role of various assets in the portfolio and 
model adequately the tail of distribution of their returns. Such studies are 
relevant for risk management purposes and also necessary for calculation of 
average risk (of loss in portfolios) which may be required to determine regulatory 
capital requirements [13] [14] [15] [16] and [17]. Now, given a series of non- 
overlapping returns ( ), , 0, , 2 , ,x t t t t t n t∆ = ∆ ∆ ∆� , the extremal (minimal and 
minimal) returns are defined as  

( ) ( ){ }, min ; 1, ,Nm x t x t k t k N∆ = + ∆ = �  

( ) ( ){ }, max ; 1, ,NM x t x t k t k N∆ = + ∆ = �  

In terms of risk management ( ),nm x t∆  represents the worst relative loss 
over time horizon t∆  of an investor holding a portfolio ( )( )P x t . The 
question of how the properties of returns affect the probability distribution of 

( ),nm x t∆  and ( ),nM x t∆  simultaneously over time seems to be quite 
attractive. Hence, if we knew the stochastic process generating the returns, we 
could easily evaluate the distribution of the extremes, but this is unfortunately 
not the case and that is where extreme value theory is needed. However we will 
not discuss the extreme value theory in this paper. 

2.3. Portfolio Reliability (Predicted and Realised Risk on a Portfolio) 

The reliability of a portfolio P  is a quantity that serves as a good measure to 
compare the goodness of the fit in the portfolio. For a given level of expected 
return, with predσ  and realσ  to be the corresponding predicted and realised 
risks, the reliability ℜ  of a portfolio is given by  

pred real

real

σ σ
σ
−

ℜ =
                        

(5) 

A portfolio is more reliable when ℜ  is small. In our setup the predicted risk 
is computed by our GA, whereas the realised risk uses the usual formula of 
variance. Here we use only a positive definite reliability to simplify the comparison 
between optimal reliability gains over generation time. In the next section we 
shall formulate the cardinality constraints based optimization problem. 

3. Cardinality Constraint-Based Optimization Problem 

To bring the element of time into play, we now expand our approach from 
vectors to matrices. Let N be the number of assets in the universe, ( )i jE Rµ =  
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the expected return of the asset i, and ijσ  the covariance between the returns of 
assets i and j in the historical data. Let ( )ijw w=  denote the weight matrix with 
elements representing the proportion of capital to be invested in asset j at time 
t i= , and iK  be the number of assets in which the investor decides to invest 
their capital at time i. Let jw  denote the vector given by column j of w  (that 
is, the weights over all time intervals for asset j, where i denotes the ith entry of 

jw ), 0x  the N N×  matrix of initial prices of assets over all time intervals, 

( )ijP P=  the N N×  matrix of portfolios (rows) over time where 0,ij ij ijP x w= . 
Using the above notation, the expected stock portfolio return vector and risk 
matrix are then given respectively by  

( )
1 1 1

and ,
N N N

j j i j ij
j i j

R w r w wµ σ
= = =

= =∑ ∑∑
              

(6) 

where  

1 n

j j
i j

P
N

µ
=

= ∑
                         

(7) 

is the arithmetic mean of column j of the portfolio matrix, ( ),i jw w  is the scalar 
product of iw  and jw . 

We also define a risk aversion parameter [ ]0,1λ∈  to present what is known 
as the weighted formulation of the portfolio optimization problem. Observation 
of λ  reveals that when it is close to zero, the weights shift toward stocks 
yielding high returns and when close to one, the weights shift toward 
combinations of stocks yielding low volatility in the efficient set. Define the cost 
function  

( ) ( )
1 1 1

, 1
N N N

i j ij j j
i j j

f w w wλ σ λ µ
= = =

= − −∑∑ ∑
               

(8) 

Now let us formulate our modified problem 
a) Find  

,
min

i jw w
f

                            
(9) 

b) Subject to: 
i) 1 1 for all 1, ,N

ijj w i N
=

= =∑ �  (Basic constraint) 
ii) ,0 1 for all ,j ij j j jw i jν δ ν δ≤ ≤ ≤ < ≤  (Boundary constraint) 
iii) ( )( )Pr 0.01 0.01P t ≤ ≤�  (Probability constraint)  

iv) 1 for allN
ij ji Z K j

=
≤∑  where 

1; if
0; otherwise

ij j
ij

w
Z

ν>
= 


 (Cardinality con-

straint)  

( )P t�  is the loss in portfolio P at time t and condition (i) requires that each 
row of the weight matrix sums to 1, with condition (ii) requiring two vectors 

( ) ( ),j jν ν δ δ= =  consisting of (possibly distinct) boundaries. Condition (iii) 
stipulates that the loss of any new portfolio created from an old one should be 
less than 1% to be acceptable. In this paper we will not go into detail on the GA 
implementation, rather focusing on the analysis of its outputs. For the interested 
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reader, the algorithm may be found in [1] [18] [19] and [20]. The next section will 
present our results and the comparative analysis of various scenarios of investment. 

4. Results and Comparative Analysis 

We apply our method to the historical data of eight years worth of assets (Table 
1). Those assets are widely used indexes: CAC 40, FTSE 100, S & P 500, Wilshire 
5000, NASDAQ, Barclays 7 - 10 Year Treasury (IEF), MSCI EAFE Index Fund, 
and Gold. 

In the mathematical interpretation, this data is an 8 by 8 matrix where 
columns represent assets and rows are the values of the asset. The values are 
normalised beforehand for stability reasons. Fixing a given year (row), then by 
multiplying each asset by the corresponding weight of the above matrix data in 
and summing the results, we obtain the portfolio value at the given year (row). 
Below we give the results obtained for the values 3,4,7,8K = . 

Comments in Figures 1-4 show the results obtained with three experiments 
(that is, three different initial weight matrices were generated at random, subject 
to the given conditions) on which the GA was run five times for each of the four 
different values of K. Each table exhibits the following: Best cost value attained; 
Gain from minimally reliable portfolio or row; Mean and standard deviation 
(SD) of each experiment, Total % Gain in Matrix portfolio value from a 
randomly produced initial weight matrix 0w ; Maximum Mean Portfolio Value 
in Best fit matrix over all generations, and Minimum Standard deviation of 
Portfolio Value in the best fit matrix over all generations obtained by the GA. It 
can be seen that when the investor decides on diversification in the portfolio 
constructed with 3K =  and 7K =  assets, the expected portfolio value is 
higher than in the portfolio constructed with 4K =  and 8K =  assets. 

5. Discussion 

The proposed comparative analysis shows that high return on a portfolio may be  
 
Table 1. The initial prices used in our experiments. Each entry gives the value of the applicable asset on the date as close as 
possible to 1st January in the given year. 

Year CAC 40 (Close) 
FTSE 100 
(Close) 

S & P 500 
(Close) 

DJW 5000 
(Close) 

NASDAQ Comp. 
(Close) 

BARCLAY S 7610 
vr treas (Close) 

MCSI EAFE 
Close 

Gold London 
PM Fix 

2003 2937.88 3567.40 855.70 8125.10 1320.91 85.49 94.75 343.80 

2004 3638.44 4390.70 1131.13 11,029.20 2066.15 85.56 138.32 416.25 

2005 3913.69 4852.30 1181.27 11,642.60 2962.41 85.69 157.20 427.75 

2006 4947.99 5760.30 1280.08 12,953.60 2305.82 83.32 62.86 530.00 

2007 5608.31 6203.10 1438.24 14,489.70 2463.93 82.11 74.24 639.75 

2008 4869.79 5879.80 1378.55 13,896.70 2389.86 89.93 72.34 846.75 

2009 2973.92 4149.60 825.88 8335.60 1476.42 94.70 38.70 874.50 

2010 3739.46 5188.50 1073.87 11,099.40 2147.35 90.70 52.48 1121.50 
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Figure 1. Case studied 8.K =  

 

 
Figure 2. Case studied 7.K =  
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Figure 3. Case studied 4.K =  

 

 
Figure 4. Case studied 3.K =  
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Table 2. This table shows summary statistics of overall results, that is those of cases 
studied ( 3, 4, 7K =  and 8). Shown for each value of K are, respectively, the means of the 
quantities shown on this table. In the case of the total percentage gain in portfolio value 
in the whole matrix, this is simply the gain from following the portfolio found at each 
time step.  

K 3 4 7 8 

Best Cost −3.408 −3.467 −3.564 −3.564 

Max (Normalized) Mean PV 0.485 0.478 0.485 0.483 

Min (Normalized) SD PV 0.208 0.193 0.066 0.066 

Min Rel 0.216 0.211 0.178 0.292 

Min Rel % Gain 156.114 51.143 223.592 147.173 

Total % Gain 86.517 87.052 116.160 120.608 

Best ES 0.485 0.478 0.484 0.483 

 
achieved with both a relatively low ( 3K = ) and a relatively high ( 7K = ) 
number of assets and differentiated risks (which have, respectively, a relatively 
high and low risk). We recall that we choose to measure the risk of a portfolio by 
the normalised standard deviation in its value over the given number of trials. 
We observed that the “mean” portfolio for 3K =  has a high mean portfolio 
value with high risk, and an investor who hopes to increase his or her portfolio 
value in an aggressive manner may chose such an allocation procedure. This 
approach will then challenge the Markowitz belief that the only optimal portfolio 
is the one with higher expected mean portfolio value and smaller risk or 
standard deviation. But generally speaking, most nonaggressive investors will 
tend to follow the Markowitz theory when constructing an investment strategy. 

Our results have again highlighted the possibility of constructing an optimal 
portfolio with both low or relatively high risk (which is almost twice the lowest 
risk; see Table 2). The advantage of our approach is to show both possibilities 
which gives more choice to the investor, but the main disadvantage is that our 
number of total assets (N) is not very large (eight assets) and the difference 
between the number of assets which are invested is also relatively small (for 

3K =  and 7K =  out of 8N = , the numbers are relatively close, numerically 
speaking, but in the problem they produced interesting and distinct results that 
could be used in practice to understand and analyse portfolio selection in a 
comprehensive manner). 

6. Conclusions 

In this paper a comparative study of the Constrained Portfolio Optimization 
Problem with cardinality constraint is investigated. The experimental studies 
have been undertaken on widely used indexes form the Period of January 2003 
to January 2010. Our conclusions are as follows: 

1) The diversification in asset numbers less than the total number of assets 
(that is, for K N< ) may increase the expected portfolio return with different 
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reliabilities. We found that the “mean” portfolios for 3K =  and 7K =  both 
had high mean portfolio values, but the 7K =  portfolio had the best reliability, 
meaning that the investor will choose either 3K =  or 7K =  depending on 
how reliable it is likely to be. 

2) Important information such as the gain from minimally reliable portfolio 
or row, mean and standard deviation (SD) of each experiment, total percentage 
gain in matrix portfolio value, and the maximum mean and minimum standard 
deviation in portfolio value may play an important role in optimal portfolio 
selection and management. 

3) The “mean” portfolio for 7K =  has the highest “most reliable row” gain 
percentage, indicating that the preference of investors may be higher on such a 
portfolio compared to that of 3K = , even though they have identical mean 
portfolio values.  

Future directions of this research include: investigating new concepts for 
diversification in large portfolios and comparing with results of diversification in 
small portfolios, therefore building a theory that could link those two 
approaches. 
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