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Abstract 
We have proposed a new generalized Weibull-exponential frailty model which 
is a general case of classical frailty model suggested by [1] and [2]. In classical 
frailty model, modeling of hazard rate is considered whereas, in this paper, 
direct modeling of conditional survival function given the frailty is consi-
dered. Simulation study is carried out using E-M algorithm using MATLAB 
programme. Further we implemented the suggested model on a real life data.  
As an illustration, we have fitted the model to the data given in [3] which ex-
amines the strength of isolated carbon fiber under tensile load. 
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1. Introduction 

Random effect in the model for association and unobserved heterogeneity is 
suitably represented by introducing frailty random variable in the model. One 
way to incorporate frailty in the model is to consider it as an unobserved ran-
dom proportionality factor that modifies the hazard function of an individual or 
related individuals. By considering different mortality models, [4] introduced 
the first univariate frailty model in which he used longevity factor instead of the 
term frailty. The term frailty was introduced by [5] in the univariate context. [5] 
and [6] have independently suggested the same model. [7] considered maximum 
likelihood estimation (M.L.E.) in this model. The estimation is carried out by 
using E-M algorithm which is suggested by [8]. 

In the above frailty model, we observe that the hazard rate is considered to be 
proportional to baseline hazard rate with constant of proportionality as frailty 
random variable Z. However, we think that the generalized model should also 
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incorporate the case having no influence of frailty. By considering the hazard 
rate proportional to the baseline hazard rate with constant of proportionality as 
zρ  with ρ  being an unknown parameter, one can extend the present frailty 
model. 

Here, we adopt another way as suggested in [9] by incorporating zρ  as a 
power function modifier of the scale parameter while modeling the conditional 
location-scale family of survival functions. Let us consider Z as frailty and model 
the conditional survival function as 

( ) ( )0, , ,  
z

S t z S t
ρ

µ θ ρ
θ

µ  Ζ = =
 − 
 

                   (1) 

where ( )0S t  is the baseline parameter free survival function. Then the condi-
tional hazard rate is given as 
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It can be seen that if ( )0f t  is standard exponential, 

( ), , , zt Z z
ρ

λ µ θ ρ
θ

= =                       (3) 

which reduces to the usual frailty model for 1ρ = . 
In this paper, we suggest a new generalized Weibull-exponential frailty model 

by using the second approach, as used by [9]. To ease the discussion, in Section 2, 
we first introduce the usual Weibull-exponential frailty model and then we con-
sider the new Weibull-exponential frailty model and study its properties. In Sec-
tion 3, we discuss maximum likelihood estimation procedure through E-M algo-
rithm. In Section 4, we carry out a simulation study and discuss the results. Fit-
ting of the model on data of the tensile strength of carbon fibers along with like-
lihood ratio test for 0 0:H ρ =  against 1 : 0H ρ ≠  is discussed in Section 5. Fi-
nally, we provide the conclusion of the fitting of model on data in support of the 
proposed model. 

2. A New Generalized Weibull-Exponential Frailty Model 

To overcome or address the problem of heterogeneity in a population resulting 
from unobserved covariates, [5] [10] and [11] suggested a random effects model 
for durations. They introduced the frailty and applied it to population data. The 
classical and commonly applied frailty model assumes a proportional hazards 
model which is conditional on the random effect (frailty), i.e., the hazard of an 
individual depends additionally on an unobservable, age-independent random 
variable Z, which works multiplicatively on the baseline hazard function 0λ . 

( ) ( )0t Z Z tλ λ=                           (4) 

In classical frailty model, the conditional distribution of T for an individual 
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with frailty z is 

( ) ( )
( )0
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The base line hazard rate ( )0 tλ  is obtained as 
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Instead of considering modeling of hazard rate, we consider modeling of con-
ditional survival function given the frailty z, which results in the conditional 
density as 

( )
1
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Mean and variance of the above model can be obtained as below 
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The hazard rate of the model, obtained by replacing 
1
θ

 by zρ

θ
 in (6), is 
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1
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We consider the frailty distribution exponential with mean ( )η µ+ , µ  is 
known, as 

( ) 1; , ;    0
z
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ηη µ µ
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= > >                     (12) 

Here further, we assume that ( ) 1E Z = . This leads to 1µ η= − . Then the 
joint distribution of T and z is 
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Hence, the marginal distribution of T is 

( ) ( )
1

, d d

pz t zpptf t f t z z z e z

ρ µ
θ ηρ

µ µθη

 − ∞ ∞ − +−  
  = =∫ ∫               (14) 

and the conditional distribution of Z given T t=  is 
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Estimates of mean for with frailty i.e. 0ρ ≠ , ( )wfE T  and without frailty (i.e. 
0ρ = ), ( )wofE T  are given by 
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where, ( ),a bΨ  is incomplete gamma function and the above estimates depend 
on estimates of , ,θ ρ η  and p under the model with frailty and without frailty 
separately. In (16), above ( )wfE T  exists only if pρ < . Using (16), we get 

( )max , 1 pρ − < . 

3. Maximum Likelihood Estimation 

Here, we shall obtain the maximum likelihood estimates of the parameters of 
gamma-exponential model using E-M algorithm. The likelihood for the gam-
ma-exponential model is given as 
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The log-likelihood function of the model is 
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To begin with, we presume that ρ is known and obtain the maximum likelih-
ood (m.l.) equations as 
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Then the solution of m.l. equation for θ is 
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The m.l. estimator of η is 

( )
1

ˆ max 1 ii n
zη

≤ ≤
= −                            (23) 

Since m.l. equation for p is analytically not solvable, we use Newton-Raphson 
method. Further we use E-M algorithm as z is unobservable. For that, given the 
current estimates of p, θ and η, the E-step of the algorithm requires calculations 
of ( )E Z t  and ( )lnE Z t  and they are 
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For different values of ρ in the range of ρ, we obtain the m.l. estimates of p, θ 
and η using E-M algorithm. The procedure terminates when the likelihood given 
in (19) is maximized. 

4. Simulation Study 

In this section, we carry out a simulation study by generating 1000 samples of 
size 50 each from a generalized Weibull frailty model for 0.5η =  and different 
values of θ, p and ρ. The samples are used to fit generalized Weibull frailty mod-
el under exponential frailty with location and scale parameter equal to 1. The 
results of this study are given in Table 1. From the table, it can be observed that 
as the value of θ, p and ρ increases, the frailty model provides accurate estimate 
of mean whereas estimate of mean without frailty model deviates significantly 
away from the actual mean. Moreover, the S.E. of the parameter for frailty model 
is comparatively smaller than without frailty model. 

5. Fitting of the Model 

In this section, we fit our model on the data of tensile strength of 100 observa-
tions of carbon fibers. The data were also used by Nicholas and Padgett in [12] 
and later discussed in Flaih et al. in [13]. The data were as follows 

3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 
3.51, 1.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 3.31, 2.35, 2.77, 
2.68, 4.91, 1.57, 2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 
2.67, 4.20, 2.85, 2.55, 2.17, 2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 
2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 2.56, 2.59, 2.83, 1.36, 1.84, 5.56, 1.12, 2.48, 
1.25, 2.48, 2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 
0.98, 1.59, 1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65. 
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Table 1. Resultant table of simulation study. 

Actual Value With Frailty Model Without Frailty Model 

ρ  p θ  Mean ρ  p θ  η  Mean p θ  Mean 

0.2 0.7 0.6 0.7733 0.3398 0.7476 0.6953 0.4759 0.7969 0.7169 0.7063 0.5068 

S.E. 0.0031 0.0091 0.0989 0.0660 0.0053 0.0794 0.1008 0.0030 

0.2 0.8 0.6 0.6907 0.3467 0.8563 0.6582 0.4858 0.7100 0.8224 0.6712 0.5523 

S.E. 0.0030 0.0102 0.0936 0.0674 0.0002 0.0911 0.0956 0.0033 

0.3 0.8 1.4 1.6373 0.3534 0.8627 1.3838 0.4798 1.6810 0.8163 1.3591 1.1186 

S.E. 0.0040 0.0125 0.1975 0.0664 0.0099 0.0904 0.2234 0.0086 

0.3 1.4 1.4 1.3212 0.3740 1.4966 1.7506 0.4851 1.3529 1.4092 1.7020 2.4243 

S.E. 0.0049 0.0222 0.2506 0.0671 0.0049 0.1558 0.3036 0.0206 

0.3 1.4 1.8 1.7014 0.3840 1.4919 2.5466 0.4873 1.7409 1.4113 2.4447 3.5011 

S.E. 0.0053 0.0217 0.3661 0.0674 0.0062 0.1560 0.5019 0.0334 

0.3 2 1.4 1.2874 0.3749 2.0916 2.2009 0.4896 1.3133 1.9728 2.1172 4.2353 

S.E. 0.0047 0.0312 0.3159 0.0677 0.0035 0.2177 0.4108 0.0395 

0.5 1.4 1.4 1.3701 0.3725 1.4541 1.8056 0.4896 1.4045 1.3707 1.7520 2.4260 

S.E. 0.0048 0.0218 0.2586 0.0677 0.0057 0.1510 0.3162 0.0211 

0.5 1.4 1.8 1.3436 0.3885 1.8231 2.1180 0.4967 1.3751 1.7137 2.0415 3.5365 

S.E. 0.0053 0.0274 0.3041 0.0687 0.0046 0.1883 0.3907 0.0319 

0.5 1.6 1.4 1.3517 0.3764 1.6411 1.9604 0.4955 1.3850 1.5456 1.8934 2.9577 

S.E. 0.0047 0.0247 0.2811 0.0685 0.0051 0.1700 0.3519 0.0261 

0.5 1.8 1.8 1.731 0.3956 1.8095 3.3274 0.4990 1.7688 1.7147 3.1701 5.5207 

S.E. 0.0055 0.0252 0.4799 0.0690 0.0059 0.1883 0.7194 0.0564 

0.5 2 1.4 1.3382 0.3872 1.9942 2.2810 0.4965 1.3677 1.8756 2.1903 4.1578 

S.E. 0.0052 0.0299 0.3278 0.0686 0.0045 0.2058 0.4311 0.0393 

0.5 2 1.8 1.7254 0.3942 1.9772 3.7415 0.4995 1.7607 1.8775 3.5551 6.7882 

S.E. 0.0002 0.0267 0.5400 0.0691 0.0057 0.2059 0.8430 0.0727 

 
We have estimated values of the parameters and their standard error (S.E.) 

with the help of E-M algorithm implemented by writing a MATLAB program. 
The estimated value of the parameters and S.E. of the estimates for both models, 
frailty model and without frailty model, are given in Table 2. 

The goodness of fit of the frailty model is done with the help of likelihood ra-
tio test based on marginal likelihood. The likelihood ratio test statistic for testing 

0 : 0 v sH ρ =  1 : 0H ρ ≠  is 

( )ˆ ˆ,
ˆ ˆ ˆˆˆ ˆ ˆˆ, , ,

L p

L p

θ

θ η ρ
Λ =

  
 

                        (26) 

The 0H  is rejected if ( )( ) ( )2
12 log χ α− Λ > , where ( )2

1χ α  is upper thα  
percentile of chi-square distribution with one degree of freedom. In the present 
study on fitting of the model for the data on the tensile strength of carbon fibre, 

( )( )2 log 5.4882− Λ =  which is larger than ( )2
1 0.05 3.841χ = . This establishes  
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Table 2. Estimates and S.E. of the parameters. 

 Parameter Estimated value S.E. 

With Frailty 

θ  22.4010 0.1980 

p 2.9369 0.0085 

ρ  0.3700 0.0125 

η  0.5444 0.0054 

Average tensile strength 2.6569 0.0981 

Without Frailty 

θ  20.0254 0.5625 

p 2.7869 0.2134 

Average tensile strength 2.6096 0.1013 

 
the goodness of fit of the suggested frailty model. 

Finally, it is seen that the estimates of average tensile strength under the mod-
el with frailty and without frailty are more or less same but the estimate of S.E. of 
average tensile strength under frailty model is relatively smaller than that of the 
model without frailty. Moreover, S.E. of the model parameters for frailty case is 
significantly smaller than that of model parameters without frailty. Since the 
sample sizes are same for both models, the extra variability present in the data 
due to frailty will be extracted by the frailty model and hence, estimate of σ will 
be smaller as compared to non-frailty model. Now we shall compute the sample 
size required by the regular model to achieve the same precision (in terms of S.E.) 
as frailty model. Since, ( ). .n S Eσ = ∗ . Let σ̂ ∗  and σ̂ ∗∗  be the estimates of 
the standard error under with and without frailty models respectively. Then, 
from Table 2, we get ˆ 0.981wfn SEσ ∗ = ∗ =  and ˆ 1.0130wofn SEσ ∗∗ = ∗ =  
for 100n = . If we wish to achieve σ̂ ∗∗  to be same as σ̂ ∗ , we need  

2
ˆ

106.6304 107
wf

n
SE
σ ∗∗ 

= = ≅ 
  

. In terms of percentage increase in sample size, it  

amounts to 7% more observations. 
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