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Abstract 
This paper simultaneously investigates variable selection and imputation estimation of semipa-
rametric partially linear varying-coefficient model in that case where there exist missing res-
ponses for cluster data. As is well known, commonly used approach to deal with missing data is 
complete-case data. Combined the idea of complete-case data with a discussion of shrinkage esti-
mation is made on different cluster. In order to avoid the biased results as well as improve the es-
timation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator 
(Group Lasso) to semiparametric model. That is to say, the method combines the approach of local 
polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it 
can conduct nonparametric estimation and variable selection in a computationally efficient man-
ner. According to the same criterion, the parametric estimators are also obtained. Additionally, for 
each cluster, the nonparametric and parametric estimators are derived, and then compute the 
weighted average per cluster as finally estimators. Moreover, the large sample properties of esti-
mators are also derived respectively. 
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1. Introduction 
In real application, the analysis of cluster data arises in various research areas such as biomedicine and so on. 
Without loss of generality, the data are clustered into classes in terms of the objects which have certain similar 
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property. For example, focus on the same confidence interval as a cluster. Numerous parametric approaches are 
applied to the analysis of cluster data, and with the rapid development of computing techniques, nonparametric 
and semiparametric approaches have attained more and more interest. See the work of Sun et al. [1], Cai [2], 
Vichi [3], Yi et al. [4], Carrol [5], and He [6], among others. 

Consider the semiparametric partially linear varying-coefficient model which is a useful extension of partially 
linear regression model and varying-coefficient model over all clusters, it satisfies  

( )T T , 1, , , 1, , ,ij ij j ij j ij ij jY Z X U i n j mβ α ε= + + = =                       (1) 

where ijY , ijZ  and ijX  stand for the ith observation of Y, Z and X in the jth cluster. ( )1 , ,j j qjβ β β=   is a 
vector of q-dimensional unknown parametrics; ( ) ( ) ( )( )1 , ,j ij j ij pj ijU U Uα α α=   is a p-dimensional unknown 
coefficient vector. ijε  is random error with mean zero and variance 2σ . 

Obviously, when m = 1, model (1) reduces to semiparametric partially linear varying-coefficient model. A se-
ries of literature (You and Chen [7], Fan and Huang [8], Wei and Wu [9], Zhang and Lee [10]) have provided 
the corresponding statistic inference of such semiparametric model. In [8], Fan and Huang put forward a profile 
least square technique and propose generalized likelihood ratio test. In [7], You and Chen study the estimation 
problem when some covariates are measured with additive errors. When m = 1 and Z = 0, model (1) becomes 
varying-coefficient model which has been widely studied by many authors such as Fan and Zhang [11], Hastile 
and Tibshirani [12], Xia and Li [13], Hoover et al. [14]. When m = 1, p = 1 and Z = 1, model (1) reduces to par-
tially linear regression model which is proposed by Engle et al. [15] when they research the influence of 
weather on electricity demand. See the literature of Yatchew [16], Spechman [17] and Liang et al. [18], 
among others. 

However, in practice, responses may often not be available completely because of various factors. For exam-
ple, some sampled units are unwilling to provide the desired information, and some investigators gather incor-
rect information caused by careless and so on. In that case, a commonly used technique is to introduce a new va-
riable δ . When 0δ = , Y represents the situation of missing, and 1δ = , otherwise. Suppose that responses are 
missing at random, δ  and Y are conditionally independent, then it has  

( ) ( )1| , , , 1 | , , .P Y X Z U P X Z Uδ δ= = =  

Due to the practicability of the missing responses estimation, semiparametric partially linear varying-coefficient 
model with missing responses has attracted many authors’ attention, such as Chu and Cheng [19], Wei [20], 
Wang et al. [21] and so on. 

It is worth pointing out that there is little work concerning both missing and cluster data especially in semipa-
rametric partially linear varying-coefficient model. If ignore the difference of clusters, it leads the predictors of 
response values Y far away from the true values and the estimators have poor robustness. Therefore, it is neces-
sary to take cluster data into consideration with the purpose of improving estimation efficiency. For each cluster, 
introduce group lasso to semiparametric partially linear varying-coefficient model respectively on the basis of 
complete case data. In order to automatically select variables and conduct estimation simultaneously, lasso is a 
popular technique which has attracted many authors’ attention such as Tibshirani [22], Zou [23] and so on. Due 
to the idea of lasso is to select individual derived input variable rather than the strength of groups of input va-
riables, in this situation, it leads to select more factors as the approach of group lasso. As is shown in Yuan and 
Yi [24], Wang and Xia [25], Hu and xia [26] and so on. Thus, this paper centers on the technique of group lasso 
in a computationally efficient manner. Further then, parametric and nonparametric components are obtained by 
computing the weighted average per cluster. As for the inference of estimators, the properties of asymptotic 
normality and consistency are also provided. And Bayesian information criterion (BIC) as tuning parameter se-
lection criterion is used in this article. 

The rest of the paper is organized as follows. The use of the applied method is given in Section 2. In Section 3, 
the theoretical properties are provided. Conclusions are shown in Section 4. Finally, the proofs of the main re-
sults are relegated to Appendix. 

2. Semiparametric Model with the Methodology 
2.1. Model with Complete-Case Data 
Due to there exist missing responses, for simplicity, focus on the case where 1δ = . That is so-called the method 



M. X. Zhang et al. 
 

 
770 

of complete case data. It is assumed that there are m independent clusters, and the number of observations in the 
jth cluster is , 1, ,jn j m= 

. For the ith subjects from the jth cluster, let  
{ }, , , , , 1, , , 1, ,ij ij ij ij ij jX Y Z U i n j mδ = =   be a set of random sample from model (1), then it is easy to obtain: 

( )T T .ij ij ij ij j ij ij j ij ij ijY Z X Uδ δ β δ α δ ε= + +                            (2) 

In this situation, if the parametric component jβ  is given, model (2) can be written as:  

( )* T ,ij ij ij ij j ij ij ijY X Uδ δ α δ ε= +                                (3) 

where * T
ij ij ij jY Y Z β= − . The coefficient vector ( ) ( ) ( ){ }T

1 , , P
j j pju u u Rα α α= ∈  is unknown but smooth 

function in u and its true value is denoted by ( ) ( ) ( ){ }T
0 01 0, , P

j j pju u u Rα α α= ∈ . Suppose that the first in-

teger 0p p≤  predictors are relevant and the rest are not. 

2.2. The Kernel Least Absolute Shrinkage and Selection Operator Method 
Similarity, consider the jth cluster data firstly, given any index value [ ]0,1u∈ , the estimator of ( )j uα , 
namely ( )j uα , can be obtained by minimizing the following locally weighted least squares function:  

( ) ( ) ( )2* T

1
.

jn

u j ij ij ij ij j h ij
i

Q Y X K u Uα δ δ α
=

= − −∑                          (4) 

According to ( )j uα , define ( )tj j tjUα α=   and ( )T

1 , , j
j

n p
j n jB Rα α ×= ∈

 . It is clear that, B  is a nature 

estimator for ( ) ( ){ }T

0 0 1 0, , j
j

n p
j j j n jB U U Rα α ×= ∈ . Furthermore, B  is also the minimizer of the following 

global least squares function:  

( ) ( ) { } ( )2* T

1 1 1

j j j

tj

n n n

U tj ij ij ij ij tj h tj ij
t t i

Q B Q Y X K U Uα δ δ α
= = =

= = − −∑ ∑∑                    (5) 

with respect to ( ) ( ){ } ( )T T

1 1, , , , j
j j

n p
j j j n j j n jB U U Rα α α α ×= = ∈  . Due to Q(B) is a quadratic function in B, 

thus, depended on the normal equation ( ) 0tjRSS B α∂ ∂ =  for every 1 jt n≤ ≤ , its minimizer is obtained. 

From another aspect, for Q(B), as one can see, tjα  is only involved in ( )tjU tjQ α ; see (4). Then it satisfies 

( ) ( ) 0
tjtj U tjQ B Qα α∂ ∂ = ∂ = , leading to the solution ( )arg min

ttj t U tjQα α α= ; see (4). In that case, B  is also 

the minimizer of (5). 
Due to it is assumed that the last ( )0p p−  columns of 0B  matrix should be 0. Therefore, the goal of varia-

ble selection amounts to identifying sparse columns in matrix 0B . In order to discriminate irrelevant variable, 
which implies that one should identify matrix sparse solutions in 0B  in a column-wise manner. Based on the 
group lasso idea of Yuan and Lin [24], Wang and Xia [26], the penalized estimate is shown as follows:  

( ) ( ){ } { } ( )
T

1 1
ˆ ˆˆ ˆ ˆ, , , , arg min ,n pjj j j j j j jj n j p B R

B U U b b Q Bλ λ λ λ λ λα α ×
∈

= = =   

where ( )T
1, , P

j j jp Rλ λ λ= ∈  is the tuning parameter.  

( ) ( ) ( ){ } ( ) ( ){ }T T

1 1
ˆˆ ˆ ˆ ˆ ˆ, , , , , ,j

j j j j j j

np
p k k j k nju u u R b U U Rλ λ λ λ λ λα α α α α= ∈ = ∈             (6) 

( ) ( ){ } ( )2* T

1 1 1
,

j j

j

n n p

ij ij ij ij j tj h tj ij jk jk
t i k

Q B Y X U K U U bλ δ δ α λ
= = =

= − − +∑∑ ∑                 (7) 

1jn
jkb R ×∈  is the kth column of B, and .  means the usual Euclidean norm. 
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2.3. Local Quadratic Approximation 
It is well known that, there exist many computational algorithms for the lasso-type problems such as local qua-
dratic approximation, the least angle regression and many others. For simplicity, this article describes here an 
easy implementation based on the idea of the local quadratic approximation. Specifically, the implementation is 
based on an iterative algorithm with B  as the initial estimator. Let  

( ) ( )( ) ( ) ( ){ }T

11
ˆ ˆˆ ˆ ˆ, , , ,

j j j jj j

m mm m m
j n jpB b b U Uλ λ λλ λ α α= =   

be the KLASSO estimate obtained in the mth iteration j cluster. Then, the loss function in (6) can be locally ap-
proximated by  

( ){ } ( ) ( )

( ){ } ( ) ( )
( )

2
2* T

1 1 1

2
2* T

1 1 1

ˆ

,
ˆ

j j

jk

j j

jk

n n p
jk

ij ij ij ij j tj h tj ij jk m
t i k

n n p
jk tj

ij ij ij ij j t h tj ij jk m
t i k

b
Y X U K U U

b

U
Y X U K U U

b

λ

λ

δ δ α λ

α
δ δ α λ

= = =

= = =

− − +

 
 = − − +  
 

∑∑ ∑

∑ ∑ ∑

 

whose minimizer is given by ( )1ˆ mBλ
+  with the th row given by  

( ) ( ) ( ) ( ) ( )
1

1 T *

1 1

ˆ
j j

j

n n
m m

tj ij ij ij h tj ij ij ij ij h tj ij
t i

U X X K U U D X Y K U Uλα δ δ
−

+

= =

   
= − + × −      
   
∑ ∑             (8) 

where ( )mD  is a p p×  diagonal matrix with its kth diagonal component given by ˆ
jk

m
jk bλλ , 1, ,k p=  . 

Furthermore, for each cluster and each group, by using weighted mean idea to gain the finally estimator of 
coefficient vector ( )Uα . That is, the finally estimator of ( )Uα  can be given by  

( ) ( )( ) ( ) ( )
01 1

1 1 1 1

1 1ˆ ˆ ˆ, , , , ,
j jn nm m

glasso
c P is isp

s i s ij

U U U U
m n

α α α α α
= = = =

 
= =   

 
∑∑ ∑∑ 

 

where ( )isp Uα  means ( )P Uα  in sth cluster of ith subject. 

2.4. Estimation of Parametric Component  
In terms of the above estimator of nonparametric component and according to the same criterion, the lasso esti-
mation of parametric components β  are also derived. As is shown:  

( ) ( )
2

2T T

1 1 1

ˆ ,
jn q q

glasso
ij ij ij ij c ij ij k h ij k k

i k k
Q Y X Z K u Uλ β δ δ α δ β λ β

= = =

 
= − − − + 

 
∑ ∑ ∑               (9) 

where jβ  is a coefficient vector of size q. Under its assumption, there are 0q  predictors relevant and the rest 
are not. Similarity, following the idea of local quadratic approximation and weighted mean the finally estimator 
of β  is given by  

( )01 1
1 1 1 1

1 1ˆ ˆ ˆ, , , , .
j jn nm m

glasso
c q is isq

s i s ijm n
β β β β β

= = = =

 
= =   

 
∑∑ ∑∑ 

                    (10) 

3. Theoretical Properties 
3.1. Technical Conditions 
The following assumptions are needed to prove the theorems for the proposed estimation methods. 

Assumption 1. The random variable U has a bounded support Ω . Its density function ( ).f  is Lipschitz 
continuous and bounded away from 0 on its support. 

Assumption 2. For each U ∈Ω , ( )T |E ZZ U  is non-singular. ( )T |E XX U , ( )T |E ZZ U  and ( )T |E XZ U  



M. X. Zhang et al. 
 

 
772 

are all Lipschitz continuous. And they have bounded second order derivatives on [0, 1]. 
Assumption 3. There is an 2s >  such that 2sE X < ∞  and 2sE Z < ∞  and for some 12 sε −< −  such 

that 2 1n hε − → ∞ . 
Assumption 4. ( ){ }. , 1, ,j j pα =   have continuous second derivatives in U ∈Ω . 

Assumption 5. The function K(.) is a symmetric density function with compact support. 
Lemma 1. Suppose that the Assumptions of (A1)-(A5) hold, 1 5

jh n−∞ , and 11 10 0
jj nn a → , then it satisfies  

( ) ( ) ( )2
1 4 5

0
1

ˆ 0 .
j

j

n

j tj tj p j
t

n U U nλα α− −

=

− =∑  

Lemma 2. If (A1)-(A5), 1 5
jh n−∞ , 11 10 0

jj nn a → , and 11 10 ,
jj nn b →∞  then ( )ˆ 0 1

j k
P bλ = →  for any 

0p k p< ≤ .  
The proof of Lemma 1 and Lemma 2 can be shown in Wang and Xia [25]. 

3.2. Basic Theorems 

Suppose that the Assumptions (A1)-(A5) hold. For j th cluster, let ( ) 0
0

T

1= , , ,p
iaj i j ip jX X X R∈  

( )( ) 0
0

T

1 , , p p
ibj ipji p jX X X R −

+= ∈  and ( ) ( ) ( )( ) 0
01ˆ ˆ ˆ, , ,

j j j

p
a pu u u Rλ λ λα α α= ∈   

( ) ( ) ( )( ) 0
0 1ˆ ˆ ˆ, , .

j j j

p p
b p pu u u Rλ λ λα α α −

+= ∈  Denote { }0max 1 ,
jn kja k pλ= ≤ ≤  { }0min 1 .

jn kjb p k pλ= + ≤ ≤  

Theorem 1. Assume (A1)-(A5), 1 5
jh n−∞ , 11 10 0

jj nn a → , and 11 10
jj nn b →∞ , then we have  

[ ] ( )( ),0,1 ˆsup 0 1
jbuP uλα∈ = →  for any 0 .p k p< ≤   

With the purpose of considering the oracle property, define the orale estimators as follows:  

( ) ( ) ( )
1

T *

1 1

1 1ˆ .
j jn n

ora iaj iaj iaj h ij iaj iaj ij h ij
i ij j

u X X K U u X Y K U u
n n

α δ δ
−

= =

      = − × −   
      

∑ ∑  

Theorem 2. Suppose that the assumptions are satisfied, if 1 5
jh n−∞ , 11 10 0

jj nn a → , and 11 10
jj nn b →∞ , then 

it is easy to see that  

[ ] ( ) ( ) ( )2 5
,0,1 ˆ ˆsup 0 .

ja ora pu u u nλα α −
∈ − =  

3.3. Tuning Parameter Selection 

In the case where 11 10 0
jj nn a →  and 11 10

jj nn b →∞ , the optimal convergence rata can be obtained and the true  

model can be consistently identified. Due to there exists a great challenge to select p shrinkage parameters, thus 
as shown in Zou [23], wang and xia [25], simplify the tuning parameters as follows:  

0
1 2

,jk
j jkn
λ

λ
α−

=


                                   (11) 

where jkα  is the kth column of the unpenalized estimate B  in jth cluster. Since jkα  is an estimator with 
0jkλ = , the results of Theorem 1 and Theorem 2 can be applied. Thus, as long as 11 10

0 0jnλ →  but 3 2
0 jnλ →∞ , 

one can conclude that 11 10 0
jj nn a →  and 11 10

jj nn b →∞ . Furthermore, the original p-dimensional problem about 
PRλ ∈  becomes a univariate problem regarding 0 Rλ ∈ . According to BIC-type criterion, 0λ  is defined as 

follows:  

( ) ( )log
log ,

j j j

j

j

n h
BIC RSS df

n hλ λ λ= + ×                          (12) 
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where 
j

dfλ  is the number of varying coefficients identified by 
j

Bλ . 
j

RSSλ  is  

( ){ } ( )
2

2 * T

1 1

ˆ .
j j

j j

n n

j ij ij ij ij tj h tj ij
t i

RSS n Y X U K U Uλ λδ δ α−

= =

= − −∑∑                    (13) 

Obviously, the effective sample size jn h  is used instead of the original sample size jn . Further then, the 
tuning parameter can be given by  

ˆ arg min .
jj BICλλ =  

Note that { }*1, ,
p

R k k=   as an arbitrary model with a total of *0 p p≤ ≤  nonzero coefficients (i.e. 

1 *
, ,

p
ijk ijkX X ). Then, { }01, ,TR p=   means the true model and { }ˆ: 0

j j k
R kλ λα= >  denotes the model 

identified by the proposed estimate ˆ
j

Bλ . Consequently, ˆ j
R
λ

 represents the model identified by ˆB̂
λ . 

Theorem 3. Selection Consistency. Suppose that Assumptions (A1)-(A5) hold, the tuning parameter ˆ
jλ  se-

lected by the BIC criterion can indeed identify the true model consistency, i.e. ( )ˆ 1
j TP R R

λ
= →  as jn →∞ .  

4. Conclusion 
In this paper, it mainly discusses the shrinkage estimation of semiparametric partially linear varying-coefficient 
model under the circumstance that there exist missing responses for cluster data. Combined the idea of com-
plete-case data, this paper introduces group lasso into semiparametric model with different cluster respectively. 
The new method simultaneously conducts variable selection and model estimation. Meanwhile, the technique 
not only reduces biased results but also improves the estimation efficiency. Finally, combined the idea of 
weighted mean, the nonparametric and parametric estimators are derived. The BIC criterion as tuning parameter 
selection is well applied in this artice. Furthermore, the properties of asymptotic normality and consistency are 
also derived theoretically. 
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Appendix 
Proof of Theorem 1 

Proof. Based on Lemma 2 and as shown in Hunter and Li [27], one can know that ˆ ˆ
j j

m
k kb bλ λ→  for each 

1 k p≤ ≤ . Then, as long as m →∞ , one can see that when 0k p≤  then ˆ
j

m
kbλ  converge to a positive number, 

otherwise, ˆ
j

m
kbλ  converge to 0. Denote m

aaD  as the upper 0 0p p×  diagonal submatrix of ( )1 m
jn D−  and  

m
bbD  as the lower ( ) ( )0 0p p p p− × −  diagonal submatrix of ( )1 m

jn D− . From the definition of ( )mD , it is re-
markable that each diagonal component of m

aaD  must converge to some finite number while m
bbD  diverge to 

infinity in the case where m →∞ . 

For simplify, we follow (8) and ( )ˆ
j

uλα  can be rewritten as ( ) ( ){ } ( )
11ˆ

j

m
ju u n D uλα ω ζ

−−= + , where ( )uω  

is a 2 2×  block matrix given by ( ) ( ) ( ) ( ){ }, ; ,aa ab ba bbu u u uω ω ω ω  and  

( ) ( ) ( ){ }TT T, ,p
a bu u u Rζ ζ ζ= ∈  with ( ) 1

1
jn

aa j iu nω −
=

= ∑  ( )T ,iaj iaj iaj h ijX X K U uδ −   

( ) ( )1 T
1 ,jn

bb j ibj ibj ibj h ijiu n X X K U uω δ−
=

= −∑  ( ) ( ) ( ) ( )1 T
1 ,jn m

ab j iaj iaj ibj h ij baiu n X X K U u uω δ ω−
=

= − =∑   

( ) ( )T 1 * ,a j iaj iaj ij h iju n X Y K u Uζ δ−= −∑  and ( ) ( )T 1 * .b j ibj ibj ij h iju n X Y K u Uζ δ−= −∑  If ( ) ( ){ } 1mu Dω
−

+  is given 

by ( ) ( ) ( ) ( ){ }, , ,m m m m
aa ab ba bbΞ Ξ Ξ Ξ  one obtains  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
11
,m m m

aa aa aa ab bb bb bau u D u u Dω ω ω ω
−− Ξ = + − + 

   

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }
11 1
,m m m m

ab aa aa ab aa aa ab bb bb bau u D u u D u u Dω ω ω ω ω ω
−− − Ξ = − + × + − + 

   

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }
11 1
,m m m m

ba bb bb ba bb bb ba aa aa abu u D u u D u u Dω ω ω ω ω ω
−− − Ξ = − + × + − + 

   

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
11
.m m m

bb bb bb ba aa aa abu u D u u Dω ω ω ω
−− Ξ = + − + 

   

Due to each diagonal component of m
aaD  must converge to some finite number while m

bbD  diverge to infini-

ty in the case where m →∞ , thus each component of ( ) ( )m
ba uΞ  and ( ) ( )m

bb uΞ  converge to 0 uniformly on [0, 1] 
as m →∞ . It is easy to see that  

( ) ( ) ( ) ( ) ( ) ( )1 T T
,ˆ ,

j

m mm
b ba a bb bu u u uλα ζ ζ+ = Ξ +Ξ  

where ( )T
a uζ , and ( )T

b uζ  are uniformly bounded. Obviously, ,ˆ 0
j

m
kλα →  as m →∞  when 0p k p< ≤ . 

Therefore, sup ( )ˆ 0
j k

uλα =  for every 0p k p< ≤ . It completes the proof of Theorem 1.  

Proof of Theorem 2  
Proof. As is well known, ( )ˆ

ja uλα  is the solution of the following equation  

( ) ( )
0

* T 1

1 1

ˆ1 ˆ 0.
ˆ

j
j

j

j

n p
k

iaj iaj ij ij iaj iaj a h ij j jk
i kj k

b
X Y X K U u n

n b

λ
λ

λ

δ δ δ α λ−

= =

− − + =∑ ∑
 

That is to say, ˆ
jaλα  satisfies  
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( ) ( ){ } ( )
01 *

1 1

ˆ1 1ˆˆ 0,
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j
j

j
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n p
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a iaj iaj ij h ij jk
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n n b

λ
λ

λ

α δ λ
−

= =

 
 = Θ × − + = 
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∑ ∑
 

where ( ) ( )1 T
1

ˆ jn
j h ij ij ij ijiu n K u U X Xδ−

=
Θ = −∑ . By Lemma 2 and combined with the oracle estimator ( )ˆora uα , it 

satisfies  
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1
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1 1

max 0 21 10max

1
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−
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−
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   

≤ ≤ =

∑ ∑

∑

 

where ( ) ( ){ }max max
ˆ supu f u uλ λ= Θ  with ( )max Aλ  represents the maximal eigenvalue of an arbitrary posi-

tive definite matrix A. Notice that ( )21 10 2 50 ,j jn n− −=  as a result it completes the proof of Theorem 2.  
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