Open Journal of Statistics, 2015, 5, 585-599 00:0 Scientific

Published Online October 2015 in SciRes. http://www.scirp.org/journal/ojs ’Qt’. Eﬁf)ﬁg‘,’]‘mg
*

http://dx.doi.org/10.4236/0js.2015.56060

Bayesian Prediction of Future Generalized
Order Statistics from a Class of Finite
Mixture Distributions

Abd EL-Baset A. Ahmad}, Areej M. Al-Zaydi2

1Department of Mathematics, Assiut University, Assiut, Egypt
2Department of Mathematics, Taif University, Taif, Saudi Arabia
Email: abahmad2002 @yahoo.com, aree.m.z@hotmail.com

Received 9 August 2015; accepted 25 October 2015; published 28 October 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

This article is concerned with the problem of prediction for the future generalized order statistics
from a mixture of two general components based on doubly type II censored sample. We consider
the one sample prediction and two sample prediction techniques. Bayesian prediction intervals
for the median of future sample of generalized order statistics having odd and even sizes are ob-
tained. Our results are specialized to ordinary order statistics and ordinary upper record values. A
mixture of two Gompertz components model is given as an application. Numerical computations
are given to illustrate the procedures.
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1. Introduction

Let the random variable (rv) T follows a class including some known lifetime models; its cumulative distribution
function (CDF) is given by

F(t)=1-exp[-0(t)],t>0,(6>0), @)
and its probability density function (PDF) is given by

f(t)=064"(t)exp[-0A(t)].t>0,(6>0), )
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where A'(t) is the derivative of A(t) with respecttotand A(t)=A(t;) isa nonnegative continuous func-
tion of t and & may be a vector of parameters, such that

A(t)—>0 as t—0" and A(t)—>w as t—oo.

The reliability function (RF) and hazard rate function (HRF) are given, respectively, by

R(t)=exp[-64(t)], ®3)
H(t)=64'(t), 4

where H ()= f()/R(.).

The general problem of statistical prediction may be described as that of inferring the value of unknown ob-
servable that belongs to a future sample from current available information, known as the informative sample. As
in estimation, a predictor can be either a point or an interval predictor. The problem of prediction can be solved
fully within Bayesian framework [1].

Prediction has been applied in medicine, engineering, business and other areas as well. For details on the histo-
ry of statistical prediction, analysis, application and examples see for example [1] [2].

Bayesian prediction of future order statistics and records from different populations has been dealt with by
many authors. Among others, [3] predicted observables from a general class of distributions. [4] obtained Baye-
sian prediction bounds under a mixture of two exponential components model based on type | censoring. [5] ob-
tained Bayesian predictive survival function of the median of a set of future observations. Bayesian prediction
bounds based on type | censoring from a finite mixture of Lomax components were obtained by [6]. [7] obtained
Bayesian predictive density of order statistics based on finite mixture models. [8] obtained Bayesian interval pre-
diction of future records. Based on type | censored samples, Bayesian prediction bounds for the s™ future observ-
able from a finite mixture of two component Gompertz life time model were obtained by [9]. [10] considered
Bayes inference under a finite mixture of two compound Gompertz components model. Bayesian prediction of
future median has been studied by, among others, they were [5] [11] [12].

Recently, [13] introduced the generalized order statistics (GOS’S). Ordinary order statistics, ordinary record
values and sequential order statistics were, among others, special cases of GOS’S. For various distributional
properties of GOS’S, see [13]. The GOS’S have been considered extensively by many authors, among others,
they were [14]-[33].

Mixtures of distributions arise frequently in life testing, reliability, biological and physical sciences. Some of
the most important references that discuss different types of mixtures of distributions are a monograph by

Bﬂh??ﬁﬁ CDF, RF and HRF of a finite mixture of two components of the class under study are given, respec-
tively, by

f(t)=p.f (t)+p, (1), ®)

F(t)=pF(t)+ PR (1), (6)

R(t)= p,R, (1) + PR, (1), (7

H(t) = f (1)/R(1), (8)

where, for j=1,2, the mixing proportions p; are such that 0<p; <1 p,+p,=1 and f,(t),F;(t),R;(t)
are given from (1), (2), (3) afterusing 6, and 4, (t) instead of & and A(t).

The property of identifiability is an important consideration on estimating the parameters in a mixture of dis-
tributions. Also, testing hypothesis, classification of random variables, can be meaning fully discussed only if the
class of all finite mixtures is identifiable. Idenifiability of mixtures has been discussed by several authors, includ-
ing [37]-[39].

This article is concerned with the problem of obtaining Bayesian prediction intervals (BPI) for the future
GOS’S from a mixture of two general components based on doubly type 11 censored sample. One- and two-sam-
ple prediction cases are treated in Sections 2 and 3, respectively. Bayesian prediction intervals for the median of
future sample of GOS’S having odd and even sizes are obtained in Sections 4. A mixture of two Gompertz com-
ponents is given as an application in Section 5. Finally, numerical computations are given in Section 6.
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2. One Sample Prediction
Let T T T

sinmk o Ps+nmke T T Trnm ko
ponents of the class (2). Based on this doubly censored sample, the likelihood function can be written (see
[27]) as

1<s<r<nk>0 bethe (r—s) GOS’S drawn from a mixture of two com-

R
¢,[R(t)] [INR(t) ]“HH m=—1,

where t=(t,,---,t,), 0€®, O isthe parameter space, and

_15—1 _1s—lkr
N C T G

(m+1) (s * (s-1)
Cr=[Trss 7 =k+(n-r)(m+1),

j=1

o = (-1) (521)

For definition and various distributional properties of GOS’S, see [13].
By substituting Equations (1) and (5) in Equation (9), we get
for m=-1,

L(o]t)= ©)

L(ely)- {H[pl Jerr ] (60 .5 (0)])
PR (0)+ PR ()] ol [aR (L) p ()]

=0

(10)

And for m=-1,
L(0|t> C2|:p1 +p2 ( )]k(ln[lel(ts)+ szz(ts)J) H[[;l 122 I))]]

We shall use the conjugate prior density, that was suggested by [3], in the following form

7(0;v) = C(0;v)exp[-D(6;v)], 0=(p.0,,6,.0,2,),v €, (12)

(11)

where Q is the hyper parameter space.
Then the posterior PDF of 6, 7z (6|t), is given by

x (0]t) < z(6;v)L(6]t). (13)

Substituting from Equations (10) and (12) in Equation (13), for m= 1, the posterior PDF 7z (6|t) takes
the form

(010 = C(om)exs[-0(a ]| TT AR )+ iR ()] [ )+ .8 ()]

(s)

X[ PR + P,R, )}ym Zoa)z(/s) [ PR (ts ) +P,R, (ts )}5/ )

where &Y =(s—/-1)(m+1).
For m=-1, using Equations (11) and (12) in Equation (13), the posterior PDF can be written as

(14)
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7[*(9|t)oc exp[ D (91/:|[p1 +p2 (r)]
x(In - [pufi(t)+ Py (t) ] )
(| |:p1R1(ts) PR, (ts)]) H[ (t )+ p,R ( ):|

Now, suppose that the first (r—s) GOS’S T, ... Ts+lnmk “Trenmol<s<r<n, have been formed and
we wish to predict the future GOS’S T,,;., mi: T, “Tonmee Let T, =T a=12,--,n—-r, the

r+Ln,mxk?* "r+2;n,mk? r+a;n,mxk ?
conditional PDF of the a™ future GOS given the past observations t, can be written (see [27]) as

Sl [R(E)] T RE)T (L), me L
h(t;|o,t) 12 (16)

>l [InR(t; )]i [InR(t)]" [R(t;)]“ [R(t)] £(t), m=-1,

When m = -1, substituting from Equations (1) and (5) in Equation (16), the conditional PDF takes the
form

h(t:]o.t) Za) [ R(L)+ p.R ():|71

17)
[ p1 + pz ):|_7r+a—i |: Py fl (t;)+ P, fz (t; ):|:
In the case when m=-1; the conditional PDF takes the form
h(t;[6.t) o 2{@@) (In[le1( )+ PR, (1 )J) (In[p1 )+ P,R, )])a_i_l} .

<[BR (1) + PR (£)] [ PR(6) + PR (6)] [plfl(ts)wzfz(t:)}

The predictive PDF of T, given the past observations t is obtained from Equations (13), (17) and (18)
and written as

(6 ]t)=] h(t:le.t) = (6]t)de, & >, (19)
where for m=-1,

h(t;|0.t) " (6]t) < C(0; v)exp[—D(a;v)}[pl f(t)+pf(t )J
X{H[le +P,R, (1) [ P Fi (8)+ P, f, )]}

=

1=s

s (a) (20)

x> {77./ [PR(t)+ PR, ]‘” [PR(t)+ PR, (1,)]”

0/(=

o) pl )J’””},

o ()

s =(a-i-1)(m+1),
8 =(s—¢-1)(m+1).

where

588
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Also, for m=-1,
h(t:|0.t) 7" (6]t) o< C(6;v)exp[ -D( ev)][ f,(t)+p,f, (ti)]
X[lel #0Ry(1)] ([ pR (1) + R (1)])

1pJ i(6) o (2) . A7) (21)
za)l (In|:p1R1<ta)+p2R2(ta):|)
lleJ i=0
a-i-1
x(In[ PRy (t,)+ PR, (8, )]) .
It then follows that the predictive survival function is given, for the a™ future GOS, by
P, >vlt]=["f"(€]t)dt;, v>t. (22)
A 100t% BPI for T, is then given by
PL(t)<T, <U(t)]=
where L(t) and U(t) are obtained, respectively, by solving the following two equations
l+z'
PIT, )|t , 23
[T > LOt]==- (23)
x 1-7
PIT, >U(t)]t|=—. 24
[T >uit]== (24)

3. Two Sample Prediction
T

r;n,mk?

Suppose that T, ... T. 1<s<r<n.

s+l;n,mk ! !
Be a doubly type Il censored random sample drawn from a population whose CDF, F(x) and PDF,
f(x) andlet Y.\ Yonmk: o Yuwmk K=ZLM >-1,
Be a second independent generalized ordered random sample (of size N) of future observations from the same
distribution. Based on such a doubly type Il censored sample, we wish to predict the future GOS
Yy =Ypnumk 0=12,--,N, inthe future sample of size N.
It was shown by [32] that the PDF of GOS Y, is in the form

QP [R(Y]T M =1,

[R y] [InR y] f(y),M=-1

where 77 =K +(N-i)(M+1) and o =(-1) [bi_lj.

h, (VIH)OC

(25)

Substituting from Equations (1) and (5) in (25), we have

pf(y)+p, T, Za) R (Y)+ PR, (V)M % -1,
(o). v @)

[p.R(¥)+ PR (Y)] (N[ pR (¥)+ PR (V)]) [P (¥)+ oo (¥)]. M =-1.

The predictive PDF of Y,,b=12,---,N, given the past observation t is obtained from Equations (14), (15)
and (26), and written as

o (y[t)=] b (v|o)7" (6]t)de, y>o, -

where for m=-1,M = -1,
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where

r

h; (y|0)7" (0]t) =< C(6;v)exp[-D(6;v)] ]‘[[ PR (6)+ PR, (& )]“

i=s

<[ pf(t)+p, 1, ]} DR (1) + PR, ()™

X[ pf; + p,f, ] 1523 77|4 I:pl + P,R, )]754 71}

i=0/=0

e ()

——

Also for m=-1M =-1,

h; (y]0)7" (6]t) o< C(6;v)exp[-D( 9'v)](ln[ R.(Y)+ PR, (Y )])bf1

I:pl y)+ PR, :| l:pl y)+p.f, )]
X[ PR (t)+ PR, (t)] (IN[ PR (L) + PoR: (t)])

2 hfit)
{Hszjlp, R )}

Bayesian prediction bounds for Y,, b=12,---,N are obtained by evaluating

A 100r%

BPI for Y,

PY, >v]t]=["f; (y[t)dy, v>o0.
is then given by
P[L(t)<Y,<U(t)]=r,

where L(t) and U(t) are obtained, respectively, by solving the following two equations

PLY, > L(t)[t] :“TT’

P[Y, >U(t)|t]=1_TT.

4. Bayesian Prediction for the Future Median

The median of N observations, denoted by Y,,, is defined by

Y wmk, N=2p-1

[

Yy =11 ,
" E[Y(PJNYM,K +Y¢+1;N,M,K:|1 N :2(p

where ¢ is a positive integer, ¢ >1.

4.1. The Case of Odd Future Sample Size

The PDF of future median Y, takes the form (26) with b=¢ and N =2p-1.
Substituting b=¢ in Equation (27), we obtain the predictive PDF fY-; (y|t) of the median of N =2¢p-1

observations.

A 100r%

BPI for Y,

is then given by
P[L(t)<Yy <U(t)]=r,

(28)

(29)

(30)

(1)

(32)
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where L(t) and U(t) are obtained, respectively, by solving the following two equations

P[Yy > L(t)|t]= 1?, (33)

P[Y, >U(t)|t]:l_TT, (34)

where, for v>0,P[VN >v|t] is predictive survival function, given by Equation (30) with b=¢ and
N=2¢p-1.

4.2. The Case of Even Future Sample Size

The joint density function of two consecutive GOS Y,y « =Y, and Y, .y« =Y, isgiven by

((p(i;l)![R(y@)] [ (F (%)) -1 ()] £ (y,)

Yo Ypu (yco yw+l|9) X[R(y¢0+l)]y;+rl f (y¢+1)’ M=-1 ! (35)

where
ﬁy, 7 =K +(N=])(M +1)
S()=-In(F())
And

(Fl)"™

hm(F(y¢)): M +1

-In(F(y,)), M=-1

Expanding [hM (F(yw))—hM (O)TF1 binomially and applying the transformation Y, =

M =-1

Z :Yq,, the Jacobian of transformation is 2, we obtain
Za)("’)[R UM [R(2y-2) 7 £ (2) F (2y—2), M %1
hy g (2,y]0) 170 . (36)
H(2)H (2y-2)([R(2)])" [R(2y-2)], M =-1

By substltuting Equations (2), (4) and (5) in Equation (36) and integrating out z, yields the density func-
tion of Y., inthe case of M = -1, as

y|9 («7 j[ )+ DR, )}i(M+1)+M [lel(zy_z)+ pZRZ(Zy_Z)]}/{;ﬂ—l
’- 0 (37)
<[ bt (2)+ P, T, (2)] P fu(2y - 2)+ B, T, (2y-2)]dz, y>0.
In the case M =-1, we have

Y|6’ I Z Py J( izzl Py f, (2 (In[p1 2)+ p,R, z)])wl

=2 J(2y 7) (38)
x[ PR (2y—2)+ p,R, (2y - z)] dz, y>0.
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The predictive density function of the future median of N =2¢ observations is given by
f, (V[t)= [, 7, (v]0) " (0]t)d0. y >0, (39)

where ﬂ*(9|t) and hY-N (y|0) are given by Equations (13) and (37), (38), respectively. It then follows
that the predictive survival function is given, for Y, , by

P[Yy >v[t]=["f; (y[t)dy, v>o0. (40)
The lower and upper bound of 100r% BPI for Y, can be obtained by solving Equations (33) and (34),
numerically.
5. Example

Gompertz Components
. 1 ait N
Suppose that, for j=12 and t>0,6,=124, (t)=a—j[e I —1} SO ;,j(t)=

In this case, the j™ subpopulation is Gompertz distribution with parameter a;>0.Let poy and a,
are independent random variables such that p ~ Beta(b;,b,) and for j=12, «; to follow a left truncated
exponential density with parameter d; (LTE(d;)), as used by [40]. A joint prior density function is then
given by

m(6;v)oc pptprt exp{ Zf_l(a;__l)}, (41)

]

where 0<p, <la;>1(b,b,,d;,d,)>0 and p,=1-p,.

5.1.1. One Sample Prediction
For m=-1,m=-1 substituting 2, (t), 2 (t).

And Equation (41) in Equation (22) and solvmg numerically, Equations (23) and (24) we can obtain the
lower and upper bounds of BPI.

Special Cases

1) Upper order statistics

The predictive PDF (19), when m=0 and k=1 becomes

(el =k L e e exp[ imiﬂ'j_l)}

=

[ea(e) nt @) a0 00)])

1=s

: (42)

—1s-!

x h,[ R(t)+ PR ()] [ PR(t)+ PR (6)]

i=0/=0

m
N

I
o

X[ PR (t; ) + PR, (t; )]"-f—a” }daldazdp
where

=] (el

Substituting from Equation (42) in Equation (22) and solving Equations (23) and (24), numerically, we
can obtain the bounds of BPI.

2) Upper record values

When m=-1k =1(y, =1), the predictive PDF (19) becomes

t)7" (0]t)dedt;.
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't

A e G RC]

st | T ?_1 jfj SIEEI
x(In[ PR, (t.)+ PR, (1,)]) {H%}Owﬂ , (43)
x(ln[le( )+ PR, (E; )J) (In[ PR (1) + PR, (t, )})afifldaldazdp

where

Kt =], Ln(ele

Substituting from Equation (43) in Equation (22) and solving Equations (23) and (24), numerically, we
can obtain the bounds of BPI.

)7 (0]t)dodt;.

5.1.2. Two Sample Prediction
For M=-1 and m#-1,M =-1 and m=-1, substituting A,(t), 1 (t) and Equation (41) in Equation
(30) and solving, numerically, Equations (31) and (32) we can obtain the lower and upper bounds of BPI.
Special Cases
1) Upper order statistics
Substituting M =m=0 and K=k=1 in Equation (27), we have

fo (i) =B L Ty ey exp{ i( )}{H[pl )+, f ()J}

=1

b-1s-1

x[pR (t)+ BR (t)] [P (¥)+ P (V]2 (0 (44)

i=0/=0
<[ R (1) + PR, (1) ] - l[pl )+ PR, (y)]N_b+i}dalda2dp
where
B =], [, (v]e)=" (6]t)dedy.

To obtain 100z% BPI for Y,,b=1,2,---,N, we solve Equations (31) and (32), numerically.
2) Upper record values
In Equation (27), by putting K =k =1, the predictive PDF of Y, takes the form

i =BLL e ex{ i%}m[pl )+ R ()]

=1

<[t (V) + P Fo (V) ][ PR () + PR, () ] : (45)
x(ln[lel (t,)+ P,R, (t )])5-1 {H%}d%d%dp

where
B;*= [} [, (v10)7 (0lt)docy.

Substituting from Equation (45) in Equation (30) and solving Equations (31) and (32), numerically, we
can obtain the bounds of BPI.

5.1.3. Prediction for the Future Median (the Case of Odd N)

Special Cases
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1) Upper order statistics
Substituting A, ( (t) C(6;v) and D(6;v) in Equation (27) with b=¢ and N =2¢-1 and
by putting M = m 0 ad K =k =1, we have

OB exp[ g<“;fl>]

J

: (46)

AR ) R AR )RR )]

¢-1s

x[pufi(y)+ o ]FOZ{U. IPR L)+ PR (1)]

X[lel(y)+ P:R, Y)] }daldazdp

where

B = ], [y, (v]0)7" (6]t)dody.

To obtain 100z% BPI for Y, , we solve Equations (33) and (34), numerically.
2) Upper record values
The predictive PDF (27), when K =k =1, becomes

OB L pgz1ex{—g@1<m[wy)+sz2<y>])“’1
X|:p1 +pz :“:pl +p2 ( ):| ' (47)

2Pt (t)
x(In[ PR (t)+ PR, (1)]) {HZ”PJ R 0

}daldazdp

where

B, =[], (v]0)=" (6]t)dedy.
To obtain 100z% BPI for Y, , we solve Equations (33) and (34), numerically.

5.1.4. Prediction for the Future Median (the Case of Even N)
Special Cases

1) Upper order statistics

The predictive PDF and survival function of Y, can be obtained by substituting M =m=0 and
K =k =1 in Equations (39) and (40), respectively.

2) Upper record values

The predictive PDF and survival function of Y, can be obtained by substituting K =k =1 in Equations
(39) and (40), respectively.

To obtain 100z% BPI for future median of ordinary order statistics or ordinary upper record values.

We solve Equations (33) and (34), numerically.

6. Numerical Computations

In this section, 95% BPI for future observations from a mixture of two Gomp(aj ) j=1,2, components are
obtained by considering one sample and two sample schemes.

6.1. One Sample Prediction

In this subsection, we compute 95% BPI for T.,a =12, in the two cases ordinary order statistics and ordi-
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nary upper record values according to the following steps:

1) For a given values of the prior parameters (b;,b,) generate a random value p from the Beta(h,,b,)
distribution.

2) For a given values of the prior parameters d;, for j=1,2, generate a random value «; from the
LTE(dj) distribution.

3) Using the generated values of p,, and «,, we generate a random sample from a mixture of two
Gomp(aj) components, j=12, as follows:

e generate two observations u;,u, from Uniform(0,1);

. 1 . 1
o if u <p,then t=—log|1l-¢, log(l- , oth t=—1Iog|1l-«,log(l- ;
if u <p,then - 0g[1-¢ log(1-u,)], otherwise o 0g[1-a,log(1-u,)]

repeat above steps n times to get a sample of size n;
the sample obtained in above steps is ordered.

4) Using the generated values of p,o, and «,, we generate upper record values of size n=12 from a
mixture of two Gomp(aj ) j=1,2, components.

5) The 95% BPI for the future observations are obtained by solving numerically, Equations (23) and (24)
with 7=0.95. Different sample size n and the censored size are considered.

6.2. Two Sample Prediction

In this subsection, we compute 95% BPI for two sample prediction in the two cases ordinary order statistics

and ordinary upper record values according to the following steps:

1) For a given values of the prior parameters (b,,b,) generate a random value p from the Beta(b,,b,)
distribution.

2) For a given values of the prior parameters d;, for j=12, generate a random value «; from the
LTE(d;) distribution.

3) Using the generated values of p,e; and «,, we generate a doubly type 1l sample from a mixture of two
Gomp(e; ), j=1,2, components.

4) The 95% BPI for the observations from a future independent sample of size N are obtained by solving
numerically, Equations (31) and (32) with 7=0.95.

5) Generate 10,000 samples each of size N from a mixture of two Gomp(aj) components, then calculate
the coverage percentage of VY, .

6) Different sample sizes n and N are considered.

6.3. Prediction for the Future Median

In this subsection, 95% BPI for the median of N future observations are obtained when the underlying pop-

ulation distribution is a mixture of two Gompertz components in the two cases ordinary order statistics and

ordinary upper record values according to the following steps:

1) For a given values of the prior parameters (b,,b,) generate a random value p from the Beta(b,,b,)
distribution.

2) For a given values of the prior parameters d;, for j=12, generate a random value «; from the
LTE(d;) distribution.

3) Using the generated values of p,e; and «,, we generate a doubly type Il sample from a mixture of two
Gomp(aj), j=12, components.

4) The 95% BPI for the median of N of future observations are obtained by solving numerically, Equations
(33) and (34) with 7=0.95 for different values of N, when N =2¢p-1 isoddand N =2¢ iseven.

5) Generate 10,000 samples each of size N from a mixture of two Gomp(aj) components, then calculate
the coverage percentage of Y, .

6) The prediction are conducted on the basis of a doubly type Il censored samples and type Il censored
samples.

The computational (our) results were computed by using Mathematica 6.0. When the prior parameters
chosen as by = 1.5, b, = 2, d; = 1, d; = 2 which yield the generated values of p=0.516065,, =1.46186,
a, =3.1847. In Tables 1-4, 95% BPI for future observations are computed in case of the one and two
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Table 1. 95% BPI for future order statistics T, , a=12,when b =15b,=2,d, =1,d, =2 and the generated parameters
( p =0.516065, o, =1.46186,, = 3.1847).

Case . S=1 SEY
(nr) K (L) Length (LU) Length
T (0.562965, 0.744602) 0.181638 (0.443015, 0.618514) 0.175499
(10.7) T (0.748781, 1.53004) 0.782164 (0.569291, 1.30527) 0735977
T (0.47374, 0.548465) 0.0747253 (0.40578, 0.480169) 0.0743882
(5.10) T (0587001, 0.901358) 0.314357 (0.494304, 0.804901) 0.310507
T (0.719253, 0.774191) 0.0549385 (0.601514, 0.65858 ) 0.0570667
(20.19) T (0.866788, 1.14337) 0.276584 (0.740253, 1.01961) 0.279359
T (0.789649, 0.797004) 0.00735491 (0555976, 0.563516 ) 0.00754019
(0.39) T (0.791368, 0.883652) 0.0922842 (0.559453, 0.816295) 0.256842

Table 2. 95% BPI for the future upper record values T.,a=1,2, when b =15b,=2,d, =1,d, =2 and the generated pa-
rameters (p =0.516065,c;, =1.46186,cr, = 3.1847).

) s=1 s=2
r T,
(Lu) Length (Lu) Length
T (1.47048, 2.71682) 1.24633 (0.783431, 1.80835) 1.02492
> T (1.50643, 3.48872) 1.98229 (0.803645, 2.5354) 1.73175
T (1.38189, 1.94658) 0.564687 (1.80196, 2.44531) 0.643359
8 T, (1.36459, 2.32526) 0.960663 (1.8222, 2.82042) 0.998218
T (1.93128, 2.45302) 0.52174 (1.90637, 2.49514) 0.58877
10 T, (1.91008, 2.76182) 0.851738 (1.92627, 2.83318) 0.906915

Table 3. 95% BPI and PC for the future order statistics Y,,b=1,2, when b =1.5,b,=2,d,=1,d, =2 and the generated
parameters (p =0.516065,, =1.46186,c, = 3.1847).

. s=1 S=2
(n.r) % (LU) Length PC (LU) Length PC

. Y (0.00253.222,13557705) 9713 (0.00253‘0;;81,5 %254125) 97.32

(20, 15) v, (0.024?;;1:?é 85161048) 47,50 (0-025%}% 3-15152829) 97.55
3 v (0.0025%93826 26352991) 96.72 (0.00253.039511,4 %-5353966) 96.99

(20, 18) v, (0'025%‘_15?265’, gigsozes) 97.33 (0.025%?; &252571) 97.29
N Y (0.00163721%4 %.5244183) 96.79 (0.00163723%9%-544617) 96.53

(30, 22) v, (0.01853%3%3;32363) 96.59 (0.019%?5163‘,1 %%84252) 96.26
N Y, (0.0016372%9%2241649) 96.56 (0.0016(3;327;3i 3;43342) 96.76

(30, 27) y (0.0163242, 0.374301) 97.29 (0.0172091, 0.379132) 96.92

2 0.357976 0.361923
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sample predictions, respectively. In Table 5 and Table 6, 95% BPI for the medians of future samples with
odd or even sizes are computed. Our results are specialized to ordinary order statistics and ordinary upper
record values.

Table 4. 95% BPI and PC for future ordinary upper record values Y,,b=12, when b =15b,=2,d,=1,d,=2 and the
generated parameters ( p =0.516065, o, =1.46186,c, = 3.1847).

Case N S=1 S=2

(n.r) E (LU) Length PC (LU) Length PC
6 Y, (0.0244019, 1.26507) 1.24067 97.19 (0.0242337, 1.26247) 1.23824 97.20

8.5 Y, (0.184594, 1.79401) 1.60942 97.02 (0.177304, 1.8683) 1.69099 97.44
6 Y, (0.0243355, 1.17383) 1.14949 96.89 (0.0245445, 1.25834) 1.23379 96.91

@7 Y, (0.179104, 1.49161) 1.31251 97.36 (0188427, 1.62202) 1.43359 97.37
o Y, (0.0240923, 1.1295) 1.10541 96.68 (0.0244941, 1.20562) 1.18112 96.92

(10,7) Y, (0.169789, 1.47476) 1.30497 96.85 (0.187398, 1.59348) 1.40609 96.03
o Y, (0.0239792, 1.08241) 1.05843 96.36 (0.0237464, 1.11903) 1.09529 96.75

(10,9) Y, (0.161039, 1.35434) 1.1933 97.08 (0.153654, 1.41319) 1.25954 97.43

Table 5. (Ordinary order statistics) 95% BPI and PC for future median Y, when N =2¢p -1 isodd or 2¢, is even and
b =1.5,b,=2,d,=1,d,=2 and the generated parameters (p =0.516065,a, =1.46186,a, =3.1847).

. i s=1 S=2
r ¥ (LU) Length PC (LU) Length PC

~5 (0.150064, 1.7981) 1.64804 96.70 (0.149628, 1.81497) 1.66534 96.55

10 ~4 (0.15732, 1.87535) 1.71803 86.29 (0.156637, 1.89352) 1.73689 85.81

~5 (0.150599, 1.78292) 1.63232 96.50 (0.150879, 1.77517) 1.62429 96.70

2 7 (0.158553, 1.85921) 1.70066 85.77 (0.159278, 1.85101) 1.69173 85.63

~5 (0.151131, 1.76607) 1.61494 96.39 (0.15093, 1.77256) 1.62163 96.69

2! Y~4 (0.160396, 1.84172) 1.68132 85.25 (0.159707, 1.8485) 1.68879 85.26

Table 6. (Ordinary upper record values) 95% BPI and PC for future median Y, when N =2¢p -1 isodd or 2¢, is even
and b =15b,=2,d,=1,d, =2 and the generated parameters ( p = 0.516065, o, =1.46186,a, = 3.1847).

n=10 - S=1 S=2
r ! (LU) Length PC (LU) Length PC

; (0.160855, 2.18738) 2.02653 98.29 (0.145888, 2.22403) 2.07814 98.77

° ~2 (0.133759, 1.70622) 1.57246 84.56 (0.148567, 1.75259) 1.60402 83.42

Y~3 (0.170573, 2.00065) 1.83008 98.14 (0.148896, 1.98626) 1.83736 98.66

! 7 (0.142946, 1.5994) 1.45645 84.74 (0.140236, 1.60923) 1.469 84.34

Y~3 (0.200611, 1.52718) 1.32657 96.87 (0.196739, 1.51186) 1.31512 96.75

? Y~2 (0.116557, 1.29989) 1.18334 86.34 (0.118077, 1.27117) 1.1531 86.46
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6.4. Conclusions

1)

2)

3)
4)

5)
6)

Bayes prediction intervals for future observations are obtained using a one-sample and two-sample
schemes based on a finite mixture of two Gompertz components model. Our results are specialized to
ordinary order statistics and ordinary upper record values.

Bayesian prediction intervals for the medians of future samples with odd or even sizes are obtained based
on a finite mixture of two Gompertz components model. Our results are specialized to ordinary order
statistics and ordinary upper record values.

It is evident from all tables that the lengths of the BPI decrease as the sample size increase.

In general, if the sample size n and censored size r are fixed the lengths of the BPI increase by increasing
.

For fixed sample size n, censored size r and s, the lengths of the BPI increase by increasing a or b.

The percentage coverage improves by the use of a large number of observed values.
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