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Abstract

In regression analysis, data sets often contain unusual observations called outliers. Detecting
these unusual observations is an important aspect of model building in that they have to be diag-
nosed so as to ascertain whether they are influential or not. Different influential statistics in-
cluding Cook’s Distance, Welsch-Kuh distance and DFBETAS have been proposed. Based on these
influential statistics, the use of some robust estimators MM, Least trimmed square (LTS) and S is
proposed and considered as alternative to influential statistics based on the robust estimator M
and the ordinary least square (OLS). The statistics based on these estimators were applied into
three set of data and the root mean square error (RMSE) was used as a criterion to compare the
estimators. Generally, influential measures are mostly efficient with M or MM robust estimators.
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1. Introduction

Multiple regressions assess relationship between one dependent variable and a set of independent variables. Or-
dinary Least Squares (OLS) Estimator is most popularly used to estimate the parameters of regression model.
The estimator has some very attractive statistical properties which have made it one of the most powerful and
popular estimators of regression model. A common violation in the assumption of classical linear regression
model is the presence of outlier. An outlier is an observation that appears to be inconsistent with other observa-
tions in a set of data [1]. In regression, outliers can occur in three different forms: 1) outliers in the response va-
riable; 2) outliers in the explanatory variable called leverage points; and 3) outliers in both the response and ex-
planatory variables. An outlier can either be influential or not. Influential observation is an observation that
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would cause some important aspects of the regression analysis (regression estimates or the standard error) to
substantially change if it were removed from the data set [2].

The detection of outliers is an important problem in model building, inference and analysis of a regression
model. The presence of outliers can lead to biased estimation of the parameters, misspecification of the model
and inappropriate predictions [3].

Regression diagnostics becomes necessary in regression analysis in order to detect the presence of outliers
and influential points. These measures either use the OLS residuals or some functions of the OLS residuals
(standardized and studentized residuals) for detecting outliers in Y-direction and the diagonal elements of hat
matrix for detecting high leverages (X-direction). It was mentioned that the OLS residuals are not appropriate
for diagnostic purpose and therefore the scaling versions for the residuals are introduced [3]. However, all these
measures are still obtained based on the ordinary least squares estimators.

Robust regression estimator is an important estimation technique for analyzing data that are contaminated
with outliers or data with non normal error term. It is often used for parameter estimation to provide resistant
(stable) results in the presence of outliers. Some robust estimators have been provided which include the M, MM,
LTS, and S estimators. A diagnostic measure based on the robust estimator M was introduced as alternative to
the OLS estimator to detect influential points [4]. This M estimator had earlier been observed to perform well
when there was outlier in the Y direction [5].

In this paper, the use of robust estimators MM, S and LTS is proposed and considered as alternative to ordi-
nary least square (OLS) and the robust M estimators.

2. Background

Consider the multiple linear regression model

Y=Xp+¢ 1)
where Y is an n x 1 vector of response variable, X is an n x p full rank matrix of known regressors variables
augmented with a column of ones. § is p x 1 vector of the unknown regression coefficients and ¢ is the n x 1

vector of error terms with E(£)=0 and V (¢)=c’l, and I, isan nx n matrix of identity matrix.
The OLS estimator is defined as:

B=(XX)" XY )

Some useful properties of B are that it is an unbiased estimator EKﬁA’ = f and the Gauss-Markov theorem
[6] guarantees that it is best linear unbiased estimator (BLUE) under the non violation of classical regression
model assumptions.

2.1. Robust Estimators

2.1.1. M Estimators

The most common general method of robust regression is M-estimation, introduced by Huber [7]. It is nearly as
efficient as OLS. Rather than minimizing the sum of squared errors as the objective, the M-estimate minimizes a
function p of the errors. The M-estimate objective function is

minip(%‘j:minzn“p(yi%xrﬂ‘] @)

where s is an estimate of scale often formed from linear combination of the residuals. The function p gives the
contribution of each residual to the objective function. A reasonable p should have the following properties:
p(e)=0, p(0)=0, p(e)=p(-e),and p(e)=p(e) for |g]=[e].

The system of normal equations to solve this minimization problem is found by taking partial derivatives with
respect to # and setting them equal to 0, yielding,

iw[ XﬂJ- 0 @

i=1

where  is a derivative of p. The choice of the  function is based on the preference of how much weight to
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assign outliers. Newton-Raphson and Iteratively Reweighted Least Squares (IRLS) are the two methods to solve
the M-estimates nonlinear normal equations. IRLS expresses the normal equations as:

XyXp=Xyy (5)
2.1.2. S Estimator

S estimator [8] which is derived from a scale statistics in an implicit way, corresponding to s(¢) where s(6)
is a certain type of robust M-estimate of the scale of the residuals e, (6),---,e,(¢). They are defined by mini-

mization of the dispersion of the residuals: minimize S (el(@),---,en (é)) with final scale estimate

6=5 (e1 (0),-.e, (é)) . The dispersion e, (6),---€, (é) is defined as the solution of
1o g
> — =K 6
; Z.lp[ SJ ()

. e . . . - . .
where K is a constant and p(—'j is the residual function. Tukey’s biweight function [8] was suggested and is

S
defined as:
ﬁ—x—42+x—64for |x| <c

S for |x| >c
6
Setting ¢ = 1.5476 and K = 0.1995 gives 50% breakdown point [9].

2.1.3. MM Estimator
MM-estimation is special type of M-estimation [10]. MM-estimators combine the high asymptotic relative effi-
ciency of M-estimators with the high breakdown of class of estimators called S-estimators. It was among the
first robust estimators to have these two properties simultaneously. The MM refers to the fact that multiple
M-estimation procedures are carried out in the computation of the estimator. MM-estimator was described in
three stages as follows:

Stage 1. A high breakdown estimator is used to find an initial estimate, which we denote /. The estimator
needs to be efficient. Using this estimate the residuals, r, (,B) =Y, - x,Tﬁ are computed.

. . . I, .
Stage 2. Using these residuals from the robust fit and lzi"lp[—'j =K where K is a constant and the ob-
n="=""{s

jective function p, an M-estimate of scale with 50% BDP is computed. This s(rl(ﬁ),---,rn (5’)) is denoted
s, . The objective function used in this stage is labeled p, .
Stage 3. The MM-estimator is now defined as an M-estimator of B using a redescending score function,

()=

A , and the scale estimate s, obtained from stage 2. So an MM-estimator B defined as a solu-

tion to

Zinlxij%(yi_s—)(iﬁjzo j=L-p. (8)

n

2.1.4. LTS Estimator
Extending from the trimmed mean, LTS regression minimizes the sum of trimmed squared residuals [11]. This
method is given by,

[}LTS = argminQLTS (ﬁ) (9)
where Qs (8)=3" e? such that €0 < €3 <€y <+ <e, are the ordered squares residuals and h is de-

i=171 2 = (n)
w, with n and p being sample size and number of parameters respectively.

)

fined in the range 2+1§ h<
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The largest squared residuals are excluded from the summation in this method, which allows those outlier data
points to be excluded completely. Depending on the value of h and the outlier data configuration. LTS can be
very efficient. In fact, if the exact numbers of outlying data points are trimmed, this method is computationally
equivalent to OLS.

2.2. Influential Measures in Least Squares

2.2.1. Cook’s Distance Measures
Cook’s distance measure [12] denoted by D;, considers the influence of the i™ case on all n fitted values. It is
an aggregate influence measure, showing the effect of the i'" case on all fitted values.

o, -7 o A7) (1)

where ,é and ,é. respectively provide estimate on all n data points and the estimate obtained after the i ob-
servation is deleted. Cook’s distance measure has been observed to relate to F(p, n — p) distribution and hence
its percentile value can be ascertained. If the percentile value is less than about 10 or 20 percent, the i case has
little apparent influence on the fitted values. If on the other hand, the percentile value is near 50 percent or more,
the fitted values obtained with and without the i" case should be considered to differ substantially, implying that
the i™ case has a major influence on the fit of the regression function. An equivalent algebraic expression of

Cook’s D Measure is given by:
2
D, = r—{p—] (1)

p{1-p;

where p, is the diagonal elements of the hat matrix and where r; is i internally studentized residual. It was
suggested that observations for which D, >1 warrants attention [12].

2.2.2. DFFITS
It is a diagnostic measure to reveal how influential a point is in a statistical regression. It is defined as the change
in the predicted value for a point obtained when that point is left out of the regression and divided by the esti-
mated standard deviation of the fit at that point. )

A useful measure of the influence that case i has on the fitted value Y. is given by:

(DFFITS) =——0 (12)

JMSE; p;

where Y, is the predicted value for all cases, Y, for the i case obtained when the i case is omitted in fitting

the regression function, MSE; is the estimated mean square error of \fi(i). Thus, DFFITS is the standardized
change in the fitted value of a case when it is deleted. It can also be expressed as:

(DFFITS)iz( Pu jﬂz & =[ Pu Jl/zti (13)

1-p) J&*(1-p,) \L-p
where &% is the estimate of o, p; is the diagonal elements of the hat matrix and t, % isthe
&’ (1-p;)
studentized residual (also called the external studentized residual).
It was suggested that observations for which |DFF|TS| >2 P \arrants attention for large data sets and if
n

the absolute value of DFFITS exceeds 1 for small to medium data sets [13].

2.2.3. DFBETAS
It is a measure of the influence of the i™ case on each regression coefficients b, (k =0,12,---, p—l) . It is ob-
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tained by computing the difference between the estimated regression coefficient b, based on all n cases and the
regression coefficient obtained when the i"" case is omitted, to be denoted by bk(i . The difference is divided by
an estimate of the standard deviation of b, , we obtain the measure DFBETAS:
bk - bk(i)
(DFBETAS), . = ——— k=012, p-1 (14)
@ JMSEC,

where C, is the k™ diagonal element of (XX )™

The error term variance, o, is estimated by MSE, which is the mean square error obtained when the i
case is deleted i |n fitting the regression model. A large absolute value of (DFBETAS) is indicative of a large
impact of the i" case on the k™ regression coefficient. Guideline for identifying influential cases is when the ab-

solute value of DFBETAS exceeds 1 for small to medium data sets and 2 for large data sets [13].

N

2.3. Influential Measures in Robust Regression

The robust version of Cook’s Distance and DFFITS measure based on Huber-M estimator was introduced to
measure influential points. £, which is the least square estimator, was replaced with . which is the M esti-
mator of £ and the robust scale estimate of o (6,2) instead of o2 which is the least square estimator in (2).
The robust version of Cook’s Distance is defined as:

(A= Biy) (XX)(B. i)

RD, = = (15)
orp
where ,Br is the robust estimation of gand &7 is the robust scale estimation of &°.
The robust DFFITS is defined as:
‘X'(ﬁr _ﬂr(—l))
RDFFITS, = (16)
MION
where p, is the i" diagonal element of hat matrix.
The robust version of DFBETAS measure is proposed. This can be expressed as follows:
br - br(i)
(RDFBETAS), . =—=———= k=0,1 2, p-1 (17)

KO /MSE,C,,

Consequently, in this paper, we consider the robust version of Cook’s D, DFFITS and DFBETAS and applied
them not only to the robust M estimator but also to MM, LTS and S estimators.

3. Application to Real Life Data Sets

Real life data sets are used to illustrate the performance of the influential statistics. The results are as follows.

3.1. Application to Longley Data

Table 1 and Table 2 provide the summary of results of the application of robust diagnostics measures to the
Longley data.

From Table 1, robust diagnostics based on OLS revealed that case 10 is an outlier. Robust diagnostics based
on M estimator revealed that cases 10, 14, 15, 16 are outliers. Robust diagnostics based on MM and S estimators
revealed that cases 14, 15, 16 are outliers while robust diagnostic measure based on LTS estimator revealed that
cases 5, 14, 15, 16. The influential points from these outliers were then identified in Table 2. The robust diag-
nostic measures identified more influential points than outliers; this might be because the Longley data suffers
both multicollinearity and outlier problem.

From Table 2, Cook’s D based on OLS revealed that cases 5, 16, 4, 10, and 15 (in this order) were the most
influential cases. The robust version of the Cook’s D statistics based on the M estimator identified cases 5, 10, 1,

()
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Table 1. Summary of outlier results using Longley data.

Estimators
oLS

M

MM

S

LTS

Outliers

10, 14, 15, 16
14,15, 16
14,15, 16

5, 14,15, 16

Table 2. Summary of influential points using Longley data.

Diag Est. By B B Bs B, Bs Bs RMSE IP
—35E6 1506  -0.04 005 -202 -103  1829.2
os AlPaa  gors  gag2 003 023 049 021 45548 0485 5164,
. 10, 15
WIP Sample size problem
~32E6  -287  -003 009 -18 -098  1666.3
" AllData 1506 1175 005 031 068 030 63008 0132 i 12
wip 486 218 006 008 239 125 25338 000 4156
37E5 1454 001 006 014 007  190.29 : o
—34E6 977  -003 006 -197 -102  1790.9
D vy ADaRgoest 953 004 024 052 023 49572 96164 5,164,
. 10, 15
WIP Sample size problem
-33E6 598  -003 007 -193 -101 17574
g AllDaa e 9608 004 026 056 056 54227 9942 5i36is4'
WIP Sample size problem '
~5E6 3161  -0.08 017 -270 -126 25836
Lt AWDa L aee 7598 004 023 057 023 57546 21087 54,16,
. 15, 10
WIP Sample size problem
~35E6 1506  -0.04 005 -202 -103 18292 5,16, 4,
OLS  AllData  gore  g402 003 023 049 021 as548 30485 10,15
WIP Sample size problem
~32E6  -287  -003 009 -18 -098  1666.3
M AllData  4ors 1975 005 031 068 030 63008 16132 540 16
wip  C49E6  -1122 007 004 245 136  2587.03 6.42 15,6, 2
9.9E5 415 000 002 004 002 50.78 :
—34E6 977  -003 006 -197 -1.02  1790.9
DFFITS MM AllData  g7es’  go53 004 024 052 023 49572 6164 51016
. 15,1,6, 2
WIP Sample size problem
~33E6 598  -003 007 -193 -101 17574
S AllDaa g’ 9508 004 026 056 056 5427 94 . 3'2615
WIP Sample size problem T
~5E6 3161  -0.08 017 -270 -126 25836
LTS AllDaa ;pg 7598 004 023 057 023 57546 21087 5i54' 113'
WIP Sample size problem '
“35E6 1506  —0.04 —005 -202 -103 18292
OLS AllDaa  gors’  gagp 003 023 049 021  as543 50485 5 10
wip  “A0E6 4457 006 015 232 110 20828 oo, ’
11E6 6628 004 020 053 021 56437 :
“32E6  -287  -003 -009 -182 -098 16663
M AllDaa  4ore" 1975 005 031 068 030 63008 16132 5, 16,
~62E6 4317 -009 -001 291 -152  3247.1 15,6
wip 1266 5373 004 024 053 024 63006 493
—34E6 977  -003 -006 -197 -102  1790.9
DFBETA MM AllData  g7p’  go53 004 024 052 023 49572 o164 5
S wip  48E6 1285 008 011 258 124 25158
1266 8043 004 024 059 024 60462
~33E6 598  -0.03 -007 -193 -101 17574
S AllDaa . 4eg’ 9608 004 026 056 056 54227 394 6
wp  48E6 688 007 009 255 124  2508.
1266  8L74 004 025 060 024 61166
_5E6 3161  -0.08 017 270 -126 25836
LTS AllDaa  19gg 7508 004 023 057 023 57546 27987 1516
WIP Sample size problem

WIP: regression estimates after removing influential points. IP: influential points.
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16, 4, 15 and 6 as influential. The points identified by Cook’s D based on MM, S and LTS estimators are not
different from the points identified by OLS. Though with different root mean square error. The root mean square
error is not too different.

The influential points identified by DFFITS based on OLS is not different from the cases identified using
Cook’s D. Also, the cases identified by DFFITS based on S and LTS estimators respectively are not different
from the points identified by their respective Cook’s D. The only exception is that DFFITS based on MM identi-
fied more cases (5, 10, 16, 15, 1, 6, and 2) than its Cook’s D. The robust version of the DFFITS statistics based
on the M estimator identified cases 5, 10, 16, 15, 1, 6 and 2 as influential.

From all the influential points identified by Cook’s D and DFFITS statistics respectively, the observations en-
closed in parenthesis are reported to influence the regression coefficients. DFBETAS based on OLS (5, 10),
DFBETAS based on M (5, 16, 15, 6), DFBETAS based on MM (5), DFBETAS based on S (5), DFBETAS
based on LTS (10, 16). Cases identified by MM and S estimator are the same.

Having removed the influential cases, it can observed that the M estimator is most efficient (RMSE; = 20.00,
RMSEpgrits = 6.42, RMSEprgeTas = 145.53). However, MM, S and LTS estimators could not provide results
probably because of small sample size (n = 16). More so, MM and S are modified M estimator.

3.2. Application to Scottish Hills Data

Table 3 and Table 4 provide the summary of results of the application of robust diagnostics measures to the
Scottish Hills data.

From Table 3, robust diagnostics based on OLS revealed that cases 7, 18, 31, 33, 35 are outliers. Robust di-
agnostics based on the robust estimators (M, MM, LTS and S estimators) revealed that cases 7, 11, 17, 18, 31,
33, 35 are outliers. The influential points from these outliers were then identified in Table 4.

From Table 4, Cook’s D based on OLS revealed that cases 7, 11, 18 (in this order) were the most influential
cases. The robust version of the Cook’s D statistics based on the M estimator identified cases 7, 31, 33 and 35 as
influential. The points identified by Cook’s D based on MM, S and LTS estimators are the same but with dif-
ferent root mean square error.

DFFITS based on OLS revealed that cases 7, 18 (in this order) were the most influential cases. Case 11 iden-
tified by Cook’s D was not identified. Also, the cases identified by DFFITS based on MM, S and LTS estima-
tors respectively are the same with the cases identified by their respective Cook’s D.

From all the influential points identified by Cook’s D and DFFITS statistics respectively, DFBETAS based on
OLS revealed that cases 7 and 18 affect the regression coefficients. The robust DFBETAS measures based on M,
MM, S and LTS revealed that none of the influential points identified by DFFITS and Cook’s affect the regres-
sion coefficients. It is concluded that the diagnostics measure computed using OLS is not reliable. For this data
set, the diagnostic measures based on M estimator identified more influential points than other robust estimators.
This might be because the RMSE is smaller than other considered estimators. However, MM, S and LTS esti-
mators provided similar results.

Having removed the influential cases, it can observed that the M estimator is most efficient (RMSEp = 274.31,
RMSEDFFITS = 27431, RMSEDFBETAS = 28687)

3.3. Application to Hussein Data

Table 5 and Table 6 provide the summary of results of the application of robust diagnostics measures to Hus-
sein data.

Table 3. Summary of outlier results using Scottish Hills data.

Estimators Outliers
OLS 7,18, 31, 33,35
M 7,11, 17,18, 31, 33, 35
MM 7,11,17,18, 31, 33,35
S 7,11,17,18, 31, 33, 35
LTS 7,11,17,18, 31, 33, 35
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Table 4. Summary of influential points using Scottish Hills data.

Diagnostic measures

DFFITS

DFBETAS

Estimators

OLS

MM

LTS

OLS

MM

LTS

OLS

MM

LTS

Nature of data analysis

All Data

Without Influential

All Data

Without Influential

All Data

Without Influential

All Data

Without Influential

All Data

Without Influential

All Data

WIP

All Data

WIP

All Data

WIP

All Data

WIP

All Data

WIP

All Data

WIP

All Data

WIP

All Data

WIP

All Data

WIP

All Data

WIP

Bo
~539.48
(258.16)
~642.98
(128.83)
-487.21

(89.26)
~452.02
(112.35)
~484.79

(97.50)
~482.56
(100.33)
~483.82

(98.71)
~479.53
(108.50)
~493.80

(93.16)
—467.57
(107.70)
~539.48
(258.16)
~621.67
(113.86)
-487.21

(89.26)
~452.02
(112.35)
~484.79

(97.50)
~482.56

100.33
-483.82

(98.71)

~4795
(108.50)
~493.80

(93.16)
—467.57
(107.70)
~539.48
(258.16)
~621.67
(113.86)
-487.21

(89.26)
-487.21

(89.26)
~484.79

(97.50)
~484.79

(97.50)
-483.82

(98.71)
-483.82

(98.71)
~493.80

(93.16)
~493.80

(93.16)

A
373.07
(36.07)
410.25
(28.01)
398.29
(12.47)
396.46
(13.32)
398.40
(12.09)
398.53
(12.33)
398.45
(12.19)
398.84
(13.11)
398.09
(11.92)
388.59
(22.33)
373.07
(36.07)
40152
(15.26)
398.29
(12.47)
396.46
(13.32)
398.40
(12.09)
398.53

12.33
398.45
(12.19)
398.84
(13.11)
398.09
(11.92)
388.60

22.33
373.07
(36.07)
401.52
(15.26)
398.29
(12.47)
398.29
(12.47)
398.40
(12.09)
398.40
(12.09)
398.45
(12.19)
398.45
(12.19)
398.09
(11.92)
398.09
(11.92)

y
0.66
(0.12)
0.46
(0.09)
0.39
(0.04)
0.37
(0.07)
0.39
(0.06)
0.3854
(0.06)
0.39
(0.06)
0.38
(0.06)
0.40
(0.05)
0.4160
(0.07)
0.66
(0.12)
0.48
(0.06)
0.39
(0.04)
0.37
(0.07)
0.39
(0.06)
0.39
0.06
0.39
(0.06)
0.38
(0.06)
0.40
(0.05)
0.42
(0.07)
0.66
(0.12)
0.48
(0.06)
0.39
(0.04)
0.39
(0.04)
0.39
(0.06)
0.39
(0.06)
0.39
(0.06)
0.39
(0.06)
0.40
(0.05)
0.40
(0.05)

RMSE

880.52

368.56

286.87

27431

330.87

291.54

366.10

286.85

314.26

284.72

880.52

363.23

286.87

27431

330.87

291.54

366.10

286.85

314.26

286.83

880.52

363.23

286.87

286.87

330.87

330.87

366.10

366.10

283.12

283.12

Influential points

7,11,18

7,31,33,35

7,18, 33

7,18,33

7,18,33

7,18

7,31, 33,
35

7,18, 33

7,18,33

7,18, 33

7,18

NIL

NIL

NIL

18




K. Ayinde et al.

Table 5. Summary of outlier results using Hussein data.

Estimators
OLS
M
MM
S
LTS

15, 16, 20, 21, 30, 31

Outliers

12,14, 15, 16, 17, 18, 19, 20, 21, 30, 31

12,13, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31

12,14, 15, 16, 17, 18, 19, 20, 21, 30, 31

12,13, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31

Table 6. Summary of influential points using Hussein data.

Diagnostic measures

OLS

Cook’s D

MM

LTS

OoLS

MM
DFFITS

LTS

Estimators

Nature of data analysis By
All Data (2402%89%
we ing
All Data (123f '2833;
wip (15199915())
All Data (151531212)
wie (.78
All Data (123f 8634)
we
All Data (114 47 '5693)
wip (1079
All Data (2:)2%89%
we i
All Data (1233 '2833)
wip (12314.'3880)
All Data (151531212)
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From Table 5, robust diagnostics based on OLS revealed that cases 15, 16, 20, 21, 30, 31 are outliers. Robust
diagnostics based on M and S estimators revealed that cases 12, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31 are outliers.
Robust diagnostics based on MM and LTS estimators revealed that cases 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
30, 31 are outliers. The influential points from these outliers were then identified in Table 6.

From Table 6, Cook’s D based on OLS revealed that cases 15, 16, 31, 30, and 20 (in this order) were the most
influential cases. The robust version of the Cook’s D statistics based on the M estimator identified cases 30, 31,
16, 21 and 14 as influential. The robust version of the Cook’s D statistics based on the MM estimator identified
cases 15, 30, 31, 14, 12, 13, 11, 9, 1, 3, 10 and 18 as influential. The robust version of the Cook’s D statistics
based on the S estimator identified cases 30, 31, 16 and 21. The robust version of the Cook’s D statistics based
on the LTS estimator identified cases 15, 30, 31, 12, 14, 13, 20 and 11 as influential.

The cases identified by DFFITS based on OLS is not different from the ones identified using Cook’s D. The
cases identified by DFFITS based on M and S estimators are 30, 31 and 36. The robust version of the DFFITS
statistics based on the MM estimator identified cases 31, 15, 30, 14, 12, 13, 11 and 9 as influential. The robust
version of the DFFITS statistics based on LTS estimator identified cases 15, 30, 31, 12, 14 and 13 as influential.

From all the influential points identified by Cook’s D and DFFITS statistics respectively, DFBETAS based on
OLS revealed that cases 15 and 16 affect the regression coefficients. The robust DFBETAS measures based on
M, MM, S and LTS revealed that none of the influential points identified by DFFITS and Cook’s affected the
regression coefficients.

It is concluded that the diagnostics measure computed using OLS is not reliable. For this data set, the diag-
nostic measures based on MM estimator identified more influential points than other robust estimators. This
might be because the RMSE is smaller than other considered estimators.

4. Conclusions

In this paper, it was established that a point identified as outliers is not necessarily influential. In the application
to Longley data, more influential points than outliers were identified; this might be because the Longley data
suffers both multicollinearity and outlier problem. Some robust version of Cook’s distance, Welsch-Kuh dis-
tance (DFFITS) and DFBETAS are proposed to measure influential points. Diagnostics measures based on OLS
do not give reliable estimates as compared to other estimators. It suffered more from swamping and masking ef-
fect. The performance of the robust version of the influential statistic is largely dependent on the root mean
square error. The performances of the Cook’s D and the DFFITS measure are not too different except for some
few cases. Inflated standard error is reported in this study as one of the consequence of outliers. It is observed
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that root mean square error value reduces as the influential points are identified and removed. The DFBETAS
shows that not all cases reported to be influential exert undue influence on the regression coefficients. The di-
agnostic measures based on the robust estimators perform better than OLS estimator when the influential points
are removed or not. Also, the performance of the proposed robust diagnostics measure based on MM performs
better than that of M estimator in application to Hussein data.

Finally, the performances of the proposed robust diagnostics measured based on MM and M estimator are
generally more efficient based on the applied data.
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