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Abstract 
In regression analysis, data sets often contain unusual observations called outliers. Detecting 
these unusual observations is an important aspect of model building in that they have to be diag-
nosed so as to ascertain whether they are influential or not. Different influential statistics in- 
cluding Cook’s Distance, Welsch-Kuh distance and DFBETAS have been proposed. Based on these 
influential statistics, the use of some robust estimators MM, Least trimmed square (LTS) and S is 
proposed and considered as alternative to influential statistics based on the robust estimator M 
and the ordinary least square (OLS). The statistics based on these estimators were applied into 
three set of data and the root mean square error (RMSE) was used as a criterion to compare the 
estimators. Generally, influential measures are mostly efficient with M or MM robust estimators. 
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1. Introduction 
Multiple regressions assess relationship between one dependent variable and a set of independent variables. Or-
dinary Least Squares (OLS) Estimator is most popularly used to estimate the parameters of regression model. 
The estimator has some very attractive statistical properties which have made it one of the most powerful and 
popular estimators of regression model. A common violation in the assumption of classical linear regression 
model is the presence of outlier. An outlier is an observation that appears to be inconsistent with other observa-
tions in a set of data [1]. In regression, outliers can occur in three different forms: 1) outliers in the response va-
riable; 2) outliers in the explanatory variable called leverage points; and 3) outliers in both the response and ex-
planatory variables. An outlier can either be influential or not. Influential observation is an observation that 
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would cause some important aspects of the regression analysis (regression estimates or the standard error) to 
substantially change if it were removed from the data set [2]. 

The detection of outliers is an important problem in model building, inference and analysis of a regression 
model. The presence of outliers can lead to biased estimation of the parameters, misspecification of the model 
and inappropriate predictions [3]. 

Regression diagnostics becomes necessary in regression analysis in order to detect the presence of outliers 
and influential points. These measures either use the OLS residuals or some functions of the OLS residuals 
(standardized and studentized residuals) for detecting outliers in Y-direction and the diagonal elements of hat 
matrix for detecting high leverages (X-direction). It was mentioned that the OLS residuals are not appropriate 
for diagnostic purpose and therefore the scaling versions for the residuals are introduced [3]. However, all these 
measures are still obtained based on the ordinary least squares estimators. 

Robust regression estimator is an important estimation technique for analyzing data that are contaminated 
with outliers or data with non normal error term. It is often used for parameter estimation to provide resistant 
(stable) results in the presence of outliers. Some robust estimators have been provided which include the M, MM, 
LTS, and S estimators. A diagnostic measure based on the robust estimator M was introduced as alternative to 
the OLS estimator to detect influential points [4]. This M estimator had earlier been observed to perform well 
when there was outlier in the Y direction [5]. 

In this paper, the use of robust estimators MM, S and LTS is proposed and considered as alternative to ordi-
nary least square (OLS) and the robust M estimators. 

2. Background 
Consider the multiple linear regression model 

Y X β ε= +                                       (1) 

where Y is an n × 1 vector of response variable, X is an n × p full rank matrix of known regressors variables 
augmented with a column of ones. β is p × 1 vector of the unknown regression coefficients and ε is the n × 1 
vector of error terms with ( ) 0E ε =  and ( ) 2

nV Iε σ=  and nI  is an n × n matrix of identity matrix. 
The OLS estimator is defined as: 

( ) 1ˆ X X X Yβ −′ ′=                                     (2) 

Some useful properties of β̂  are that it is an unbiased estimator ( )ˆE β β=  and the Gauss-Markov theorem 
[6] guarantees that it is best linear unbiased estimator (BLUE) under the non violation of classical regression 
model assumptions. 

2.1. Robust Estimators 
2.1.1. M Estimators 
The most common general method of robust regression is M-estimation, introduced by Huber [7]. It is nearly as 
efficient as OLS. Rather than minimizing the sum of squared errors as the objective, the M-estimate minimizes a 
function ρ of the errors. The M-estimate objective function is 

1 1

ˆ
min min

n n
i i i

i i

e y X
s s

β
ρ ρ

= =

 ′−  =        
∑ ∑                             (3) 

where s is an estimate of scale often formed from linear combination of the residuals. The function ρ gives the 
contribution of each residual to the objective function. A reasonable ρ should have the following properties: 
( ) 0eρ ≥ , ( )0 0ρ = , ( ) ( )e eρ ρ= − , and ( ) ( )i ie eρ ρ ′≥  for .i ie e′≥  
The system of normal equations to solve this minimization problem is found by taking partial derivatives with 

respect to β and setting them equal to 0, yielding, 

1

ˆ
0

n
i i

i
i
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∑                                   (4) 

where ψ  is a derivative of ρ. The choice of the ψ  function is based on the preference of how much weight to 
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assign outliers. Newton-Raphson and Iteratively Reweighted Least Squares (IRLS) are the two methods to solve 
the M-estimates nonlinear normal equations. IRLS expresses the normal equations as: 

ˆX X X yψ β ψ′ ′=                                     (5) 

2.1.2. S Estimator 
S estimator [8] which is derived from a scale statistics in an implicit way, corresponding to ( )s θ  where ( )s θ  
is a certain type of robust M-estimate of the scale of the residuals ( ) ( )1 , , ne eθ θ . They are defined by mini-  
mization of the dispersion of the residuals: minimize ( ) ( )( )1

ˆ, , nS e eθ θ  with final scale estimate 

( ) ( )( )1
ˆˆ , , nS e eσ θ θ=  . The dispersion ( ) ( )1

ˆ, , ne eθ θ  is defined as the solution of 

1

1 n i
i

e
K

n s
ρ

=

  = 
 

∑                                    (6) 

where K is a constant and ie
s

ρ  
 
 

 is the residual function. Tukey’s biweight function [8] was suggested and is  

defined as: 

( )
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2
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6
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c cx
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                           (7) 

Setting c = 1.5476 and K = 0.1995 gives 50% breakdown point [9]. 

2.1.3. MM Estimator 
MM-estimation is special type of M-estimation [10]. MM-estimators combine the high asymptotic relative effi-
ciency of M-estimators with the high breakdown of class of estimators called S-estimators. It was among the 
first robust estimators to have these two properties simultaneously. The MM refers to the fact that multiple 
M-estimation procedures are carried out in the computation of the estimator. MM-estimator was described in 
three stages as follows: 

Stage 1. A high breakdown estimator is used to find an initial estimate, which we denote β . The estimator 
needs to be efficient. Using this estimate the residuals, ( ) T

i i ir y xβ β= −   are computed. 

Stage 2. Using these residuals from the robust fit and 1

1 n i
i

r
K

n s
ρ

=

  = 
 

∑  where K is a constant and the ob-  

jective function ρ , an M-estimate of scale with 50% BDP is computed. This ( ) ( )( )1 , , ns r rβ β 

  is denoted 
ns . The objective function used in this stage is labeled 0ρ . 
Stage 3. The MM-estimator is now defined as an M-estimator of β  using a redescending score function,  

( ) ( )1
1

u
u

u
ρ

ϕ
∂

=
∂

, and the scale estimate ns  obtained from stage 2. So an MM-estimator β̂  defined as a solu-  

tion to 
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ϕ
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                         (8) 

2.1.4. LTS Estimator 
Extending from the trimmed mean, LTS regression minimizes the sum of trimmed squared residuals [11]. This 
method is given by, 

( )ˆ argminLTS LTSQβ β=                               (9) 

where ( ) 2
1

h
LTS iiQ eβ

=
= ∑  such that ( ) ( ) ( ) ( )

2 2 2 2
1 2 3 ne e e e≤ ≤ ≤ ≤  are the ordered squares residuals and h is de-  

fined in the range 3 11
2 4
n n ph + +
+ ≤ ≤ , with n and p being sample size and number of parameters respectively.  



K. Ayinde et al. 
 

 
276 

The largest squared residuals are excluded from the summation in this method, which allows those outlier data 
points to be excluded completely. Depending on the value of h and the outlier data configuration. LTS can be 
very efficient. In fact, if the exact numbers of outlying data points are trimmed, this method is computationally 
equivalent to OLS. 

2.2. Influential Measures in Least Squares 
2.2.1. Cook’s Distance Measures 
Cook’s distance measure [12] denoted by iD , considers the influence of the ith case on all n fitted values. It is 
an aggregate influence measure, showing the effect of the ith case on all fitted values. 

( ) ( )( )
2

ˆ ˆ ˆ ˆ

ˆ
i i

i

X X
D

p

β β β β

σ

′ ′− −
=                              (10) 

where β̂  and ˆ
iβ  respectively provide estimate on all n data points and the estimate obtained after the ith ob-

servation is deleted. Cook’s distance measure has been observed to relate to F(p, n − p) distribution and hence 
its percentile value can be ascertained. If the percentile value is less than about 10 or 20 percent, the ith case has 
little apparent influence on the fitted values. If on the other hand, the percentile value is near 50 percent or more, 
the fitted values obtained with and without the ith case should be considered to differ substantially, implying that 
the ith case has a major influence on the fit of the regression function. An equivalent algebraic expression of 
Cook’s D Measure is given by: 

2

1
i ii

i
ii

r p
D

p p
 

=  − 
                                  (11) 

where iip  is the diagonal elements of the hat matrix and where ri is ith internally studentized residual. It was 
suggested that observations for which 1iD >  warrants attention [12]. 

2.2.2. DFFITS 
It is a diagnostic measure to reveal how influential a point is in a statistical regression. It is defined as the change 
in the predicted value for a point obtained when that point is left out of the regression and divided by the esti-
mated standard deviation of the fit at that point. 

A useful measure of the influence that case i has on the fitted value îY  is given by: 

( ) ( )
ˆ ˆ
i i i

i
i ii

Y Y
DFFITS

MSE p

−
=                               (12) 

where îY  is the predicted value for all cases, ( )î iY  for the ith case obtained when the ith case is omitted in fitting 
the regression function, iMSE  is the estimated mean square error of ( )î iY . Thus, DFFITS is the standardized 
change in the fitted value of a case when it is deleted. It can also be expressed as: 

( )
( )

1 2 1 2

21 1ˆ 1
ii i ii

ii
ii iiii

p p
DFFITS t

p pp

ε

σ

   
= =   − −−   

                  (13) 

where 2σ̂  is the estimate of 2σ , iip  is the diagonal elements of the hat matrix and 
( )2ˆ 1

i
i

ii

t
p

ε

σ
=

−
 is the  

studentized residual (also called the external studentized residual). 

It was suggested that observations for which 2 pDFFITS
n

>  warrants attention for large data sets and if  

the absolute value of DFFITS exceeds 1 for small to medium data sets [13]. 

2.2.3. DFBETAS 
It is a measure of the influence of the ith case on each regression coefficients ( )0,1,2, , 1kb k p= − . It is ob-
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tained by computing the difference between the estimated regression coefficient kb  based on all n cases and the 
regression coefficient obtained when the ith case is omitted, to be denoted by ( )k ib . The difference is divided by 
an estimate of the standard deviation of kb , we obtain the measure DFBETAS: 

( ) ( )
( ) 0,1,2, ,  1k k i

k i
i kk

b b
DFBETAS k p

MSE C

−
= = −

                    (14) 

where kkC  is the kth diagonal element of ( ) 1X X −′ . 
The error term variance, 2σ , is estimated by iMSE  which is the mean square error obtained when the ith 

case is deleted in fitting the regression model. A large absolute value of ( ) ( )k iDFBETAS  is indicative of a large 
impact of the ith case on the kth regression coefficient. Guideline for identifying influential cases is when the ab-  

solute value of DFBETAS exceeds 1 for small to medium data sets and 2
n

 for large data sets [13]. 

2.3. Influential Measures in Robust Regression 
The robust version of Cook’s Distance and DFFITS measure based on Huber-M estimator was introduced to 
measure influential points. β̂ , which is the least square estimator, was replaced with ˆ

rβ  which is the M esti-
mator of β and the robust scale estimate of ( )2 2ˆrσ σ  instead of 2σ  which is the least square estimator in (2). 
The robust version of Cook’s Distance is defined as: 

( )( ) ( ) ( )( )1 1

2

ˆ ˆ ˆ ˆ

ˆ
r rr r

i
r

X X
RD

p

β β β β

σ
− −

′ ′− −
=                          (15) 

where ˆ
rβ  is the robust estimation of β and 2ˆrσ  is the robust scale estimation of 2σ̂ . 

The robust DFFITS is defined as: 

( )( )
( )

1
ˆ ˆ

ˆ
ii

i r r

i
r i p

x
RDFFITS

β β

σ
−′ −

=                              (16) 

where iip  is the ith diagonal element of hat matrix. 
The robust version of DFBETAS measure is proposed. This can be expressed as follows: 

( ) ( )
( ) 0,  1,  2, ,  1r r i

k i
i kk

b b
RDFBETAS k p

MSE C

−
= = −

                   (17) 

Consequently, in this paper, we consider the robust version of Cook’s D, DFFITS and DFBETAS and applied 
them not only to the robust M estimator but also to MM, LTS and S estimators. 

3. Application to Real Life Data Sets 
Real life data sets are used to illustrate the performance of the influential statistics. The results are as follows. 

3.1. Application to Longley Data 
Table 1 and Table 2 provide the summary of results of the application of robust diagnostics measures to the 
Longley data. 

From Table 1, robust diagnostics based on OLS revealed that case 10 is an outlier. Robust diagnostics based 
on M estimator revealed that cases 10, 14, 15, 16 are outliers. Robust diagnostics based on MM and S estimators 
revealed that cases 14, 15, 16 are outliers while robust diagnostic measure based on LTS estimator revealed that 
cases 5, 14, 15, 16. The influential points from these outliers were then identified in Table 2. The robust diag-
nostic measures identified more influential points than outliers; this might be because the Longley data suffers 
both multicollinearity and outlier problem. 

From Table 2, Cook’s D based on OLS revealed that cases 5, 16, 4, 10, and 15 (in this order) were the most 
influential cases. The robust version of the Cook’s D statistics based on the M estimator identified cases 5, 10, 1,  
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Table 1. Summary of outlier results using Longley data. 

Estimators Outliers 
OLS 10 

M 10, 14, 15, 16 
MM 14, 15, 16 

S 14, 15, 16 
LTS 5, 14, 15, 16 

 
Table 2. Summary of influential points using Longley data. 

Diag Est.  0β  1β  2β  3β  4β  5β  6β  RMSE IP 

D 

OLS 
All Data −3.5E6 

8.9E5 
15.06 
84.92 

−0.04 
0.03 

−0.05 
0.23 

−2.02 
0.49 

−1.03 
0.21 

1829.2 
455.48 304.85 5, 16, 4, 

10, 15 WIP Sample size problem 

M 
All Data −3.2E6 

1.2E6 
−2.87 
117.5 

−0.03 
0.05 

−0.09 
0.31 

−1.82 
0.68 

−0.98 
0.30 

1666.3 
630.08 161.32 5, 10, 

1, 16, 
4, 15, 6 WIP −4.8E6 

3.7E5 
−2.18 
14.54 

−0.06 
0.01 

−0.08 
0.06 

−2.39 
0.14 

−1.25 
0.07 

2533.8 
190.29 20.00 

MM 
All Data −3.4E6 

9.7E5 
9.77 
89.53 

−0.03 
0.04 

−0.06 
0.24 

−1.97 
0.52 

−1.02 
0.23 

1790.9 
495.72 361.64 5, 16, 4, 

10, 15 WIP Sample size problem 

S 
All Data −3.3E6 

1.1E6 
5.98 
96.08 

−0.03 
0.04 

−0.07 
0.26 

−1.93 
0.56 

−1.01 
0.56 

1757.4 
542.27 334.25 5, 16, 4, 

10, 15 WIP Sample size problem 

LTS 
All Data −5E6 

1.1E6 
31.61 
75.98 

−0.08 
0.04 

0.17 
0.23 

−2.70 
0.57 

−1.26 
0.23 

2583.6 
575.46 270.87 5, 4, 16, 

15, 10 WIP Sample size problem 

DFFITS 

OLS All Data −3.5E6 
8.9E5 

15.06 
84.92 

−0.04 
0.03 

−0.05 
0.23 

−2.02 
0.49 

−1.03 
0.21 

1829.2 
455.48 304.85 5, 16, 4, 

10, 15 
 WIP Sample size problem  

M All Data −3.2E6 
1.2E6 

−2.87 
117.5 

−0.03 
0.05 

−0.09 
0.31 

−1.82 
0.68 

−0.98 
0.30 

1666.3 
630.08 161.32 5, 10, 16, 

15, 6, 2  WIP −4.9E6 
9.9E5 

−11.22 
4.15 

−0.07 
0.00 

−0.04 
0.02 

−2.45 
0.04 

−1.36 
0.02 

2587.03 
50.78 6.42 

MM All Data −3.4E6 
9.7E5 

9.77 
89.53 

−0.03 
0.04 

−0.06 
0.24 

−1.97 
0.52 

−1.02 
0.23 

1790.9 
495.72 361.64 5, 10, 16, 

15, 1, 6, 2  WIP Sample size problem 

S All Data −3.3E6 
1.1E6 

5.98 
96.08 

−0.03 
0.04 

−0.07 
0.26 

−1.93 
0.56 

−1.01 
0.56 

1757.4 
542.27 334.25 5, 16, 

10, 4, 15  WIP Sample size problem 

LTS All Data −5E6 
1.1E6 

31.61 
75.98 

−0.08 
0.04 

0.17 
0.23 

−2.70 
0.57 

−1.26 
0.23 

2583.6 
575.46 270.87 5, 4, 16, 

15, 10  WIP Sample size problem 

DFBETA
S 

OLS All Data −3.5E6 
8.9E5 

15.06 
84.92 

−0.04 
0.03 

−0.05 
0.23 

−2.02 
0.49 

−1.03 
0.21 

1829.2 
455.48 304.85 

5, 10 
 WIP −4.0E6 

1.1E6 
44.57 
66.28 

−0.06 
0.04 

0.15 
0.20 

−2.32 
0.53 

−1.10 
0.21 

2082.8 
564.37 235.03 

M All Data −3.2E6 
1.2E6 

−2.87 
117.5 

−0.03 
0.05 

−0.09 
0.31 

−1.82 
0.68 

−0.98 
0.30 

1666.3 
630.08 161.32 5, 16, 

15, 6  WIP −6.2E6 
1.2E6 

−43.17 
53.73 

−0.09 
0.04 

−0.01 
0.24 

−2.91 
0.53 

−1.52 
0.24 

3247.1 
630.06 145.53 

MM All Data −3.4E6 
9.7E5 

9.77 
89.53 

−0.03 
0.04 

−0.06 
0.24 

−1.97 
0.52 

−1.02 
0.23 

1790.9 
495.72 361.64 

5 
 WIP −4.8E6 

1.2E6 
12.85 
80.43 

−0.08 
0.04 

0.11 
0.24 

−2.58 
0.59 

−1.24 
0.24 

2515.8 
604.62  

S All Data −3.3E6 
1.1E6 

5.98 
96.08 

−0.03 
0.04 

−0.07 
0.26 

−1.93 
0.56 

−1.01 
0.56 

1757.4 
542.27 334.25 

5 
 WIP −4.8E6 

1.2E6 
6.88 
81.74 

−0.07 
0.04 

0.09 
0.25 

−2.55 
0.60 

−1.24 
0.24 

2508.1 
611.66  

LTS All Data −5E6 
1.1E6 

31.61 
75.98 

−0.08 
0.04 

0.17 
0.23 

−2.70 
0.57 

−1.26 
0.23 

2583.6 
575.46 270.87 

10, 16 
 WIP Sample size problem 

WIP: regression estimates after removing influential points. IP: influential points. 
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16, 4, 15 and 6 as influential. The points identified by Cook’s D based on MM, S and LTS estimators are not 
different from the points identified by OLS. Though with different root mean square error. The root mean square 
error is not too different. 

The influential points identified by DFFITS based on OLS is not different from the cases identified using 
Cook’s D. Also, the cases identified by DFFITS based on S and LTS estimators respectively are not different 
from the points identified by their respective Cook’s D. The only exception is that DFFITS based on MM identi-
fied more cases (5, 10, 16, 15, 1, 6, and 2) than its Cook’s D. The robust version of the DFFITS statistics based 
on the M estimator identified cases 5, 10, 16, 15, 1, 6 and 2 as influential. 

From all the influential points identified by Cook’s D and DFFITS statistics respectively, the observations en-
closed in parenthesis are reported to influence the regression coefficients. DFBETAS based on OLS (5, 10), 
DFBETAS based on M (5, 16, 15, 6), DFBETAS based on MM (5), DFBETAS based on S (5), DFBETAS 
based on LTS (10, 16). Cases identified by MM and S estimator are the same. 

Having removed the influential cases, it can observed that the M estimator is most efficient (RMSED = 20.00, 
RMSEDFFITS = 6.42, RMSEDFBETAS = 145.53). However, MM, S and LTS estimators could not provide results 
probably because of small sample size (n = 16). More so, MM and S are modified M estimator. 

3.2. Application to Scottish Hills Data 
Table 3 and Table 4 provide the summary of results of the application of robust diagnostics measures to the 
Scottish Hills data. 

From Table 3, robust diagnostics based on OLS revealed that cases 7, 18, 31, 33, 35 are outliers. Robust di-
agnostics based on the robust estimators (M, MM, LTS and S estimators) revealed that cases 7, 11, 17, 18, 31, 
33, 35 are outliers. The influential points from these outliers were then identified in Table 4. 

From Table 4, Cook’s D based on OLS revealed that cases 7, 11, 18 (in this order) were the most influential 
cases. The robust version of the Cook’s D statistics based on the M estimator identified cases 7, 31, 33 and 35 as 
influential. The points identified by Cook’s D based on MM, S and LTS estimators are the same but with dif-
ferent root mean square error. 

DFFITS based on OLS revealed that cases 7, 18 (in this order) were the most influential cases. Case 11 iden-
tified by Cook’s D was not identified. Also, the cases identified by DFFITS based on MM, S and LTS estima-
tors respectively are the same with the cases identified by their respective Cook’s D. 

From all the influential points identified by Cook’s D and DFFITS statistics respectively, DFBETAS based on 
OLS revealed that cases 7 and 18 affect the regression coefficients. The robust DFBETAS measures based on M, 
MM, S and LTS revealed that none of the influential points identified by DFFITS and Cook’s affect the regres-
sion coefficients. It is concluded that the diagnostics measure computed using OLS is not reliable. For this data 
set, the diagnostic measures based on M estimator identified more influential points than other robust estimators. 
This might be because the RMSE is smaller than other considered estimators. However, MM, S and LTS esti-
mators provided similar results. 

Having removed the influential cases, it can observed that the M estimator is most efficient (RMSED = 274.31, 
RMSEDFFITS = 274.31, RMSEDFBETAS = 286.87). 

3.3. Application to Hussein Data 
Table 5 and Table 6 provide the summary of results of the application of robust diagnostics measures to Hus-
sein data. 
 

Table 3. Summary of outlier results using Scottish Hills data. 

Estimators Outliers 

OLS 7, 18, 31, 33, 35 

M 7, 11, 17, 18, 31, 33, 35 

MM 7, 11, 17, 18, 31, 33, 35 

S 7, 11, 17, 18, 31, 33, 35 

LTS 7, 11, 17, 18, 31, 33, 35 
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Table 4. Summary of influential points using Scottish Hills data. 

Diagnostic measures Estimators Nature of data analysis 0β  1β  2β  RMSE Influential points 

D 

OLS 
All Data −539.48 

(258.16) 
373.07 
(36.07) 

0.66 
(0.12) 880.52 

7, 11, 18 
Without Influential −642.98 

(128.83) 
410.25 
(28.01) 

0.46 
(0.09) 368.56 

M 
All Data −487.21 

(89.26) 
398.29 
(12.47) 

0.39 
(0.04) 286.87 

7, 31, 33, 35 
Without Influential −452.02 

(112.35) 
396.46 
(13.32) 

0.37 
(0.07) 274.31 

MM 
All Data −484.79 

(97.50) 
398.40 
(12.09) 

0.39 
(0.06) 330.87 

7, 18, 33 
Without Influential −482.56 

(100.33) 
398.53 
(12.33) 

0.3854 
(0.06) 291.54 

S 
All Data −483.82 

(98.71) 
398.45 
(12.19) 

0.39 
(0.06) 366.10 

7, 18, 33 
Without Influential −479.53 

(108.50) 
398.84 
(13.11) 

0.38 
(0.06) 286.85 

LTS 
All Data −493.80 

(93.16) 
398.09 
(11.92) 

0.40 
(0.05) 314.26 

7, 18, 33 
Without Influential −467.57 

(107.70) 
388.59 
(22.33) 

0.4160 
(0.07) 284.72 

DFFITS 

OLS All Data −539.48 
(258.16) 

373.07 
(36.07) 

0.66 
(0.12) 880.52 

7, 18 
 WIP −621.67 

(113.86) 
401.52 
(15.26) 

0.48 
(0.06) 363.23 

M All Data −487.21 
(89.26) 

398.29 
(12.47) 

0.39 
(0.04) 286.87 

7, 31, 33, 
35 

 WIP −452.02 
(112.35) 

396.46 
(13.32) 

0.37 
(0.07) 274.31 

MM All Data −484.79 
(97.50) 

398.40 
(12.09) 

0.39 
(0.06) 330.87 

7, 18, 33 
 WIP −482.56 

100.33 
398.53 
12.33 

0.39 
0.06 291.54 

S All Data −483.82 
(98.71) 

398.45 
(12.19) 

0.39 
(0.06) 366.10 

7, 18, 33 
 WIP −479.5 

(108.50) 
398.84 
(13.11) 

0.38 
(0.06) 286.85 

LTS All Data −493.80 
(93.16) 

398.09 
(11.92) 

0.40 
(0.05) 314.26 

7, 18, 33 
 WIP −467.57 

(107.70) 
388.60 
22.33 

0.42 
(0.07) 286.83 

DFBETAS 

OLS All Data −539.48 
(258.16) 

373.07 
(36.07) 

0.66 
(0.12) 880.52 

7, 18 
 WIP −621.67 

(113.86) 
401.52 
(15.26) 

0.48 
(0.06) 363.23 

M All Data −487.21 
(89.26) 

398.29 
(12.47) 

0.39 
(0.04) 286.87 

NIL 
 WIP −487.21 

(89.26) 
398.29 
(12.47) 

0.39 
(0.04) 286.87 

MM All Data −484.79 
(97.50) 

398.40 
(12.09) 

0.39 
(0.06) 330.87 

NIL 
 WIP −484.79 

(97.50) 
398.40 
(12.09) 

0.39 
(0.06) 330.87 

S All Data −483.82 
(98.71) 

398.45 
(12.19) 

0.39 
(0.06) 366.10 

NIL 
 WIP −483.82 

(98.71) 
398.45 
(12.19) 

0.39 
(0.06) 366.10 

LTS All Data −493.80 
(93.16) 

398.09 
(11.92) 

0.40 
(0.05) 283.12 

18 
 WIP −493.80 

(93.16) 
398.09 
(11.92) 

0.40 
(0.05) 283.12 
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Table 5. Summary of outlier results using Hussein data. 

Estimators Outliers 

OLS 15, 16, 20, 21, 30, 31 

M 12, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31 

MM 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31 

S 12, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31 

LTS 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31 

 
Table 6. Summary of influential points using Hussein data. 

Diagnostic measures Estimators Nature of data analysis 0β  1β  2β  3β  RMSE Influential points 

Cook’s D 

OLS 
All Data 208.89 

(42.99) 
0.61 

(0.65) 
1.26 

(0.27) 
−1.22 
(1.50) 144.48 

15, 16, 31, 
30, 20 

WIP 139.97 
(1.52) 

1.52 
(0.55) 

0.87 
(0.32) 

−0.77 
(1.44) 70.22 

M 
All Data 138.83 

(21.23) 
1.34 

(0.32) 
0.99 

(0.13) 
−1.02 
(0.74) 67.50 

30, 31, 16, 
21, 14 

WIP 140.10 
(19.85) 

1.11 
(0.34) 

1.05 
(0.13) 

−0.65 
(0.72) 52.08 

MM 
All Data 143.22 

(15.11) 
0.07 

(0.22) 
2.31 

(0.145 
−5.63 
(0.69) 62.80 15, 30, 31, 

14, 12, 13, 
11, 9, 1, 3, 

10, 18 WIP 88.96 
(18.78) 

1.31 
(0.49) 

1.19 
(0.42) 

−2.06 
(1.30) 19.34 

S 
All Data 135.64 

(21.83) 
1.35 

(0.33) 
0.99 

(0.15) 
−1.04 
(0.70) 91.94 

30, 31, 16, 
21 

WIP 135.20 
(22.85) 

1.15 
(0.37) 

1.03 
(0.14) 

−0.66 
(0.76) 64.71 

 LTS 
All Data 147.63 

(14.59) 
0.08 

(0.22) 
2.29 

(0.14) 
−5.61 
(0.69) 44.50 15, 30, 31, 

12, 14, 13, 
20, 11 WIP 124.52 

(10.79) 
0.47 

(0.26) 
2.11 

(0.19) 
−5.52 
(0.82) 29.75 

DFFITS 

OLS All Data 208.89 
(42.99) 

0.61 
(0.65) 

1.26 
(0.27) 

−1.22 
(1.50) 144.48 15, 16, 31, 

30, 20 

 WIP 139.97 
(1.52) 

1.52 
(0.55) 

0.87 
(0.32) 

−0.77 
(1.44) 70.22  

M All Data 138.83 
(21.23) 

1.34 
(0.32) 

0.99 
(0.13) 

−1.02 
(0.74) 67.50 

30, 31, 36 
 WIP 134.80 

(21.38) 
1.35 

(0.34) 
0.99 

(0.15) 
−1.046 
(0.71) 55.85 

MM All Data 143.22 
(15.11) 

0.07 
(0.22) 

2.31 
(0.145 

−5.63 
(0.69) 62.80 31, 15, 30, 

14, 12, 13, 
11, 9  WIP 81.26 

(19.93) 
1.46 

(0.57) 
1.08 

(0.49) 
−1.81 
(1.50) 30.20 

S All Data 135.64 
(21.83) 

1.35 
(0.33) 

0.99 
(0.15) 

−1.04 
(0.70) 91.94 

30, 31, 16 
 WIP 121.652 

(22.05) 
1.43 

(0.33) 
0.97 

(0.14) 
−1.11 
(0.67) 66.48 

LTS All Data 147.63 
(14.59) 

0.08 
(0.22) 

2.29 
(0.14) 

−5.61 
(0.69) 44.50 

15, 30, 31, 
12, 14, 13 

 WIP 130.77 
(10.82) 

0.05 
(0.15) 

2.333 
(0.10) 

−5.70 
(0.48) 31.23 
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Continued 

DFBETAS 

OLS All Data 208.89 
(42.99) 

0.61 
(0.65) 

1.26 
(0.27) 

−1.22 
(1.50) 144.48 

15, 16 
 WIP 181.85 

(45.22) 
1.52 

(0.86) 
0.65 

(0.60) 
−0.00 
(2.27) 134.01 

M All Data 138.83 
(21.23) 

1.34 
(0.32) 

0.99 
(0.134) 

−1.02 
(0.74) 67.50 

NIL 
 WIP 138.83 

(21.23) 
1.34 

(0.32) 
0.99 

(0.134) 
−1.02 
(0.74) 67.50 

MM All Data 143.22 
(15.11) 

0.07 
(0.22) 

2.31 
(0.145 

−5.63 
(0.69) 62.80 

NIL 
 WIP 143.22 

(15.11) 
0.07 

(0.22) 
2.31 

(0.145 
−5.63 
(0.69) 62.80 

S All Data 135.64 
(21.83) 

1.35 
(0.33) 

0.99 
(0.15) 

−1.04 
(0.70) 91.94 

NIL 
 WIP 135.64 

(21.83) 
1.35 

(0.33) 
0.99 

(0.15) 
−1.04 
(0.70) 91.94 

LTS All Data 147.63 
(14.59) 

0.08 
(0.22) 

2.29 
(0.14) 

−5.61 
(0.69) 44.50 

NIL 
 WIP 147.63 

(14.59) 
0.08 

(0.22) 
2.29 

(0.14) 
−5.61 
(0.69) 44.50 

 
From Table 5, robust diagnostics based on OLS revealed that cases 15, 16, 20, 21, 30, 31 are outliers. Robust 

diagnostics based on M and S estimators revealed that cases 12, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31 are outliers. 
Robust diagnostics based on MM and LTS estimators revealed that cases 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 
30, 31 are outliers. The influential points from these outliers were then identified in Table 6. 

From Table 6, Cook’s D based on OLS revealed that cases 15, 16, 31, 30, and 20 (in this order) were the most 
influential cases. The robust version of the Cook’s D statistics based on the M estimator identified cases 30, 31, 
16, 21 and 14 as influential. The robust version of the Cook’s D statistics based on the MM estimator identified 
cases 15, 30, 31, 14, 12, 13, 11, 9, 1, 3, 10 and 18 as influential. The robust version of the Cook’s D statistics 
based on the S estimator identified cases 30, 31, 16 and 21. The robust version of the Cook’s D statistics based 
on the LTS estimator identified cases 15, 30, 31, 12, 14, 13, 20 and 11 as influential. 

The cases identified by DFFITS based on OLS is not different from the ones identified using Cook’s D. The 
cases identified by DFFITS based on M and S estimators are 30, 31 and 36. The robust version of the DFFITS 
statistics based on the MM estimator identified cases 31, 15, 30, 14, 12, 13, 11 and 9 as influential. The robust 
version of the DFFITS statistics based on LTS estimator identified cases 15, 30, 31, 12, 14 and 13 as influential. 

From all the influential points identified by Cook’s D and DFFITS statistics respectively, DFBETAS based on 
OLS revealed that cases 15 and 16 affect the regression coefficients. The robust DFBETAS measures based on 
M, MM, S and LTS revealed that none of the influential points identified by DFFITS and Cook’s affected the 
regression coefficients. 

It is concluded that the diagnostics measure computed using OLS is not reliable. For this data set, the diag-
nostic measures based on MM estimator identified more influential points than other robust estimators. This 
might be because the RMSE is smaller than other considered estimators. 

4. Conclusions 
In this paper, it was established that a point identified as outliers is not necessarily influential. In the application 
to Longley data, more influential points than outliers were identified; this might be because the Longley data 
suffers both multicollinearity and outlier problem. Some robust version of Cook’s distance, Welsch-Kuh dis-
tance (DFFITS) and DFBETAS are proposed to measure influential points. Diagnostics measures based on OLS 
do not give reliable estimates as compared to other estimators. It suffered more from swamping and masking ef-
fect. The performance of the robust version of the influential statistic is largely dependent on the root mean 
square error. The performances of the Cook’s D and the DFFITS measure are not too different except for some 
few cases. Inflated standard error is reported in this study as one of the consequence of outliers. It is observed 
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that root mean square error value reduces as the influential points are identified and removed. The DFBETAS 
shows that not all cases reported to be influential exert undue influence on the regression coefficients. The di-
agnostic measures based on the robust estimators perform better than OLS estimator when the influential points 
are removed or not. Also, the performance of the proposed robust diagnostics measure based on MM performs 
better than that of M estimator in application to Hussein data. 

Finally, the performances of the proposed robust diagnostics measured based on MM and M estimator are 
generally more efficient based on the applied data. 
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