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Abstract 
In this paper, we propose the double-penalized quantile regression estimators in partially linear 
models. An iterative algorithm is proposed for solving the proposed optimization problem. Some 
numerical examples illustrate that the finite sample performances of proposed method perform 
better than the least squares based method with regard to the non-causal selection rate (NSR) and 
the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the 
proposed methodology to analyze the ragweed pollen level dataset. 
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1. Introduction 
Since semiparametric regression models combine both parametric and nonparametric components, they are 
much more flexible than the linear regression model, and are easier interpretation of the effect of each variable 
than completely nonparametric regressions. Therefore, semiparametric regression models are very popular mod-
els in practical applications. In this paper, we consider a partially linear model 

( )T ,Y g Z= + +X β                                    (1) 

where β  is a p-dimensional unknown parameter vector with its true value 0β , ( )g ⋅  is a twice-differentiable 
unknown smooth function,   is independent of X and is a random error satisfying ( ), 0E Z =X . Since [1] 
first applied the partially linear model to study the relationship between weather and electricity sales, this model 
had received a considerable amount of research in the past several decades. 

In practice, many potential explanatory variables should be involved in this model, but the number of impor-
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tant ones is usually relatively small. Therefore, selection of important explanatory variables is often one of the 
most important goals in the real data analysis. In this paper, we are interested in automatic selection, and estima-
tion for parametric components, and treat ( )g ⋅  as a nuisance effect. There are many authors developed several 
approaches in the literature. For example, in the kernel smoothing framework, [2] first extended the penalized 
least squares criterion to partially linear models. [3] introduced a class of sieve estimators using a penalized least 
squares technique for semiparametric regression models. [4] studied variable selection for semiparametric re-
gression models. [5] considered variable selection for partially linear models when the covariates were measured 
with additive errors. [6] combined the ideas of profiling and adaptive Elastic-Net [7] to select the important va-
riables in X. In the framework of spline smoothing, [8] achieved sparsity in the linear part by using the SCAD- 
penalty [9] for partially linear models for high dimensional data, but the nonparametric function was estimated 
by the polynomial regression splines. [10] applied a shrinkage penalty on parametric components to obtain the 
significant variables and used the smoothing spline to estimate the nonparametric component. 

It is very important to note that many of those methods are closely related to the classical least squares me-
thod. It is well known that the least squares method is not robust and can produce large bias when there are out-
liers in the dataset. Therefore, the outliers can give rise to serious problems for the least squares based methods 
in variable selection. In this article, we propose the double-penalized quantile regression estimators. Based on 
the quantile regression loss function (check function), we apply a shrinkage penalty for parametric parts to yield 
the significant variables, and use the smoothing spline to estimate the nonparametric component. Simulation 
studies illustrate that the proposed method can achieve a consistent variable selection when there are outliers in 
the dataset or the error term follows a heavy-tailed distribution. 

The rest of this paper is organized as follows. In Section 2, we first introduce the double-penalized quantile 
regression estimators in a partially linear regression model, and then propose an iterative algorithm to solve the 
proposed optimization problem. In Section 3, simulation studies are conducted to compare the finite-sample 
performance of the existing and proposed methods. In Section 4, we apply the proposed method to analyze a real 
data analysis. Finally, we conclude with a few remarks in Section 5. 

2. Methodology and Main Results 
2.1. Double-Penalized Quantile Regression Estimators 
Suppose that ( )TT, , , 1, ,i i iY Z i n=X   satisfy a following partially linear regression model, 

( )T , 1, , .i i i iY g Z i n= + + =X β                             (2) 

Without loss of generality, we assume that [ ]0,1iZ ∈ , and ( )g t  is in the Sobolev space V, where V is de-
fined by 

( ) ( ){ }{ }1 2

0
: , are absolutely continuous, and d .V g t g g g t t′ ′′= < ∞∫  

To simultaneously achieve the selection of important variables and the estimation of the nonparametric func-
tion ( )g ⋅ , [10] proposed a double-penalized least squares (DPLS) estimators by minimizing 

( )( ) ( ){ } ( ){ } ( )2

2 1 2T 1
0

1 1

1, d .
2 2

pn

n i i i j
i j

nL g Y g Z g t t n pλ
λ

β
= =

′′⋅ = − − + +∑ ∑∫Xβ β  

where ( )2 jpλ β  is nonnegative and nondecreasing functions in jβ . Under some regular conditions, [10] 
proved that the proposed estimators could be as efficient as the oracle estimator. 

To our knowledge, the ordinary least squares (OLS) estimator is not robust. If there are outliers in the dataset 
or the error follows a heavy-tailed distribution, it can product the large bias. In contrast to the least squares me-
thod, quantile regression introduced by [11] serves as a robust alternative since the asymptotic properties of 
quantile regression estimator do not depend on the variance of the error. In the following, we introduce a 
double-penalized quantile regression (DPQR) in partially linear models. For 0 1τ< < , the DPQR estimators 
can be obtained by minimizing the following function, 

( )( ) ( ){ } ( ){ } ( )2

1 2T
1 0

1 1
, d ,

pn
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i j

Q g Y g Z g t t pτ λρ λ β
= =

′′⋅ = − − + +∑ ∑∫Xβ β               (3) 
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where ( ) ( )0t t tI tτρ τ= − < . 
Let ( ) ( )( )T

1 , , ng Z g Z=G   and the order statistics of a random sample { }1, , nZ Z  be

( ) ( ) ( )1 2 nZ Z Z< < <  and ( ) ( )1i i ih Z Z+= −  for 1, , 1i n= − . According to [12], we have 

( ){ }1 2 T
0

d ,g t t K′′ =∫ G G  

where K is an n n×  matrix given by 1 TK QR Q−= , Q is the ( )2n n× −  matrix of second differences, with 
entries 

1 1 1 1
1, 1 1 1,, , , for 2, , 1,j j j jj j j j j jq h q h h q h j n− − − −
− − − += = − − = = −  

0 for 2.ijq i j= − ≥  

R is a symmetric tridiagonal matrix of order ( )2n −  with elements ijr  

( )1
1 for 2, , 1,
3ii i ir h h i n−= + = −  

, 1 1,
1 for 2, , 2.
6i i i i ir r h i n+ += = = −  

Therefore, Equation (3) can be rewrote as 

( )( ) ( ){ } ( )2

T T
1

1 1
, .

pn

n i i i j
i j

Q g Y g Z K pτ λβ ρ λ β
= =

⋅ = − − + +∑ ∑X G Gβ                  (4) 

2.2. Algorithm 
To solve the optimization problem (4), we propose the following iterative algorithm. The estimation proce- 
dures are stated as follows: 

Step 1 Given ( ) ( )( )T
1

ˆ ˆ ˆ, ,n ng Z g Z=G  , obtaining the estimator ˆ
nβ  by minimizing the following objective 

function, 

( ){ } ( )2

T

1 1
ˆ .

pn

i i i j
i j

Y g Z pτ λρ β
= =

− − +∑ ∑X β  

Step 2 Given ˆ
nβ , obtaining ˆ

nG  by solving 

( ){ }T T
1

1

ˆmin .
n

i i n i
i

Y g Z Kτρ λ
=

 − − +  
∑

G
X G Gβ  

Step 3 Repeat Step 1 and Step 2 until convergence. 
Remark 1 In the above algorithm, we first obtain the initial estimators by minimizing the following objective 

function 

( ){ }2T T
1

1
.

n

i i i
i

Y g Z Kλ
=

− − +∑ X G Gβ                             (5) 

Let ( )
1

1
1B I Kλ λ −= + . Given β  and 1λ , we obtain ˆ

nG  by (5), 

( )1

Tˆ ,n Bλ= −G Y X β  

where ( )T
1, , nY Y=Y  , and ( )T

1, , n=X X X . We plug ˆ
nG  into (5), we have 

( ) ( ) ( ) ( )1 1 1 1
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−
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Finally, the estimator ˆ
nG  of nonparametric component is obtained as follows: 

( )1

Tˆ ˆ .n nBλ= −G Y X β  

Remark 2 Since the check function ( )τρ ⋅  is not smooth, we use the majorization-minimization (MM) algo-
rithm introduced by [13] to optimize Step 1 and Step 2. 

Advocated in [14], the check function ( )tτρ  can be approximated by its perturbation for some small 0> , 

( ) ( ) ( )log .
2

t t tτ τρ ρ= − + 
  

Furthermore, ( )tτρ
  can be majorized at ( )kt  by the following surrogate function given in [14], 

( )( ) ( ) ( )
21 4 2 .

4
k

k

tt t t c
t

τρ τ
 
 = + − +
 + 






 

The penalty functions can be approximated by the local quadratic approximation advocated in [15] 

( ) ( )( ) ( )( ) ( ){ } ( )( ) ( )
2 2 2

0 0 0 0 2 021 , for .
2j j j j j j j jp p pλ λ λβ β β β β β β β′≈ + − ≈  

The minimization problem in Step 1 and Step 2 is a quadratic function after above these approximations, and 
can be solved in closed form. In our implementation, we set 610−= . 

3. Simulation Study 
In this section, we conduct simulation studies to evaluate the finite-sample performance of the proposed estima-
tors. We simulate 100 data sets from the following model (6) with sample sizes 80,100,150n = . 

( )T
0 , 1, ,100.i i i iY g Z i= + + =X β                            (6) 

In this simulation, we choose ( )T
0 1,2,2,2,0,0,0,0=β , ( ) ( )sing z z= , Xi’s follows a 8-dimensional stan- 

dard normal distribution, and the error term follows the following two distributions: standard normal distribution 
( )( )0,1N , and standard Cauchy distribution. We consider 0.25,0.5,0.75τ = . Although the choice of penalized 

parameters λ1 and λ2 is very important, we take 1 2 log n nλ λ= =  in this paper. Meanwhile, we take the penal-  

ty function ( )2

2

2 , 1, ,j j njp j pλ β λ β β= =

 , where ( )T

1, ,n n npβ β=  

β  is a n -consistent estimator to  

0β . For example, we can use least squares estimator. 
We compare our proposed estimators (DPQR) with the DPLS estimators and Oracle estimator based on the 

quantile regression. In order to measure the finite-sample performance, for the parameteric component, we cal-
culate the non-causal selection rate (NSR) [9], the positive selection rate (PSR) [16] as well as the median of the 
model error (MME) advocated by [9], where the model error is defined as follows: 

( ) ( )T T
0 0

ˆ ˆ .n nME E  = − − XXβ β β β  

The simulation results are reported in Table 1 and Table 2. From Table 1, we can see that all these methods 
obtain the same PSR and NSR when the error term follows the standard normal distribution, but the DPLS esti-
mator yields smaller the MME than the DPQR estimator and Oracle estimator. Whereas, when the error follows 
a Cauchy distribution, we find from Table 2 that the MME of our proposed method is smaller than the DPLS 
method. In variable selection, the PSR is around 1 for all three methods. However, what distinguishes DPQR 
from DPLS is NSR. Indeed, the NSR of the DPQR estimator is as close 1 as that of the oracle estimator, while 
the NSR of the DPLS estimator is about 30%. This illustrates that our proposed method leads to a consistent va-
riable selection to errors with heavy tails. 

4. Real Data Application 
In this section, we illustrate our proposed double-penalized quantile regression method through application to 
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Table 1. Simulation results under normal error. 

n τ Method PSR NSR MME 
  DPQR 1.0000 1.0000 0.1175 
 0.25 DPLS 1.0000 1.0000 0.0489 
  Oracle 1.0000 1.0000 0.1231 
  DPQR 1.0000 1.0000 0.2753 

80 0.50 DPLS 1.0000 1.0000 0.0440 
  Oracle 1.0000 1.0000 0.2263 
  DPQR 1.0000 1.0000 0.2908 
 0.75 DPLS 1.0000 1.0000 0.0452 
  Oracle 1.0000 1.0000 0.3961 
  DPQR 1.0000 1.0000 0.0860 
 0.25 DPLS 1.0000 1.0000 0.0378 
  Oracle 1.0000 1.0000 0.0818 
  DPQR 1.0000 1.0000 0.2462 

100 0.50 DPLS 1.0000 1.0000 0.0385 
  Oracle 1.0000 1.0000 0.2792 
  DPQR 1.0000 1.0000 0.2838 
 0.75 DPLS 1.0000 1.0000 0.0357 
  Oracle 1.0000 1.0000 0.2343 
  DPQR 1.0000 1.0000 0.0607 
 0.25 DPLS 1.0000 1.0000 0.0233 
  Oracle 1.0000 1.0000 0.0665 
  DPQR 1.0000 1.0000 0.1990 

150 0.50 DPLS 1.0000 1.0000 0.0232 
  Oracle 1.0000 1.0000 0.1952 
  DPQR 1.0000 1.0000 0.2584 
 0.75 DPLS 1.0000 1.0000 0.0279 
  Oracle 1.0000 1.0000 0.2403 

 
Table 2. Simulation results under cauchy error. 

n τ Method PSR NSR MME 
  DPQR 1.0000 1.0000 0.2201 
 0.25 DPLS 0.9900 0.3575 8.4638 
  Oracle 1.0000 1.0000 0.2377 
  DPQR 1.0000 1.0000 0.3513 

80 0.50 DPLS 0.9925 0.3375 16.318 
  Oracle 1.0000 1.0000 0.3724 
  DPQR 1.0000 1.0000 0.4126 
 0.75 DPLS 0.9800 0.2900 12.773 
  Oracle 1.0000 1.0000 0.4961 
  DPQR 1.0000 1.0000 0.1671 
 0.25 DPLS 0.9975 0.2950 11.938 
  Oracle 1.0000 1.0000 0.1520 
  DPQR 1.0000 1.0000 0.3007 

100 0.50 DPLS 0.9925 0.3075 8.7854 
  Oracle 1.0000 1.0000 0.2822 
  DPQR 1.0000 1.0000 0.4061 
 0.75 DPLS 0.9950 0.2525 16.399 
  Oracle 1.0000 1.0000 0.4292 
  DPQR 1.0000 1.0000 0.1134 
 0.25 DPLS 0.9975 0.2150 18.382 
  Oracle 1.0000 1.0000 0.1281 
  DPQR 1.0000 1.0000 0.2996 

150 0.50 DPLS 0.9925 0.2675 11.863 
  Oracle 1.0000 1.0000 0.1885 
  DPQR 1.0000 1.0000 0.3409 
 0.75 DPLS 0.9975 0.2150 18.382 
  Oracle 1.0000 1.0000 0.3621 
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(a)                                                      (b) 

Figure 1. (a) Histogram of y and (b) y against day. 
 
Table 3. Estimated regression coefficients from the ragweed pollen level data. 

Estimator 1x  2x  3x  2
2x  2

3x  1 2x x  1 3x x  2 3x x  

DPLS 1.5567 0.1774 0.1640 0.0000 0.0000 0.0000 0.0000 0.0000 

DPQR 1.8086 −0.1948 −0.1368 0.0037 0.0069 0.0000 0.0000 0.0000 

 
the Ragweed Pollen Level data, which are collected in Kalamazoo, Michigan during the 1993 ragweed season. 
This dataset consists of 87 observations, and contains the following four variables: ragweed (the daily ragweed 
pollen level (grains/m3)), rain x1 (indicator of significant rain of the following day: 1 = at least 3 hours of steady 
or brief but intense rain, 0 = otherwise), temperature x2 (temperature of following day (degrees Fahrenheit)), 
wind speed x3 (wind speed forecast for following day (knots)), and day (day number in the current ragweed pol-
len season). The ragweed is the response variable, and the rest are the explanatory variables. 

The goal is to understand the effect of the explanatory variables on ragweed, and to obtain accurate models to 
predict the ragweed. According to [17], we take y ragweed= . Histogram of y in Figure 1(a) indicates that 
the response is rather skewed. Therefore, there are outliers in the response or the error follows a heavy-tailed 
distribution. In addition, we plot y against day in Figure 1(b). From Figure 1(b), we can find that there is a 
strong nonlinear relationship between y and the day number. As a consequence, a semiparametric regression 
model with a nonparametric baseline g (day) is very reasonable. In this paper, we add some quadratic and inte- 
raction terms, and consider a more complex semiparametric regression model. 

In the following, we apply the DPLS method and DPQR method to fit the semiparametric regression model. 
For the DPQR method, we take 0.5τ = . The results are summarized in Table 3. From Table 3, we find that 
there also exists a nonlinear relationship between y and temperature and between y and wind speed by the DPQR 
method. 

5. Discussion 
In this paper, we introduced a double-penalized quantile regression method in partially linear models. The merits 
of our proposed methodology were illustrated via simulation studies and a real data analysis. According to nu-
merical simulations, our proposed method could achieve a consistent variable selection when there were outliers 
in the dataset or the error followed a heavy-tailed distribution. 
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