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ABSTRACT 

The objective of this paper is to present a review of different calibration and classification methods for functional data 
in the context of chemometric applications. In chemometric, it is usual to measure certain parameters in terms of a set of 
spectrometric curves that are observed in a finite set of points (functional data). Although the predictor variable is 
clearly functional, this problem is usually solved by using multivariate calibration techniques that consider it as a finite 
set of variables associated with the observed points (wavelengths or times). But these explicative variables are highly 
correlated and it is therefore more informative to reconstruct first the true functional form of the predictor curves. Al- 
though it has been published in several articles related to the implementation of functional data analysis techniques in 
chemometric, their power to solve real problems is not yet well known. Because of this the extension of multivariate 
calibration techniques (linear regression, principal component regression and partial least squares) and classification 
methods (linear discriminant analysis and logistic regression) to the functional domain and some relevant chemometric 
applications are reviewed in this paper. 
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1. Introduction 

In chemometric it is usual to have functional data whose 
observations are curves observed at a finite set of points 
(longitudinal data). In Spectroscopy, for example, we have 
observations of the absorbance spectrum of chemicals 
that is a function of wavelength. Spectroscopy is a quick 
and non-destructive analytical technique commonly used 
to measure certain parameters of interest in terms of the 
absorbance spectrum. In pharmaceutical industry, it is us- 
ed in quality control processes to determine some vari- 
ables as, for example, the amount of active ingredient of 
a drug. In food industry the spectrum can be used to pre- 
dict the fatness of a piece of meat [1]. In medicine, fluo- 
rescence spectroscopy has been recently used for cervical 
pre-cancer diagnosis [2]. In other applications, the sam- 
ple curves are functions of time observed in a finite set of 
instants. In the food industry, for example, the interest 
may be to classify the quality of foods made with flour 
according to the curves of resistance of the dough in the 

baking process [3]. 
In all the examples mentioned above, the data are curv- 

es derived from the observation of a functional variable. 
To analyze such data which have been developed in recent 
years is a branch of statistics known as Functional Data 
Analysis, which emerged as a generalization of the tech- 
niques of multivariate data analysis to the case of func- 
tional data [4]. Relevant applications of FDA methodolo-
gies have been first developed in different fields as eco- 
nomy (stock quotes), environment (temperatures and pre- 
cipitations) and health sciences (degree of lupus and 
stress), among others [5]. Different nonparametric esti- 
mation approaches for the FDA methodologies has been 
developed last years [6]. Although the spectrum is clearly 
a functional variable, in spectroscopy there are common- 
ly used multivariate calibration techniques that consider 
it as a finite set of variables associated with the observed 
wavelengths. But these variables are affected by multi- 
collinearity because the spectrum is obtained as a sum of 
peaks of electromagnetic energy absorption by chemical 
substances (atoms, molecules...) so that the absorbances 
at two wavelengths close to each other are highly corre- 
lated. It is therefore more informative to consider the 
spectrum as a functional variable containing this depen- 
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dence structure. When working with functional data, there 
are two major problems. One is the large number of vari- 
ables available from discrete observation of the curves 
that in many cases exceed the sample size. The other is 
the high correlation between these variables (longitudinal 
data). 

To solve these problems it is necessary to use statisti- 
cal methods for dimension reduction such as functional 
principal component analysis (FPCA) [7]. The first step 
in FDA is to reconstruct the true functional form of the 
curves from discrete observations. The most common 
method is to assume that the sample curves belong to a 
finite space generated by basis functions and approxi- 
mate the basic coefficients by least square approximation, 
in the case of noisy observed data, or interpolation when 
not committed error in the measurement. Thus the func- 
tional linear model becomes a multiple linear model 
whose design matrix is a transformation of the matrix of 
basis coefficients. Different applications of this model 
with B-splines bases have been developed in spectrome- 
try showing improvement in the estimates when using 
functional modeling [8,9]. However, the design matrix of 
this linear model also tends to be affected by multicol- 
linearity and high dimension when the number of basic 
functions used in the approximation of the curves is high. 
To solve these problems the techniques of principal com- 
ponent regression (PCR) and partial least squares (PLS) 
have been generalized to the functional case [4,10,11]. 
More recently, methods based on introducing different 
types of spline penalization of the roughness of the func- 
tional parameter have been introduced for the case of 
noisy smoothed data and applied in chemometrics [12- 
15]. 

Another problem of interest in chemometrics is the 
classification of a set of curves in two or more different 
groups. Linear discriminant analysis (LDA) and logit mo- 
dels have also been generalized to the case of a functio- 
nal predictor. Different estimates of these models based 
on PCA and PLS have been considered for the successful 
implementation of these techniques [3,16-19]. The lector 
interested in a review of functional nonparametric meth- 
ods for solving the problems of regression and classifica- 
tion of curves, and as well as known applications in spec- 
troscopy , must be referred to [20]. 

The aim of this paper is to show the potential of the 
FDA to solve problems in the field of chemometrics, es- 
pecially in spectroscopy. To achieve this, an extensive li- 
terature review will be presented with some applications 
which show the good behavior of the functional method- 
ology. Some of the calculations that appear in the re- 
search reviewed in this paper were performed in Matlab, 
R or SPLUS making use of the functional data analysis 
toolboxes that can be downloaded from Professor Ram- 
say’s ftp-site (ftp://ego.psych.mcgill.ca/pub/ramsay/fdafuns/). 

In many others the authors developed their own software. 
The contents are distributed in five Sections including 

the introduction. Section 2 is devoted to the description 
of different functional chemometrics data sets analyzed 
by using functional data analysis methodologies, the ma- 
jority of which are in the field of spectroscopy. In Sec- 
tions 3 and 4, a summary of the most used FDA methods 
in chemometrics applications is presented. The functional 
linear model, functional principal component regression 
and functional partial least squares regression on basis 
expansion of sample curves are described in Section 3. 
Parametric methods for curve classification as functional 
logit regression, linear discriminat analysis and their es- 
timation based on functional principal component analy- 
sis and functional PLS are presented in Section 4. Finally, 
a Section of conclusions and a list of important refer- 
ences related with the application of FDA methods in 
chemometrics are also included. 

2. Examples of Functional Data Sets in 
Chemometrics 

Functional data analysis arises mainly to address prob- 
lems relating to time-like curves. However, in literature 
you can find numerous applications with spectrometric 
curves in the field of chemometrics. Spectrometry invol- 
ves analyzing the spectrum of a substance measured at 
different wavelengths and defined as a sum of absorption 
peaks caused by the different chemical components pre- 
sent in the sample under study. 

Absorption spectroscopy is employed as an analytical 
chemistry tool to determine the presence of a particular 
substance in a sample and, in many cases, to quantify the 
amount of the substance present. Infrared and ultravio- 
let-visible spectroscopy are particularly common in ana- 
lytical applications. The utility of absorption spectros- 
copy in chemical analysis is because of its specificity and 
its quantitative nature. The specificity of absorption spe- 
ctra allows compounds to be distinguished from one an- 
other in a mixture. The specificity also allows unknown 
samples to be identified by comparing a measured spec- 
trum with a library of reference spectra. Functional sta- 
tistical methods that take into account the continuous 
nature of the spectrum can be used to predict the amount 
of a substance of interest in the studied sample (functio- 
nal regression) or to classify a set of spectrum curves in 
different groups (functional discrimination). In what fol- 
lows we present different examples of chemometrics ap- 
plications developed to get any of these objectives. 

2.1. Predicting the Fatness from the Spectrum of 
Meat 

This set of spectrometric data has been analyzed, among 
others, by [1,11,21]. The data are 215 curves of NIR 
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tional approaches [11]. spectra (recorded on a Tecator Infratec Food and Feed 
Analyzer by the near infrared transmission principle) that 
have been measured from wavelengths 850   to 

1050 nm   for 215 fined chopped pieces of pure meat. 
These curves will be denoted by 

    : 850,1050ix      

The second problem related with this data set was to 
classify pieces of meat in two groups 1  and 2G . The 
pieces of meat with more than 20% of fatness belong to 
the first group and those that contain less than 20% of 
fatness belong to the second. This problem consists of 
predicting a categorical response variable  with cate- 
gories 1  and 2  that represents different groups of 
spectra from the functional predictor 

G

G
G G

X  associated to 
the observed NIR spectra. A nonparametric curves discri- 
mination method was applied in [21] to solve this super- 
vised curves classification problem. The functional PLS 
approach for functional linear discriminant analysis in- 
troduced in [3] and B-spline expansions of the spectra 
have been applied in [11] with the same objective. Both 
functional approaches provide good error rates in terms 
of misclassification error compared to other existing clas- 
sification methods as CART (classification and regres- 
sion tree procedure) and multivariate PLS, among others. 

and can be seen in Figure 1. In addition to the spectrum 
we have the percentage of fatness that will be denoted by 

 for each piece of meat. iy
Two different problems were solved in these publica- 

tions by using functional methodologies. The first was to 
determine the relationship between the spectrum (func- 
tional predictor) and the fatness (scalar response) by es- 
timating a functional regression model, and to predict the 
amount of fat of a new piece of meat from its NIR spec- 
trum. Functional PLS regression on basis expansion of 
the sampled spectra has been recently introduced in [11] 
to solve this problem that was previously studied in [1] 
by using functional nonparametric regression methods. 
The prediction performance of functional PLS and func- 
tional PCR has been studied on different simulated and 
spectrometric data sets and the results compared with 
those provided by discrete PLS and discrete PCR on the 
vectors of the observed values of the sample curves. The 
conclusion was that functional PLS provides better esti- 
mations of the parameter function than do functional PCR 
and similar predictions. In addition, it was shown that the 
predictive ability of discrete and functional models is al- 
most the same. However, the ability of discrete appro- 
aches to provide an accurate estimation of the functional 
parameter is much lower in practice than that of func- 

2.2. Classification of Biscuit Quality from the 
Resistance of Dough 

This is other example of curves classification in food 
industry. The quality of a biscuit depends essentially on 
the quality of the flour used to make it and the producer, 
Danone, aims to use only flours that guarantee good pro- 
duct quality. 

We have a set of 115 different flours. For a given flour, 
the resistance of dough is recorded every two seconds 
during the first 480 seconds of the kneading process. The 
results is a set of 115 curves of resistance observed at 

 

 

Figure 1. NIR spectra of 215 pieces of meat as functions of wavelenghts.  
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240 equally spaced time points in the interval  0, 480  
that will be denoted by  

  : 1, ,115; 0, , 240 .i jx t i j   



 

In this case the functional predictor is not the spectrum 
but a function of time. After kneading, the dough is pro- 
cessed to obtain biscuits. For each flour, we have the 
quality (G) of the biscuits that may be Good  Ad- 
justable  or Bad  In the sample we have 50 
biscuits of good quality, 25 adjustable biscuits and 40 
bad biscuits (see Figure 2). 

 1 ,G
 2G  3 .G

Based on the equivalence between LDA and multiple 
linear regression, functional PLS regression was used in 
[3] to estimate the discriminant function and classify the 
biscuits on the basis of their dough resistance curves. B- 
spline approximation of the sample curves were used to 
reduced functional PLS and functional PCR to multivari- 
ate PLS and multivariate PCR, respectively, so that the 
discriminant function was easily estimated [11]. Smoo- 
thed versions of functional LDA-PLS and principal com- 
ponent logit regression (FPCLoR) based on P-spline ap- 
proximation of the sample curves with B-spline basis 
were recently introduced and applied to this data set to 
solve the problem of lack of smoothness of the estimated 
functional parameters [22]. A third method based on 
componentwise logit classification was also applied for 
comparison purposes [23]. From the statistical analysis 
of the results, it was concluded that the proposed func- 
tional methodologies (FPCLoR and LDA-FPLS) have a 
high classification ability with LDA-FPLS being the one 
that gives the highest area under ROC curve. The advan- 
tage of FPCLoR is that allows not only to solve the clas- 
sification problem but also to estimate the relationship 
between the response variable (quality of cookies) and 
the predictor variable (resistance of dough during the 
kneading process). Several interpretations of the functio- 
nal parameter based on odds ratios and principal compo- 
nents were proposed by concluding that good cookies 
have greater resistance of the dough in the late period 
and less resistance in the early period. The main features 
of the curve of resistance of good cookies were also 

identified by interpreting the first principal component 
curve [22]. 

2.3. Counting Data of Radioactive Isotopos 

In the recent paper [24], the radioactivity of 226Ra and 
137Cs is studied modeling both of them as a doubly sto- 
chastic Poisson process. This means that their intensities 
are also stochastic processes. Measurements were carried 
out with IMPO MC24E event counter, attached to a Gei- 
ger-Mullar probe supplied by Fredeiksen (Denmark). 
Every 10 seconds the count number has been recorded by 
the Datalyse software to reach 1000 data and a total of 60 
of these series were recorded for each isotope. For both 
isotopes, the intensity process was estimated by means of 
functional PCA so that a stochastic estimation in terms of 
an expansion of uncorrelated random variables was de- 
rived without assuming any previous model for the inten- 
sity or its moments. A hypothesis test for assessing the 
coherence of new observed data with this continuous mo- 
deling of the intensity was also developed. This result 
provides a new solution to the problem of calibrating a 
counting device. 

2.4. Other Spectrometric Applications 

There are many other applications of FDA in spectrome- 
try. 

Three different instruments at Cargill Inc. (m5, mp5 
and mp6 spectrometers) were used to generate the NIR 
spectra of 80 corn samples (see Figure 3). The spectrum 
was measured at 2 nm intervals in the wavelength do- 
main  1100,2498  (700 observations). These NIR spec- 
tra have been used in [25] for predicting oil content of 
the corn samples (multivariate calibration). 

In [26] the aim is to predict the composition (fat, our, 
sugar, and water content) of biscuit dough pieces using 
as predictors the NIR reflectance spectrum of dough 
pieces at 256 equally spaced wavelengths. This regres- 
sion problem was tackled by calculating the wavelet tran- 
sforms of the discrete curves and applying a Bayesian va- 
riable selection method using mixture priors to the mul- 
tivariate regression of the four responses on wavelet co- 
efficients. 

 

 

Figure 2. Curves of resistance of dough for 115 different flours.     
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Functional versions of PCR and PLS, which combine 

both using B-splines and roughness penalties, are consi- 
dered in [27] to predict the response variables moisture 
content and protein content from NIR spectra of 100 
wheat samples, measured in 2-nm intervals from 1.100 
nm to 2.500 nm. 

Functional linear regression and functional ANOVA 
on B-spline approximation of the spectrum are applied in 
[8] on different spectrometric data sets. In a first example, 
420 NIR spectra from hog manure samples ranging from 
426 to 1686 nm were used as predictor of the dry matter 
content (see Figure 4(a)). Different types of spline smoo- 
thing of this functional data set were compared in [13]. In 
a second example, the aim is to predict the cetane num- 
ber of a sample of diesel from its NIR transmission spec- 
trum. The Diesel data set was measured by the Southwest 
Research Institute and consists of 246 NIR spectra of 246 
samples of diesel and their cetane number (see Figure 
4(b)). Two different P-spline penalties for estimating 
functional PCA were applied to the NIR spectra of diesel 
data [14]. In a third example, functional analysis of vari- 
ance (FANOVA) was applied to test the effect of ambi- 
ent temperature and sample temperature on the spectra. 
The experiment followed a full factorial design with spe- 
ctra from manure samples of four types of animals (dairy, 
beef, calf and hog), preserved at three temperatures (4, 

12, +20) and measured at three ambient temperatures (4, 
12, +20), having nine replicates, yielding 324 samples in 
total. The interpretation of the fitted FANOVA model 
revealed a significant effect of the ambient temperature 
on the intensity spectrum of manure measured using a 
diode array instrument. In words of the authors, this te- 
chnique could be a valuable tool for the investigation and 
improvement of the robustness of spectroscopic tech- 
niques. 

The results provided by functional linear regression 
and B-spline smoothing of the curves of spectrum were 
compared with those given by multivariate PLS regres- 
sion showing that the predictive power of both, functio- 
nal and discrete approaches, is similar. It was also obser- 
ved that simultaneous selection of the degree of smooth- 
ness (degree of B-splines) and the dimensionality reduc-
tion (number of basis functions) based on the cross-va- 
lidation prediction error may be suboptimal. 

In the next Section, we are going to present a review 
of the main results related with the functional data analy- 
sis methodologies applied in chemometrics. These can be 
classified in two main groups. First, functional regression 
whose objective is to predict a scalar response is variable 
from a functional predictor whose observations are curves. 
Second, classification of curves in the groups is defined 
by the categories of a categorical response variable. 

 

 

Figure 3. Curves of absorbance of 80 corn samples measured with three different spectrometers. 
 

 

Figure 4. Absorbance spectra for samples of hog manure and diesel. 
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res- 

3. Functional Calibra

Let us consider the problem of predicting a scalar 

tion 

ponse variable Y  from a functional predictor 

  : .X X t t T   

In spectrometry, usually represents some chemical 
va

Y  
ndriable of interest a  X  the NIR spectra (absorbance) 

of the analyzed component whose observations are really 
curves measured at a fine grid of wavelengths. In all the 
paper we will consider the usual case of a functional pre- 
dictor whose realizations belong to the space  2L T  of 
square integrable functions on .T  

In applications with real data we have a random sam- 
pl


e of pairs 

   , : ; 1, ,i ix t y t T i n    

that can be seen as realizations of the functional predictor 
X  and the response variable ,Y  respectively. The rela- 

nship between the function  predictor tio al X  and the 
scalar response Y  can be established from the functio- 
nal regression mo el 

y

d

i i iF x                   (1.1) 

where i  are independent random errors and F  is an 
operato hat must be estimated. By assuming linearity on 
the operator 

r t
F  we obtain the functional linear regres- 

sion model with scalar response [4] given by 

   d .i iT
y t x t t i                (1.2) 

If we do not assume any parametric form for ,F  the 
m

3.1. Functional Linear Regression 

nal linear 



odel 0.1 is known as functional nonparametric regres- 
sion model [6]. A review of the main results and spectro- 
scopy applications of this model appears in [20]. 

The estimation of the parameters of the functio
model 0.2 is an ill-posed problem because of the infinite 
dimension of the predictor space. In addition, we only 
have in practice discrete observations of each sample 
path at a finite set of knots 

  : 1, , , 1, , ,ij i ij ix x t j m i n     

that could even be unequally spaced and different for the 

g excessive local fluctuation in the 
es

sample individuals. 
A way of avoidin
timated parameter function would be to use a rough- 

ness penalty approach on basis expansion of the sample 
curves [4,13]. One of the most common solutions to 
solve this problem is to assume that both the sample cur- 
ves and the parameter function belong to a finite space 
generated by a basis of functions 

  , , K  : ; 1j t t T j   ,

so that they admit the following basis expa sions: n

       , .
K K

i ij j k k
1 1j k

x t t t t          
 

 (1.3) 

This way, the functional linear regression m
equivalent to the multiple linear model 

odel 0.2 is 

,Y A   1                 (1.4) 

 1, , nY y y ,    1,   , ,K    n K ijA     with 

and       d ,K K jk j kt t t      
 calibration problem turns into mu

T c-
tional tiv a-

so that the fun
l ariate calibr

le linear model. First, an appropriate basis must be 
se

A and PLS Based Solutions 

tor p  Functional principal components 

tion. 
Several problems are related to the estimation of this 

multip
lected taking into account the characteristics of the 

observed sample curves. In the case of absorbance spec-
tra analyzed in spectrometric applications, the use of a 
B-spline basis was shown to have some similarity with 
the physical origin of a spectrum as the result of light 
absorbance by molecular bonds. The main advantage of 
this functional reconstruction of spectra from discrete 
observations lies in its combination of dimensionality 
reduction (number of basis functions) and smoothing (de- 
gree of B-spline basis functions). Assuming some error 
in the measurements (noisy data), the basis coefficients 
of each sampled spectrum are usually obtained by least 
squares approximation (spline regression) on the observ- 
ed absorbance at different wavelengths [8]. Second, least 
squares estimation of the parameters of model 1.4 is usu- 
ally affected of multicollinearity because of the high cor- 
relation between the columns of its design matrix. On the 
other hand, the number of basis functions needed to get 
an accurate approximation of the sample curves could be 
higher than the sample size so that a reduction dimension 
methodology has to be used. Both problems, high multi- 
collinearity and high dimensionality, are usually solved 
by regressing the response variable on a set of orthogonal 
covariates as for example principal components or partial 
least squares components [11]. In the next Section we 
present the generalization of principal component regres- 
sion and partial least squares regression to the case of a 
functional predictor. 

3.2. Functional PC
(FPCR/FPLS) 

Let us assume without loss of generality that the predic- 
rocess is center.

and partial least squares components are uncorrelated ge- 
neralized combinations of the functional predictor vari- 
ables defined by 
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   d ,j jz x t w t t   
T

where the weight functions are the solutions to the fol- 
lowing optimization criteria: 
 Functional PCR 

Max Varw    d
T
x t w t t  

  

 

When the sample curves admit a basis expansion like 
in Equation 1.3, functional PCA is equivalent to mu
ria

     2. . d 1; d 0 1.lT T
r t w t t w t w t t l j    

ltiva- 
te PCA of matrix 1 2 ,A  so that the weight functions 

jw  are computed by diagonalizing the covariance ma- 
trix of 1 2A  (see th f in [28]). 
 Functional PLS 

   2 1v d
T jx t w t

e proo
 

j 1

0
, ,t y  Max Cow

2
. . 1,r t w   where    0 ,x t x t  t T   and 0y y . 

gression The j-th PLS step is ar e
of 

 concluded with the line r
 1jx t  and 1jy   d ,j t t  so  

     1 ,j j
j j

 on 
T

z x   1
j jt w that

x t x t p t z t T    

1 ,j j
j jy y c z   

where  

     1 2j
j jp t x t t t    j

and 

    1 2 .j
j jc y t t    j

As in the case of functional PCR, functional PLS is 
equivalent to multivariate PLS of Y on matrix 1 2A  
w

as been reduced to regression of Y on a set of prin- 
ci

hen the sample curves are expressed in terms of basis 
functions (see [11] for a detailed study). 

These results are very important from a computational 
point of view because reduce functional PCR and PLS to 
multivariate PCR and PLS on a transformation of the 
matrix of basis coefficients of the sample curves. The 
main problem is again to approximate the basis coeffi- 
cients of sample curves from their discrete observations 
at a finite set of knots (times, wavelengths...) and to se- 
lect an appropriate basis taking into account the main 
features of the observed curves. In the majority of cases 
it is assumed that data are observed with errors so that 
some type of smoothing is necessary. The most common 
basis are trigonometric functions used for periodic curves, 
B-splines for smooth curves and wavelets for curves with 
a strong local behavior. The basis coefficients can be 
approximated by using classic least squares approxima- 
tion or penalizing the roughness of each sample curve 
[4]. 

In any of the two consider dimension reduction ap- 
proaches, functional PCR and functional PLS, the prob- 

lem h
pal or PLS components of 1 2.A  In both cases the 

computational algorithm has the steps 
 Computation and selection by cross-validation of a 

set of m  components 

 1 2
n m K mn K

Z A V 
   

 Linear regression of Y  on the  components m
ˆ m m mY Z  1  

 FPCR or FPLS estimation of the parameter function 
K

m m   k kt t     
1k

1 2 .m mV    with 

4. Curves Classification 

 now consider de problem of predicting a categori- 
ith response categories 

Let us
cal response variable G  w
 , , ,G G G  from a functional predictor ,X1 2 S  which 

fi
ries. Nonparam ati

ession model for binary and mul- 
d to the case of a 

is equivalent to the problem of classification of the sam- 
ple curves in the groups de ned by the response catego- 

etric methods for curve classific on were 
developed in [21] and its application to classify spectro- 
metric data revised in [20]. Functional logit regression 
and functional linear discriminant analysis that have been 
used in different applications with chemometrics data are 
summarized hereafter. 

4.1. Functional Logit Regression 

The multiple logit regr
tinomial responses has been generalize
functional response [16]. 

Associated to a sample of observations (curves) of the 
functional predictor   : , 1, ,ix t t T i n   , we have a 
sample of observations of the categorical response G  
given by n  response vectors  1, ,i iSy y   of dimen- 
sion S  

1 if is observed for

0 othercase.
s i


is

G X
y


      (1.5) 

x

Each of these observations is generated by a multino- 
mial distribution  11; , ,i iM S   with 

    ,is s iP G G X t x t       

S
and . Taking into account that  

is redundant, we can denote by 
1

1 1, ,iss
i n


     

iSy   1 , 1, ,i i i Sy y y 
   

, with mean vector the vector response for subject i  

   1 , 1, , .i i i SE Y   i
    Then, - 

sponse model is a particular case of generalized linear 

the multinomial re  

model 
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isy is is   

with link 

sg      d , 1, , 1,i s s iT
t x t t s       S   (1.7) 

where is  are independent and centered errors, and s  
k and  s t  

nctio
a set of parameters to be estimated. As lin

fu mponentsn co  sg  we can consider the c
types of logit transformations 

lassical 
 is s il g   [1

a bas

6]. For 
example, baseline-category logits that pair each respo  
with eline-category (in this case the last) are used 
for nominal responses 

nse

 log .is is iSl    

The equation that expresses baseline-category logit 
models directly in terms of response probabilities is 

    
    

1

exp d
is S

s i sT
s

exp d
,

1, , , 1, , ,

s i sT
x t tt

x t t t 


   

s S i n

 





 



 

with 

The estimation of the parameter of the functional logit 
model presents the same problems that the functional 
linear model 0.2. In the case of basis expansion o

and the parameter function, the functional
lo

  0, 0 .S S t    

f the 
 sample curves 

git model is equivalent to a multiple logit model. In 
matrix form the model is given by 

, 1, , 1s s sL A s S     1         (1.8) 

for each vector of logit transformations  1 , ,s s nsL l l    
and each vector of parameter basis coefficients 

    1 , , .s s Ks  
The problems of multicollinearity an

 multinomial lo

or PLS components As in functional linear regression, 
fu

d high dimension 
that affect this model are solved again by - 
git regression on a reduced set of uncorrelated principal 

. 
nctional principal component logit regression is reduc- 

ed to multiple principal component logit regression on 
the matrix 1 2.A  Different type of functional PCAs are 
considered in [17]. As an alternative, a functional PLS 
logit regression model for binary response that has as co- 
variates a set of partial least squares components of the 
design matrix A  of the multiple logit model 0.8 was in- 
troduced in [18]. There are different criteria in literature 
to select principal components in regression methods. In 
the functional binary logit model, the classical method 
that consists of cluding principal components in the or- 
der given by explained variability and the one that inclu- 
des them in the order given by a stepwise method based 
on conditional likelihood ratio test were compared on si- 
mulated data in [17]. The optimum number of principal 

ally determined by using different criteria based on mini- 
mization the leave-one-out prediction error or the leave- 
one-out misclassification rate via cross-validation. 

4.2. Functional Linear Discriminant Analysis 

Linear discriminant analysis (LDA) in the functional data 
context aims to find linear combinations 

    2d , ,
T
X t t t L T    

so that the variance between classes is maximized with 
respect to the total variance 

  
  

Var E X t Y 
max .

Var X t


 

(binary response) and LDA 
and canonical correlation analysis (multip e response), a 
functional PLS approach for LDA with a functional pre- 
dictor was proposed in [3]. 
 

 

Taking into account the equivalence between LDA and 
multiple linear regression 

l

When the response Y  is binary  2 ,S   the discri- 
minant function   is the parameter function of the 
linear regression of Y  on the functional predictor 
X  with Y  recoded by 0 1Y p p   if 1Y   

and 1 0Y p p  if Y 0.  Then, FPCR and FPLS 
regression of Y on a basis expansion of X provides 
different approximations for the discriminant variable 
(score) given by 

     d ,m
PLS T

X x t t t      

where  m t  is the estimation of the parameter func- 
tion of the functional linear model obtained by using 
FPCR or FPLS in terms of a set of m components. 
 When the response Y is multiple  the discri- 

minant functions 
 2 ,S 

s  are the pa ons of 
linear 

rameter functi
the regression of Y on the functional predictor 
X  with Y  defined as de vector  1 1, , SY Y 

  of 
dummy variables associated to the categorical res- 

y where 
ctrum is a functional variable whose 

s of wavelength. The work has 

ponse G  and defined by expression 0.6. FPCR and 
FPLS on basis expansion of sample curves can be us- 
ed again to obtain the discriminant variables. 

5. Conclusions 

A review of the FDA methodologies most used in che- 
mometrics has been presented in this work next to diffe- 
rent applications, most of which are in spectroscop
the absorbance spe
observations are function in

components and PLS components (model order) is usu-  

been divided into two main parts that can be read inde- 
pendently. The first part (Section 2) presents a set of che- 
mometrics applications in most of which the aim is to 
either predict a variable of interest from NIR spectrum or 
classify a set of curves in different groups. The second 
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part (Sections 3 and 4) gives a brief summary of the 
theoretical framework on functional regression and curv- 
es classification methods. 

From the revised material we can conclude that func- 
tional calibration methods (functional PCR, functional 
PLS and functional nonparametric regression) and func- 
tional methods for curve classification (functional logit 
regression, functional LDA and functional nonparam
cl

ation to Spectrometric Data,” Compu- 
, Vol. 17, No. 4, 2002, pp. 545-564.  

http://dx.doi.org/10.1007/s001800200126

etric 
assification) have similar prediction ability for their 

corresponding discrete versions to analyze data that are 
obtained as observations of curves at a finite set of knots 
(wavelengths, time...). However, the FDA techniques take 
into account the correlation structure among the discrete 
observed values of a functional variable and, as a conse- 
quence, provide in many cases a more accurate estima- 
tion of the functional parameter that is very important to 
determine the relationship between the response and the 
functional predictor. 
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