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ABSTRACT 

The stationarity hypothesis is essential in hydrological frequency analysis and statistical inference. This assumption is 
often not fulfilled for large observed datasets, especially in the case of hydro-climatic variables. The Generalized Ex- 
treme Value distribution with covariates allows to model data in the presence of non-stationarity and/or dependence on 
covariates. Linear and non-linear dependence structures have been proposed with the corresponding fitting approach. 
The objective of the present study is to develop the GEV model with B-Spline in a Bayesian framework. A Markov 
Chain Monte Carlo (MCMC) algorithm has been developed to estimate quantiles and their posterior distributions. The 
methods are tested and illustrated using simulated data and applied to meteorological data. Results indicate the better 
performance of the proposed Bayesian method for rainfall quantile estimation according to BIAS and RMSE criteria 
especially for high return period events. 
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1. Introduction 

Many fields of modern science and engineering have to 
deal with rare events with significant consequences. Ex- 
treme value theory (EVT) allows to providing the basis for 
the statistical modeling of such extremes. The main result 
of EVT shows that the maxima, of Independent and Iden- 
tically Distributed (i.i.d.) events, are asymptotically Gen- 
eralized Extreme Value (GEV) distributed [1]. In practice, 
the hypotheses of the EVT are, generally, not fulfilled, 
and a classical frequency analysis, of independent, ho- 
mogeneous and stationary samples, is considered with a 
large range of probability distributions to estimate the oc- 
currence of extreme events. A number of methods have 
been proposed to estimate GEV distribution’s parameters; 
such as the method of moments (MM) [2,3], maximum 
likelihood (ML) [4] and the method of probability wei- 
ghted moments [5]. 

The Stationarity assumption is essential to carry out a 
statistical frequency analysis. However, in many fields, 
such as hydroclimatology, observed data series are not 
stationary [6,7]. For hydrological datasets, two main types 
of non-stationarity have been observed due to temporal 
trends or cycles corresponding to the effect of other co- 

variates. The second kind of non-stationarity, has been 
largely studied during the last decade through the GEV 
model with covariates [8-14] for local frequency analysis 
and [15,16] for regional analysis. 

Taking into account the effect of a covariate can be 
considered in a polynomial form [9,11,17]. These poly- 
nomial forms for estimating the GEV parameters were 
developed by the introduction of covariates in a polyno- 
mial form such as a linear or quadratic function. However, 
the dependence between covariates and variables of in- 
terest can take different structures. 

[18] suggested the use of semi-parametric functions 
such as smoothing splines to estimate the relationship 
between the parameters and covariates. The smoothing 
splines are based on the minimization of the penalized 
sum of the squared errors and the choice of the smoothing 
parameter [19]. The main disadvantages of this type of 
function are that inference, often through the confidence 
bands, is not straightforward and that a smoothing which 
parameter needs to be specified at the beginning [20]. A 
smoothing-based B-spline function resolves these prob- 
lems and presents several others advantages. 

B-spline functions are linear combinations of non 
negative piecewise-polynomial real functions. A B-spline 
function does not depend on the response variable, or the *Corresponding author. 
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variable of interested, but depend only on: 1) the support 
of the covariates, 2) the number and position of knots and 
3) the degree of B-Spline function [19]. The above ad- 
vantages of B-Spline functions make it an appropriate 
option to be used in the GEV model with covariates to 
estimate the quantiles conditionally to given factors. The 
GEV model with B-spline called mixed GEV-B-Spline 
model, is rigorous and flexible and allows to fit a large 
number of dependence structures [18,21]. [18] describes 
smooth non-stationary generalized additive modeling for 
sample extremes, in which spline smoothers are incorpo- 
rated into models for exceedances over high thresholds 
with the Generalized Pareto distribution. They developed 
the maximum penalized likelihood estimation approach 
with uncertainty assessed by using differences of devi- 
ances and bootstrap simulation. 

The main objective of the present study is to develop 
the Generalized Extreme Value model with covariates 
where the dependence structure is represented by B-spline 
functions in a Bayesian framework. Prior distributions 
have been proposed and the posterior distribution is 
simulated through the Metropolis Hasting (MH) algorithm 
based on the Monte Carlo Markov Chain (MCMC) me- 
thod. 

In the next section, the theoretical development of the 
Bayesian method of parameter estimation is discussed. A 
case study is then presented in Section 3. A comparison 
between of the proposed Bayesian approach with classical 
estimation methods such as the method of moments and 
the maximum likelihood method is presented in the third 
section. The last section corresponds to the conclusions 
and recommendations for future work. 

2. Bayesian GEV-B-Spline Model 

2.1. GEV Distribution 

The extreme value theory introduced by [22] shows that 
the limiting distribution of the maximum is one of the 
following distributions: Gumbel, Frechet or Weibull. 
These three distributions can be grouped in a single Gen- 
eralized Extreme Value (GEV) distribution: 
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Considering  a random variable following the GEV 
distribution and t  the time before the event TY . 
Then  is distributed according to a Geometric distribu- 
tion with a parameter . 
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Since the variable Y follows the GEV distribution with 
F as a repartition function. Equation (3) becomes: 
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So the quantile  of the GEV distribution is: 
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In the non-stationary case, the parameters of the GEV 
are functions of time or other covariates. Consequently 
the quantile T  depends on these covariates. In the pre- 
sent study, the parameters   an  d   are supposed 
constant. Let Y be a random variable that follows the 

 , , , GEV , ,  , and x X 1 2 pX X X Λ  a vector of 
covariates. The location parameter of the GEV model is a 
function of covariates: 
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where if  represents the function that describes the rela- 
tionship between the parameter and the covariate Xi. 

In the classical GEV model with covariates, depend- 
ence is represented through polynomial functions of lin- 
ear or quadratic forms. In the following paragraph, we 
present the GEV model with covariates where the de- 
pendence structure is given by B-Splines. This model 
will be called GEV-B-Spline. 

2.2. The GEV-B-Spline Model 

The function if  can be decomposed in the form of basic 
spline functions: 
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,j d  is a polynomial of degree d on each interval and 
m is the number of control points. 
B x
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The matrix form of Equations (8) and (9) gives 
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where 1 is the unit vector of size p. 

2.3. The GEV-B-Spline Model in Bayesian 
Framework 

The GEV-B-Spline is considered in a fully Bayesian 
framework. For a given parameter prior distribution, 
 π  , the Bayes theorem allows to define the posterior 

distribution: 
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is the vector of the parameters, and 0β  and β  are the 
hyper-parameters of the location parameter. 

[23] proposed the Beta  6,9  distribution as a prior 
distribution for the shape parameter of a stationary GEV 
model, in order to avoid irrational estimations of the shape 
parameter. In the present study, we considered an equi- 
valent prior for the shape parameter; it is the normal dis- 
tribution with mean 0.1 and variance 0.12. 

[11] adopted this prior distribution for the GEV model 
with covariates with polynomial dependence. Other stud- 
ies have suggested adopting the normal distribution to 
model the hyper parameters of the location parameter for 
the GEV model with covariates and B-Spline dependence 
[21,24]. 
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For the scale parameter, we used a non informative 
prior distribution 1/σ 

The posterior distribution of   is written as follows: 
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The posterior distribution  f y
, , , , , .

 is a function of 
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Considering a simple case of one covariate and m = 1 
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  and   are the parameter set by the prior distribu- 

tion. To estimate the above function, initial values of the 
parameters , ,    then should be given in order to 

simulate their joint posterior distribution by a MCMC al- 
gorithm. The marginal distributions of the parameters 
can be deduced by integrating Equation (15), with re- 
spect to the rest of the parameter vector: 
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The following section presents the details of the pro- 
posed MCMC algorithm to estimate the GEV-B-Spline 
parameter and quantile distributions. 

2.4. MCMC Algorithm for the GEV-B-Spline 
Model 

The MCMC method constitutes an alternative to the nu- 
merical methods, especially in Bayesian statistical analy- 
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3. Case Study 

3.1. Dataset 

The proposed model is considered to model the maximum 
annual rainfall (MAR) at Randsburg station (047253), 
California for the period of 1938-2007. The Randsburg 
station is located in the south east of the state of Califor- 
nia  N,11735.37 .65 Wο ο . Figure 1 illustrates the geo- 
graphic location of the Randsburg station. Figure 2  
 

120.0° W 

California

*047253

 

Figure 1. Geographic location of the Randsburg station. 
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Figure 2. Variation of maximum annual rainfall. 
 
shows the 70-year variation of MAR at Randsburg Sta- 
tion. 

We consider the 70-year Southern Oscillation Index 
(SOI) and Pacific Decadal Oscillation (PDO) time series 
as covariates for MAR non-stationary quantile estimation. 
The SOI and PDO describe the pressure and temperature 
anomalies over the Pacific Ocean and have a clear impact 
on water systems in North America [14,29]. By using SOI 
and PDO as covariates in estimating the parameters of the 
GEV-B-Spline model, we will take into account the effect 
of multiannual climate fluctuations on extreme rainfall 
events. We first apply the Mann Kendall test to examine 
the existence of non-stationarity (Trend) in MAR time 
series. The result shows that the MAR is not stationary at 
1% significant level. The Spearman’s rho correlation 
coefficient between the covariates and MAR is −0.52 and 
0.51 for SOI and PDO respectively. These values are 
significant at the 5% level. Figure 3 shows the variation 
of maximum annual rainfall against SOI and PDO.  

3.2. Model Development 

For model development, the following function is first 
fitted: 

GEV-B-Spline 

     1 2MAR GEV SOI PDO , ,f f     

1 2,f f  are independent spline functions, for which the 
degree and the number of nodes should be determined. In 
this application the number of nodes and the degree of the 
function are both chosen to take the value 3. 

Table 1 shows the GEV-Spline parameters fitted to 
SOI and PDO time series using a Bayesian method. Fig- 
ures 4 and 5 show the estimated 2, 20 and 50-year return 
period maximum rainfall quantiles as function of the 

covariates (SOI and PDO). It can be seen that, generally, 
the SOI has a negative correlation with precipitation, 
while PDO is positively correlated with precipitation. 
The negative values of SOI (e.g. El Nino phase) and 
positive values of PDO (Warm Phase of PDO) coincide 
with the relatively high MAR observations. MAR quan- 
tiles increase slowly with increasing PDO values and 
then increase exponentially for PDO values greater than 
1. On the other hand, different inflexion points, in the 
relationship between SOI and MAR are observed (for 
example at SOI = −1.5, SOI = 0 and SOI = 1.5), indicat- 
ing a more complex relationship between SOI and MAR 
than between PDO and MAR. 

4. Parameter Estimation Comparison 

In this section, we propose a comparison of the Bay- 
esian parameter estimation method for the GEV-B-Spline 
model (BAYES) and other estimation methods such as 
the conventional method of moments (MM) and the me- 
thod of maximum likelihood (ML). The theoretical back- 
grounds of these two methods for the GEV-B-Spline 
model are presented in Appendices 1 and 2, respectively. 
The comparison of these methods is carried out based on 
a simulation of MAR-SOI relationship only. The quantile 
with a non-exceedance probability 1 − p is computed for 
the maximum SOI using the parameters given by the 
Bayesian method (Table 1). The objective is to compare 
the quantile estimation methods for the quantiles esti- 
mated from 1000 samples of size  generated 
from each estimation method. The parameter values cho- 
sen for simulation are 

70n 

 

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Figure 3. Annual maximum rainfall against SOI and PDO index. 
 
Table 1. Bayesian estimation of the parameters of the mo- 
del. 

Climate Index 
Parameter 

SOI PDO 

0  −114.728 11.355 

1  48.112 44.616 

2  147.695 0 

3  116.138 4.556 

4  158.933 7.932 

5  0 −30.110 

  5.678 7.566 

  −0.124 0.145 

 

The comparison is carried out using the bias and the 
root mean square error (RMSE) of quantile estimations at 
non-exceedance probabilities, 1 − p = 0.5, 0.8, 0.9, 0.99 
corresponding to return periods of 2, 5, 10, 100. The re- 
sults are given in Table 2. 

Results show that the Bayesian estimation for the 
GEV-B-Spline model in all cases represents the best re- 
sults. However, this estimation method requires large 
time-consuming numerical calculations and does not meet 
a convergence point easily. For our case, the MCMC me- 
thod details, such as the choice of numerical method 
burning period and number of iterations are the key points 
to the convergence of the MCMC algorithm. On the other  

hand, even if the method of moments is the easiest method 
to implement, the corresponding results are largely un- 
satisfactory. The method of maximum likelihood, how- 
ever, is a compromise between the other two methods. It is 
interesting to note that for the case of low return periods, 
i.e. 2, 5T T  10 and T   years, the maximum like- 
lihood method gives almost comparable results with the 
Bayesian estimation. However, the error of the ML me- 
thod increases rapidly with the increase in the return pe- 
riod and the method becomes increasingly less effective. 
Therefore, the Bayesian method leads to a superior per- 
formance for the estimation of the extreme rainfall quan- 
tiles for all return periods. The Bayesian method offers 
also a general framework to combine observed and sub- 
jective information and the possibility to estimate the 
entire predictive distribution of the parameters and quan- 
tiles. 

5. Conclusions and Recommendations 

Statistical risk assessment is of great importance in hy- 
drology and many other fields of applied statistics. The 
last two decades have witnessed the development of a 
number of statistical modeling approaches for extreme 
values in the presence of non-stationarity or dependence 
on covariates. The GEV-B-Spline model which takes 
into account the non-stationarity and nonlinearity offers a 
great flexibility and takes into account the heavy tailed 
character of the extreme distribution. The present study 
roposes a Bayesian estimation framework of the GEV- p 
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Figure 4. GEV-B-Spline estimators of the 2, 20 and 50-year return period quantiles conditional upon SOI. 
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Figure 5. GEV-B-Spline estimators of the 2, 20 and 50-year return period quantiles conditional upon PDO. 
 

Table 2. Comparison of estimation methods. 

Probability BIAS RMSE 

 BAYES MM ML BAYES MM ML 

0.5 0.020 −0.075 0.052 0.403 0.715 0.435 

0.8 −0.060 −0.094 0.090 0.418 0.901 0.514 

0.9 −0.148 0.249 −0.177 0.450 1.847 1.525 

0.99 −0.182 −0.655 −0.448 0.826 3.128 2.879 

 
B-spline model for hydro-meteorological variables. The 
Bayesian approach is general, flexible and connected 
with the decision theory. It combines observed and prior 
information, estimates the entire posterior distribution of 
the parameters and quantiles and thus allows to estimate 

the credibility intervals. 
Results of the simulated data show the advantage of 

the proposed method for quantile estimation of an ex- 
treme variable such as maximum rainfall especially for 
high return period. 
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The evaluation for the quantile uncertainty using BIAS 
and RMSE criteria also indicated the superiority of the 
proposed method in comparison to other estimation me- 
thods, especially for high return period quantile estima- 
tion. However, the uncertainty of quantile estimation of 
low return periods does not show a significant difference 
between the bayesian and the maximum likelihood me- 
thod. On the other hand, one can see that the numerical 
calculation is the main disadvantage of these types of 
models when the number of covariates increases which 
may lead to divergence problem. The quantile regression 
model can be a good alternative to overcome this prob- 
lem [30,31]. Therefore, future work can focus on the 
comparison of extreme value models with regression 
quantiles in order to use different covariates in quantile 
estimations. 
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Appendix 1: GEV-B-Spline Moment 

Let Y be a random variable that follows a GEV distribu- 
tion therefore: 

 GEV , ,xY             (A1) 
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B is a spline basis function. 
Where 
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The following equations are used to estimate the pa- 
rameters 0 , ,   : 
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The other i

Appendix 2: GEV-B-Spline Maximum 
Likelihood 

Let Y be a random variable that follows a GEV distribu- 
tion therefore: 


 
values are estimated using the linear 

regression between Y and the basis matrix B of the 
B-spline corresponding to the covariates. 
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B is a spline basis function. 
The maximum likelihood (ML) function is written as 
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1  is the number of observations when 
0

. 
  , the log-likelihood function is: In the case of 
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The ML estimators are the solution of an equation 
system formed by setting to zero the partial derivates of 
(A13) with respect to each parameter. 

In the case of one covariate and , we have 
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 The ML estimators of the parameter      are 
the solution of the following system: 
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where 
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



  
      (A16) 

Numerical methods must be used to solve the system 
(A15). In the present study we used the Newton Raphson 
method. 

 


