
Open Journal of Statistics, 2012, 2, 383-388 
http://dx.doi.org/10.4236/ojs.2012.24046 Published Online October 2012 (http://www.SciRP.org/journal/ojs) 

Edgeworth Approximation of a Finite Sample Distribution 
for an AR(1) Model with Measurement Error 

Shuichi Nagata 
Department of Mathematical Sciences, Kwansei Gakuin University, Sanda, Japan 

Email: nagatas@kwansei.ac.jp 
 

Received July 25, 2012; revised August 27, 2012; accepted September 9, 2012 

ABSTRACT 

In this paper, we consider the finite sample property of the ordinary least squares (OLS) estimator for an AR(1) model 
with measurement error. We present the Edgeworth approximation for a finite distribution of OLS up to O( 1 2T ). We 
introduce an instrumental variable estimator that is consistent in the presence of measurement error. Finally, a simula- 
tion study is conducted to assess the theoretical results and to compare the finite sample performances of these estima- 
tors. 
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1. Introduction 

The Ordinary Least Squares (OLS) estimator for the AR(1) 
model is one of the most general estimators in economet- 
rics, and a number of studies considering the properties 
of the OLS estimator under certain conditions have been 
conducted by several authors. For example, it is well 
known that the OLS estimator for the AR(1) model has a 
non-negligible bias when the sample size T is not large. 
This problem is known as the small sample problem ([1, 
2]). 

Another problem of the OLS estimator is that the ob- 
servation data are sometimes contaminated by noise, 
which also affects the estimation result. In this case, the 
OLS estimator in the AR(1) model is not consistent. This 
problem is commonly known as the measurement error 
problem. Following [3] that summarized the early results 
on this topic, numerous articles have been published on 
this topic. For example, with respect to time series analy- 
sis, some estimators in an AR model with measurement 
errors in [4] and statistical a test for the existence of 
noise is proposed in [5]. 

In this paper, we deal with these two important prob- 
lems simultaneously. In particular, we consider the OLS 
estimation when the sample size T is not large, and when 
an measurement error is present but ignored. To evaluate 
the effect of a small sample size and ignoring measure- 
ment error, we derive finite sample properties of the OLS 
estimator with noise using the Edgeworth expansion, 
which is a traditional technique in econometrics to ap- 
proximate a finite sample distribution. For example, the 
OLS estimator was studied in [6] for pure AR(1), in [7] 

for AR(1) with an unknown mean, and in [8] for AR(1) 
with exogenous variables. Following these studies, we 
apply the algorithm proposed in [9] to calculate the 
Edgeworth coefficients.  

In our setting, some problems are the result of noise, 
which make calculation difficult. First, if data are af- 
fected by noise, it is difficult to obtain variables that are 
related to the autocovariance function of the observation 
process. To obtain these variables, we use the result in 
[10], which shows that an AR(1) process together with 
noise can be represented by an ARMA(1, 1) process. 
Second, the OLS estimator is inconsistent with noise, and 
it is impossible to apply the formula in [9] in this case; 
hence we use a corrected error function that follows [8] 
and [11] to avoid this problem. 

In the simulation section, we also consider a instru- 
mental variable (IV) estimation, which is the consistent 
estimation in our setting. We compare the finite sample 
performances of the OLS estimator with those of our 
proposed IV estimator using simulations. 

This paper is organized as follows. In the next section, 
we provide our setting and the main result for the Edge- 
worth approximation of the OLS estimator up to O( 1 2T ). 
In Section 3, we examine a Monte Carlo simulation and 
graphical comparison. Finally, Section 4 concludes this 
paper. 

2. Setup and Main Results 

We consider a following measurement error model given 
by 
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where only yt is observable, xt is a stationary AR(1) 
process with 1 

0,1, ,t T 
 and ut is the measurement error or 

noise. For a given sample period , the OLS 
estimate can be written as follows: 
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The result of this paper relies on the following well 
known result given in [10]. If xt is an AR(1) process with 
AR parameter β, and ut is white noise with constant 
variance  , then yt follows an ARMA(1, 1) process, 
which is given by the following equations: 

   1 1 ,t tL y L      2~ . . . 0, ,t i i d N  
2

     (3) 

where L is the lag operator. The parameters   and γ 
(the MA parameter) can be related to β, 2

 , and 2
  as 

follows: 
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Then, we obtain the following theorem. 
Theorem 1. The finite sample distribution of the OLS 

estimator up to O( 1 2T ) is given by 
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Proof. The proof is given in Appendix. 
Here, we also examine the IV estimator, which is de- 

fined as follows: 
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The IV estimator is consistent in the presence of the 
noise. It is easy to show that the asymptotic variance of 
the IV estimator is  2 21  

2 1

. When there is no noise, 
the asymptotic variance of the OLS estimator is 1 – β2. 
Therefore, the OLS estimator is more efficient than the 
IV estimator in the absence of noise. 

3. Simulation and Graphical Comparison 

In this section, we examine the finite sample property of 
the OLS estimator, and evaluate the approximate distri- 
bution generated in Section 2 by Monte Carlo simulation. 

Data were simulated from Equation (1) with  . 
Therefore, the noise-to-signal ratio 2 2 2        

throughout this section. In addition to the OLS estimator, 
we also compute the IV estimator defined in the previous 
section. The number of replications was 20,000. We 
computed the mean (Mean) and the root mean squared 
error (RMSE) for each estimator. The simulation results 
are summarized in Tables 1-3. 

From Tables 1-3, we confirm that the OLS estimator 
is biased. As expected, the smaller the sample size and  
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Table 3. Simulation results (ρ = 0.7). Table 1. Simulation results (ρ = 0.2). 

 β = 0.4  β = 0.8 

 Mean RMSE  Mean RMSE 

T OLS IV OLS IV  OLS IV OLS IV

20 0.31 0.91 0.24 68.73  0.68 0.71 0.23 1.68

40 0.33 0.58 0.17 45.50  0.71 0.75 0.16 0.22

100 0.34 0.20 0.12 23.74  0.73 0.78 0.11 0.10

500 0.34 0.40 0.07 0.13  0.74 0.80 0.07 0.04

800 0.34 0.40 0.07 0.10  0.74 0.80 0.06 0.03

 β = 0.4  β = 0.8 

 Mean RMSE  Mean RMSE 

T OLS IV OLS IV  OLS IV OLS IV

20 0.23 0.62 0.28 109.62  0.56 0.59 0.32 12.6

40 0.24 0.99 0.22 72.55  0.60 0.77 0.26 2.89

100 0.25 0.37 0.18 4.39  0.62 0.78 0.20 0.12

500 0.25 0.40 0.16 0.18  0.64 0.80 0.17 0.05

800 0.25 0.40 0.15 0.14  0.64 0.80 0.17 0.04

 
the larger the noise variance, the larger will be the bias. 
On the other hand, as the IV estimator is a consistent 
estimator, IV may converge to the true value. The simu- 
lation results are consistent with this hypothesis. How- 
ever, in small samples such as for T = 20 and 40, the 
RMSE of the IV estimator is rather large, as seen in all 
tables. 

 
Table 2. Simulation results (ρ = 0.4). 

 β = 0.4  β = 0.8 

 Mean RMSE  Mean RMSE 

T OLS IV OLS IV  OLS IV OLS IV

20 0.27 -0.06 0.25 48.96  0.63 0.69 0.27 3.20

40 0.29 4.23 0.19 540.2  0.66 0.75 0.20 0.29

100 0.29 0.36 0.15 2.53  0.68 0.78 0.15 0.10

500 0.30 0.40 0.11 0.15  0.70 0.80 0.11 0.04

800 0.30 0.40 0.11 0.11  0.70 0.80 0.11 0.03

From the simulation results for the RMSE in Tables 2 
and 3, we find that the IV estimator is more efficient than 
the OLS estimator when T ≥ 800 (β = 0.4) and T ≥ 100 (β 
= 0.8). Therefore, we can conclude that, if the sample 
size is not large (T = 20, 40), or both β and ρ are small as 
in Table 1 (β = 0.4 and ρ = 0.2), then the OLS estimator 
is better than IV in terms of the RMSE. 

Next, we compare the exact cdf with the asymptotic 
normal distribution. Figure 1 depicts the approximate 
distributions of the OLS and the IV with β = 0.4, T = 20, 
and various values of ρ. Figure 1 indicates that the OLS 

 

 

Figure 1. Exact distributions of OLS and IV.    
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values have a downward bias. The IV exhibits good be- 
havior in the central region of the distribution; however, 
its distribution is fatter in the tails compared to the nor- 
mal distribution. 

Finally, we evaluate the approximate distributions ob- 
tained in Section 2, and compare them with the exact cdf 
and asymptotic normal distributions. To enable a com- 

parison of the shapes of the distributions, the asymptotic 
bias of the OLS estimator is corrected hereinafter. Fig- 
ure 2 shows the approximate distributions of the OLS 
estimator with T = 20, ρ = 0.2, and three different values 
of β. From this figure, we can observe the same result as 
those obtained in [6]. Figure 3 depicts the approximate 
distributions of the OLS with ρ = 0.7, where the other pa- 

 

 

Figure 2. Exact and approximate distributions of OLS. 
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Figure 3. Exact and approximate distributions of OLS.  
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rameter values are the same as those for Figure 2. We 
note that the shapes of the distributions are almost the 
same, even if the noise ratio ρ is changed. From these 
figures, the noise variance has only a small effect on the 
shape of the OLS distribution. 

4. Discussion 

In this paper, we considered finite sample properties of 
the OLS estimator for the AR(1) model with measure- 
ment error. Using the formula in [9], we obtained the 
Edgeworth expansion for finite sample distributions of 
the OLS estimator up to O( 1 2T ). 

In the simulation work, we have compared naive OLS 
estimator with the IV estimator which is a consistent es- 
timator in the presence of noise. We can confirm that, 
even if the measurement errors is exist, the OLS estima- 
tor is more efficient than the IV estimator when the sam- 
ple size is small such as T = 20 and 40. If the noise- 
to-signal ratio is not so small (ρ ≥ 0.4), the IV estimator 
is more efficient than the OLS estimator when T ≥ 800 (β 
= 0.4) or T ≥ 100 (β = 0.8). From the graph of the nor- 
malized OLS distributions, we find similar properties to 
those of the distributions, which correspond to the no 
noise situation examined by [6]. This result implies that 
measurement error mainly distorts the OLS distributions 
for mean and variance; hence we can separately deal with 
the two problems of small sample size and observation 
errors. 

Recently, the differenced-AR(1) estimator was dis- 
cussed in [12,13]. Even if the sample size T is relatively 
small, this estimator has a small bias. To obtain the finite 
sample distribution and to examine the robustness of 
such estimators with respect to observation errors, we 
can apply the technique of this paper, and this will be 
dealt with in a future study. 
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Appendix 

Proof of Theorem 1 

The OLS estimator for β is given by Equation (2). Intro- 
ducing  i i , we can write the derivation of 
the estimation as follows: 
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. Then, we have the error function as; 
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In order to develop the Edgeworth expansion, we de-
fine a modified function e(q): 
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It is easy to obtain the cumulant generating function of 
1 2T q is 
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the identity matrix and the covariance matrix of y, re- 
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Edgeworth expansion requires the partial derivatives 
of e(q) and φ(θ) up to the third order. In the current paper 
these derivatives are denoted as ej, ejk, ψjk and ψjkl, which 
are all evaluated at the origin. Using the tensor summa-
tion convention, Edgeworth coefficients of Sargan’s 
formula are obtained by these derivatives as follows: 

 

Although we only show Edgeworth coefficients re-
lated to approximations of up to O( 1 2T ), the original 
formula of Sargan can approximate up to O(T), see [6]. 

After many calculations, we finally obtain the Edge-
worth coefficients. To save space, we show only the re-
sults as follows: 
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where Pi and Q are polynomials defined in Section 2. 
The approximation of the OLS estimator up to O( 1 2T ) is 
derived in [6] as follows. 
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Using these results, we obtain the following equations. 
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Substituting these results into Equation (5), we obtain 
Theorem 1. 
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