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ABSTRACT

This article considers the problem in obtaining the maximum likelihood prediction (point and interval) and Bayesian
prediction (point and interval) for a future observation from mixture of two Rayleigh (MTR) distributions based on
generalized order statistics (GOS). We consider one-sample and two-sample prediction schemes using the Markov
chain Monte Carlo (MCMC) algorithm. The conjugate prior is used to carry out the Bayesian analysis. The results are
specialized to upper record values. Numerical example is presented in the methods proposed in this paper.
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1. Introduction

The concept of generalized order statistics GOS was in-
troduced by [1] as random variables having certain joint
density function, which includes as a special case the
joint density functions of many models of ordered ran-
dom variables, such as ordinary order statistics, ordinary
record values, progressive Type-II censored order statis-
tics and sequential order statistics, among others. The
GOS have been considered extensively by many authors,
some of them are [2-18].

In life testing, reliability and quality control problems,
mixed failure populations are sometimes encountered.
Mixture distributions comprise a finite or infinite number
of components, possibly of different distributional types,
that can describe different features of data. In recent years,
the finite mixture of life distributions have to be of con-
siderable interest in terms of their practical applications in
a variety of disciplines such as physics, biology, geology,
medicine, engineering and economics, among others.
Some of the most important references that discussed dif-
ferent types of mixtures of distributions are [19-25].

Let the random variable T follows Rayleigh lifetime
model, its probability density function (PDF), cumulative
distribution function (CDF) and reliability function (RF)
are given below:

h(t)=26te ™ ,t>0,(6>0), (1)
H(t)=1-et>0,(6>0), @)
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R(t)=e™, 3)
Also, the hazard rate function (HRF)
A(t) =26, @)

where A(.)=h(.)/R(.).

The cumulative distribution function (CDF), denoted
by H (t) , of a finite mixture of k components, denoted
by H;(t),j=1-,k isgivenby

H (t):g piH;(t). (%)

where, kfor j=1---,k the mixing proportions p;=0
and ZH p; =1. The case of k=2, in (5), is practical
importance and so, we shall restrict our study to this case.
In such case, the population consist of two sub-popula-
tions, mixed with proportions p, and p,=1-p,. In
this paper, the components are assumed to be Rayleigh
distribution whose PDF, CDF, RF and HRF are given,
respectively, by

h(t)=ph (t)+p,h,(t) (6)
H(t)=pH, (t)+p,H, (1), 7
R(t)=pR (t)+ PR, (1), (8)

A(t)=h(t)/R(t), ©)

where, for j=1,2, the mixing proportions p; are such
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that 0<p;<1,p+p,=1 and h;(t),H;(t),R;(t) are
given from (1)-(3) after using 6; instead of 6.

Several authors have predicted future order statistics
and records from homogeneous and heterogeneous popu-
lations that can be represented by single component dis-
tribution and finite mixtures of distributions, respectively.
For more details, see [9,10,26].

Recently, a few of authors utilized the GOS’s in Bayes-
ian inference. Such authors are [7-9,18]. Bayesian infer-
ences based on finite mixture distribution have been dis-
cussed by several authors such that: [23,24,27-33].

For Bayesian approach, the performance depends on
the form of the prior distribution and the loss function
assumed. A wide variety of loss functions have been de-
veloped in the literature to describe various types of loss
structures. The balanced loss function was suggested by
[34]. [35] introduced an extended class of the balanced
loss function of the form

Lo (¥(0).6)

(10)
—QY(0)®(85,.8)+(1-

Q)Y(0)d(¥(9).5),

where Y() is a suitable positive weight function and
) (‘{f (9) ,0 ) is an arbitrary loss function when estimate-
ing W (@) by &. The parameter &, is a chosen prior
estimator of ‘P(H) , obtained for instance from the crite-
rion of maximum likelihood (ML), least squares or unbi-
asedness among others. They give a general Bayesian
connection between the case of >0 and Q=0
where 0<Q<1.
SupposethatTlnmk’ 2:n,mk> " rnmk’k >O

m=(m,---,m_)eR™,m,--,m_ eR are the first r
(out of n) GOS drawn from the mixture of two Ray-
leigh MTR distribution. The likelihood function (LF) is
given in [1], for —o <t <---<t <o by

L(ot)=C...| T [R()]" n(t) RG]

T

(11)

where t=(t,---,t,),0€®,0 is the parameter space,

and
Coi =1 7.7 =k+n-i+M,; >0,
M, z V=l

where h(t) and R(t)are given, respectively, by (5)
and (7).

The purpose of this paper is to obtained the maximum
likelihood prediction (point and interval) and the Bayes
prediction (point and interval) in the case of one-sample
scheme and two-sample scheme. The point predictors are
obtained based on balanced square error loss (BSEL)

(12)
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function and the balanced LINEX (BLINEX) loss func-
tion. We used ML to estimate the parameters, p and
6, of the MTR distribution based on GOS. The conju-
gate prior is assumed to carry out the Bayesian analysis.
The results are specialized to the upper record values. The
rest of the article is organized as follows. Section 2 deals
with the derivation of the maximum likelihood estimators
of the involved parameters. Sections 3 and 4, deals with
studying the maximum likelihood (point and interval) and
the Bayes prediction (point and interval) in the case of
one-sample scheme and two-sample scheme. In Section 5,
the numerical computations results are presented and the
concluding remarks.

2. Maximum Likelihood Estimation (MLE)
Substituting (6), (7) in (11), the LF takes the form

L(olt) o TTL PR (1) + poRe (8)]
[T Lph () + pohy ()] (13)
(PR (t)+ PR (1)]"
Take the logarithm of (13), we have
1(0)=InL(6]t)oc > mIn[ pR (t)+ p,R, ()]
+>In[ phy () + p,h, ()] (14)
+(7 =D)I[ PR (t,)+ PRy (L) ],

where p, =p,p, =1-p . Differentiating (14) with re-
spect to the parameters p and 6; and equating to zero
gives the following likelihood equations

& =m0+ 2800+ () (1)=
23y
S (15)
= my; (tl) (7/r 1)‘//]" (tr): 0,
j=12
where, for j=1,2
o(t) =" o ) g (1)= (“F)zg;z (1)
fj(tl):{;_ tﬁ}
0JS



358 T. A. ABUSHAL, A. M. AL-ZAYDI

Equations (15) do not yield explicit solutions for p
and ¢;,j=1,2 and have to be solved numerically to
obtain the ML estimates of the three parameters. New-
ton-Raphson iteration is employed to solve (15).

Remark: The parameters of the components are as-
sumed to be distinct, so that the mixture is identifiable.
For the concept of identifiability of finite mixtures and
examples, see [19,36,37].

3. Prediction in Case of One-Sample Scheme

Based on the informative T, i, T,.nqx GOS’s from
the MTR distribution, for the remaining unobserved
future (n—r) components, let T, ., S=r+ 1,1+
2,---,n denote the future lifetime of the s™ component
to fall, 1<s<(n-r), the maximum Likelihood pre-
diction (point (MLPP) and interval (MLPI)), Bayesian
prediction (point (BPP) and interval (BPI)) can be ob-
tained.

The conditional PDF of T, =T, ., given that the

T, =T, .« components that had already failed is

K'(t]t)= (L[lnR )-R(t,)]"
t,] h(t,),m=-1,

s—r—1)!
[R(L)]R(
(m+ I)S”C(:s i r-1)Ic,, [R (k)" -R(t )mHJ
<[R(E)] R h(t,).m=-1,
(17)

In the case when m=-1, substituting (6) and (7) in
(17), the conditional PDF takes the form

ej)

oc|:p1 +pz

s—r-1

k(¢

S

] [pl )+ PR ()T(

[ln[ PR, + PR, (t )] (15)
_m[le (t )+ PRy ()] ]
[pl )+ psh, )],ts >t

And in the case when m = —1, substituting (6) and (7)
in (17), the conditional PDF takes the form

ks (t, ej)oc[plrel (ts)+ PR, (t)]*
+ pz i ):|*7r+1
)

(PR
[[ bR (t)+ PR, (1)]"™ (19)
-
[

)] ]S B

P hl + p.h, :|

pl Rl + p2
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In the following, we considered two cases: the first is
when the mixing proportion p is known and the second
is when the two parameters 6 and p are assumed to
be unknown.

3.1. Prediction When p Is Known

In this section we estimate ¢, and 6,, assuming that
the mixing proportion, p, and p, are known.

3.1.1. Maximum Likelihood Prediction

Maximum likelihood prediction can be obtain using (18)
and (19) by replacing the shape parameters 6, and 6,
by 6, and 6y, which is obtained from (15).

1(ML)
1) Interval prediction
The MLPI for any future observation t,,s=r—+1,r+
2,---,n can be obtained by
Prt, 2 0fe] = [k (46> Oy )dts M =1L, o0
= K3 (61 Gy ) At M 1.

A (1-7)x100% MLPI (L,U) of the future observa-
tion t, is given by solving the following two nonlinear
equations

T
Prt>L t—l—— Prit. UMt |==. (21
L2 L-1-2. pu200]-5 @

2) Point prediction
The MLPP for any future observation t,, s=r+1,r

+2,---,n can be obtained by replacing the shape pa-
rameters 6, and 6, by 6, and 6, which, ob-
tained from (15)

)= K (w18

=Lk( Ay 0,

3.1.2. Bayesian Prediction

When the mixing proportion, p is known. Let the para-
meters ¢; , j=1,2 have a gamma prior distribution
with PDF

)dt m=-1,

(ML) 2ML)

(22)
))dt m=1.

ﬂ(ﬁj)=mﬂ”9 i1g =i (‘91':

These are chosen since they are the conjugate priors
for the individual parameters. The joint prior density
function of 6=(6,,6,) is given by

n(ﬁ):nl(ﬁl)nz (492),
x(0)< [T, 07 e ",

where j=1, 2, 6, >0, ("j’ﬂj)>0’

v, >0). (23)

(24)
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It then follows, from (13) and (24), that the joint
posterior density function is given by

2
-1 ~Xjahif%,

m (0t)=ATT 6] e
T[T PR (6)+ R, (1)1 (25)
Hir:1|: P (6)+ poh (8 )}
X[ PR (1) + PRy (8 )Jyr_l
where
A'=[ n(6)L(6]t)d6. (26)

The Bayes predictive density function can be obtained
using (18), (19) and (25) as follow:

Q (t[t) = [ =i (O10) (&
Q (t[t) = [ =i (Olt) s (&

1) Interval prediction

Bayesian prediction interval, for the future observation
Tonmk> S=r+Lr+2,---,n can be computed by ap-
proximated Q (ts|t) using the MCMC algorithm, see
[17,24], using the form

0, )de,m =1,
(27)

Hj)dﬁ,mi—l.

K
K

where p is the number of generated parameters and
9} , 1=1,2,3,---, . They are generated from the poste-
rior density function (25) using Gibbs sampler and Me-
tropolis-Hastings techniques, for more details see [38].

A (1-7)x100% BPI (L,U) of the future observation

t, is given by solving the following two nonlinear equa-

0))

Ql* (ts |t) Hi )dt s
j S

1

(28)

tions
LIk (s o) )at, T (29)
K (Le)a 2
Lok (L) at _z (30)

(e )a 2

Numerical methods are generally necessary to solve
the above two equations to obtain L and U for a
given 7.

2) Point prediction

a) BPP for the future observation t, based on BSEL
function can be obtained using

=0t +(1-Q)E(t]t), (31)

ts( BS)

where fS(ML) is the ML prediction for the future obser-
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vation t; which can be obtained using (22) and E (ts |t)
can be obtained using

E(tft) =] tQ; (tJt)dt,. (32)

b) BPP for the future observation t; based on BLINX
loss function can be obtained using

Gy = —éln[ge‘afS(ML> +(1-Q)E (e*a‘s

t)} (33)

where fS(ML is the ML prediction for the future obser-
vation t, which can be obtained using (22) and

E (e""“s t) can be obtained using

t)=["e Qs (t]t)dt,. (34)

E (e‘ats

3.2. Prediction When p and 6; Are Unknown

When both of the two parameters the mixing proportion
p; and 6, j=1,2, are assumed to be unknown.

3.2.1. Maximum Likelihood Prediction
Maximum likelihood prediction can be obtain using (18)
and (19) by replacing the parameters p, 6 and 6,
by ﬁ(ML),GI(ML) and HZ(ML) which we obtained using
(15).

1) Interval prediction

The MLPI for any future observation t, S=r+1,r
+2,---,n can be obtained by

Prt, > oft]= [k (,

="k (t5| b(ML),éI(ML),éQ(ML))dtS, mel.
(3%

A (1-7)x100% MLPI (L,U) of the future observa-
tion t; is given by solving the following two nonlinear
Equations (21).

2) Point prediction

The MLPP for any future observation t,, s=r+1r
+2,---,n can be obtained by replacing the shape pa-
rameters p, 6 and 6, by f)(ML),éI(ML) and éz(ML)
which, obtained from (15).

fS(ML) =E (ts ) = ,Lwtskl* (ts

- I:Otsk; (ts

A

f)(ML)’el(ML)’HZ(ML))dts’ m=-1,

A

ﬁ(ML)’al(ML)’ HZ(ML))dtS’ m=-1,

A

p(ML)’al(ML)’ 02(ML))dts’ ma#1.
(36)

3.2.2. Bayesian Prediction

Let p; and 6, j=1,2, are independent random vari-
ables such that p~ Beta(b.,b,) and for j=1,2,6, to
follow an inverted gamma prior distribution with PDF

oJS
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1 (a7, e
p(ej)zm(;j 0)"e " (6,,a;.8,>0). (37)

A joint prior density function of 6=(p,6,6,) is
then given by
n(0)=m,( p)n2 (6)n,(6),
2 "‘J Ly, (38)

-2i-
T[() bllszJlJ ﬂJ,

where 0<p, <l,p,=1-p, andfor j=1,26,>0,
(bj,aj,,b’,- ) >0.

Using the likelihood function (13) and the prior density
function (38), the posterior density function will be in the

form

nZ(p,6’|t)
2 9

pgz 1I_IJ 1‘9;11_1 7Zj:]ﬁi I
H.r: [le (t)+ p,R, (t. )]m‘

T Rh (6)+ pohy (6) ][RR (&) + PRy ()T

(39)
where

A=l

The Bayes prediction density function of
T,=T(s,n,m,k) can be obtained, see [39], by

Q:(t1t)
=7 (p.ol)k; (4
[ L (polt)k (&

1) Interval prediction
Bayesian prediction interval, for the future observation
Tonmk> S=r+Lr+2,---,n can be computed by ap-
proximated Q, ( s |t) using the MCMC algorithm, see
[24], using the form
i= lk (

Q; (L t) i:]er (ts 6\, p )dt

where 0}, pi,i =1,2,3,---, u are generated from the pos-
terior density function (39) using Gibbs sampler and Me-
tropolis-Hastings techniques. A (1 - r) x100% BPI(L,U)
of the future observation t; is given by solving the fol-
lowing two nonlinear equations

NS (ts 0
A

)L(o]t)de. (40)

6., p)dpde,m—l, (1)

j,p)dpd6’,m=—1.

pl) ; (42)

1N

) =1-Z, (43)

pi)dtS 2
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Vi O s
i:l.[Uk (ts 0 ) N _1 (44)
i=l [ * i - 2’

> [ (e ') at,

Numerical methods are generally necessary to solve
the above two equations to obtain L and U for a
given 7.

1) Point prediction

BPP for the future observation t, based on BSEL
function can be obtained using

t~s(Bs) :Qfs(ML)+(1_Q)E(tS |t)’ (45)

where t(ML) is the ML prediction for the future obser-
vation t; which can be obtained using (36) and E ('[S |t)
can be obtained using

E(tJt)= [ Q5 (t]t)dt.. (46)

2) BPP for the future observation t, based on BLINX
loss function can be obtained using

fS(BL)

:——Inn[Qe ML)+(1 Q)E( e

0] @

where f,,, is the ML prediction for the future obser-
vation t, which can be obtained using (36) and
E (e""“s t) can be obtained using

E(e]t)= j e Q; (t,[t)dt,. (48)

4. Prediction in Case of Two-Sample Scheme
Based on the informative T, T T GOS

Lnmke ' 2nmke T rinm ok

drawn from the MTR distribution and let Y, <---<Y,,
where Y, =Yy, i=12,--,N,M>0,K>0 be a se-
cond independent generalized ordered random sample
(of size N) of future observations from the same dis-
tribution. We want to predict any future (unobserved)
GOS Y, =Y,ymx-P=12,---,N, in the future sample
of size N. The PDF of Y,,1<b<N given the vector
of parameters 6, is:

G (v,|0)
[R(%)]™ " 0(y) X5 @l [R(y) ™" M =1, 49)
[R(y )] [1nR(yb)] h(y,),M =1,
where w$=(—1)"[b;lJ and 7] =K+(N-J)(M+1)
Substituting from (6) and (7) in (49), we have:
G (Y, |0) <
(PR (%) + PRy (%) ] [0 (%) + Ph (%,)] (50)

S [PR () + PRy (%)™ M = 1,
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Gi(yb|9)“
[PR (%) + PR (¥o) ] [P0y (%) + Boh,

[ln[le,(yb)+ szz(yb):H( )M =1,

4.1. Prediction When P Is Known

4.1.1. Maximum Likelihood Prediction
Maximum likelihood prediction can be obtain using (50)
and (51) by replacing the shape parameters 6, and 6,
by G and Oy,

1) Interval prediction

The MLPI for any future observation Yy,,1<b<N
can be obtained by

Pr[t, > vlt] =[G/ (5] G, )dyb,M -1,

_-[ G (yb|€ ML)> “2(ML )dYba =1.

A (1-7)x100% MLPI (L,U) of the future observa-
tion Y, is given by solving the following two nonlinear
equations

()] D

(52)

pr[yb2L(t)|t]:1_§,pr[yb2u(t)|t]:§ (53)

2) Point prediction
The MLPP for any future observationy, can be ob-

tained by replacing the shape parameters ¢, and 6,
by Gy and Oy,

yb(ML :E(yb|t)
_[ ¥sGi (Yb|‘9 1(ML)>
_J ¥,G (yb|‘9 ML)>

)dyb,M¢1 (54)

e )dyb, =1.

4.1.2. Bayesian Prediction
The predictive density function of Y,,1<b<N is given

by:
W (Yole) =[G (6|0)m (6]t)dO, y, >0, (55)
where for M #-1 and ms-I
¥ (t)
‘J (Ot)5" (vs|0)do
HJ 1‘91] e -Y318i0 ,-H [p] + DR, ):Imi
1o +m2(>Inaa»+m&a»T*6®
[pl )+ PRy (%)) [P (%) + e ()]

JO J[p] yb +p2 yb)] M+1)d0

Copyright © 2012 SciRes.

Also, when M =1 and m=-1
¥ (wot)

_J (O[t)G: (ve|0)do

[15.60 e " T pR (¢ +m<>T
<IT [P () + pahs (8) ][RR () + PaR: ()]
x[In[ piR, (¥y)+ PR, (W ]] [pl Yo)+ P, (V) ]
(PR (%)+ PR, ()] do

(57)

1) Interval prediction
Bayesian prediction interval, for the future observation
Y,,1<b<N, can be computed using (56) and (57)
which can be approximated using MCMC algorithm by

the form
. " G*(yb|9i')
¥ (y, |t ol :
(yb| ) il.[:G*(be)dyb

where 9},i =1,2,3,---,u are generated from the post-
erior density function (25) using Gibbs sampler and
Metropolis-Hastings techniques.

A (1-7)x100% BPI (L,U) of the future observation
Y, is given by solving the following two nonlinear
equations

It

(58)

?iIZG:(Yb|9;)dyb =1-Z,, (59)
218 (woler)ay, 2

?iiIEG:(y“|9;)dyb -, (60)
SG (v |6} )dv,

Numerical methods such as Newton-Raphson are gen-
erally necessary to solve the above two nonlinear Equa-
tions (59) and (60), to obtain L and U for a given
T.

2) Point prediction

a) BPP for the future observation Yy, based on BSEL
function can be obtained using
y S) = be(ML) +(1_

b(B!

Q)E(y,t). (61)

where ¥ is the ML prediction for the future obser-
vation Y, which can be obtained using (54) and
E ( Yo |t) can be obtained using

“(olt) dyy- (62)

b) BPP for the future observation Y, based on BLINX
loss function can be obtained using

Yb|t I Yp ¥
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& 1 “AymL —a)
yb(BL):—gln[Qe M+ (1-Q)E (e |t)}, (63)

where ¥ ., is the ML prediction for the future obser-
vation Y, which can be obtained using (54) and
E (e’ay" |tb) can be obtained using

E(e—a\/b |t):I:e'ayb‘P*(yb |t)dyb. (64)

4.2. Prediction When p and 6; Are Unknown

4.2.1. Maximum Likelihood Prediction
Maximum likelihood prediction can be obtain using (50)
and (51) by replacing the parameters p, 6 and 6,
by p ML) ML) and 6’

1) Interval predlctlon

The maximum likelihood Interval prediction (MLIP)
for any future observation Y,,1<b<N can be obtained
by

Pr[t > olt]= Jvm G (yb| él(ML)’GZ(ML)

= J:OG; (yb|él(ML)’

, fJ(ML))dyb, M =—1,

02(ML)’ ﬁ(ML))dyb’ M=1.
(65)
A (1-7)x100% MLPI (L,U) of the future observa-

tion Y, is given by solving the following two nonlinear
equations

T T
Pr[y, > L(t)]t] :I—E,Pr[yb >U (t)[t] =7 (69
2) Point prediction
The MLPP for any future observation y,,1<b<N
can be obtained by replacing the parameters p, 6 and
6, by p ey Omy and Oy

Yoy = E(Ylt)
I ¥sG (yb|49 I(ML)> Y2(ML)> f)ML )dyb, M =—1, (67)
_J. yb (yb|9 1(ML)? (ML)? ﬁ(ML))dyb, M =-1.

4.2.2. Bayesian Prediction
The predictive density function of y,,1<b<N is given
by:

P (v, t) j jG (Yo| p.O); (6]¢)dpde, y, >0 (68)
where for M #—-1 and m=-1
(Y, t) j jG Yy| p,0)m (6]¢)dpde. (69)
Also, when M =—1 and m=-1

v (Vb|’):J:J;G: (Yol p.O); (¢]r)dpdo.  (70)

Copyright © 2012 SciRes.

1) Interval prediction

Bayesian prediction interval, for the future observation
Yy, 1<b< N, can be computed using (69) and (70)
which can be approximated using MCMC algorithm by

the form
>G(v]p'6})
Pyt . —
( b|) i#:lJ'OG (yb|pn’9;)dyb

where pi,H},i =1,2,---, i are generated from the pos-
terior density function (39) using Gibbs sampler and Me-
tropolis-Hastings techniques.

A (1-7)x100% BPI (L,U) of the future observation
Y, 1is given by solving the following two nonlinear
equations

IR

(71)

G (w]p gy, .
ZIIJ.G (yb|p: ')dyb 2
S M A ) L

Z',,IJO “(vo]p'.0})ay,

Numerical methods such as Newton-Raphson are nec-
essary to solve the above two nonlinear equations (72)
and (73), to obtain L and U for a given 7.

2) Point prediction

a) BPP for the future observation Yy, based on BSEL
function can be obtained using
y S) = be(ML) +(1_

b(B!

) (72)

, (73)

E(Yult), (74)

where )7h ., 1s the ML prediction for the future obser-
vation Y, which can be obtained using (67) and

E(Yor)

yb |t dy,. (75)

2) BPP for the future observation Y, based on BLINX
loss function can be obtained using

E(y,[t) =], vo¥

<t

b(BL)

1 -ay
=——In|Qe "™ +(1-Q)E ’aybt}, 76
an[ e " (1-)E(e ™ 1) |, (76)

where ¥ " is the ML prediction for the future obser-
vation Y, which can be obtained using (67) and

E (e’z"yb |t) can be obtained using
E(e ™ |t)= j:e'ayw* (Yo t)dys. (77)

5. Simulation Procedure

In this subsection we will consider the upper record val-
ues which can be obtained from the GOS by taking
m=-1k=1 and y, =1. In this section, we will com-
pute point and interval predictors of future upper record
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values in two cases, one sample and two sample predic-
tion as following:

5.1. One Sample Prediction

The following steps are used to obtain ML prediction
(point and interval) and Bayesian prediction (point and
interval) for the remaining (n—r) failure times

T =T nS=r+Lr+2

1) For given values of p,8, and 6,, upper record
values of different sizes are generated from the MTR
distribution.

2) Generate pi,Hli and Hzi,i =1,2,---,u, from the
posterior PDF using MCMC algorithm.

3) Solving Equations (21), numerically, we get the
95% MLPI for unobserved upper record values.

4) The MLPP for the future observation t,, is com-
puted using (22) when p is known and (36) when p
and 6, are unknown.

5) The 95% BPI for unobserved upper record are ob-
tained by solving Equations (29) and (30) when p is
known and (43) and (44) when p and 6; are un-
known.

6) The BPP for the future observation t, is computed

based on BSEL function using (31) when p is known
and (45) when p and 6; areunknown.

7) The BPP for the future observation t,, is computed
based on BLINX loss function using (33) when p is
known and (47) when p and 6; are unknown.

5.2. Two Sample Prediction

The following steps are used to obtain ML prediction
(point and interval) and Bayesian prediction (point and
interval) for future upper record value sY,,b=1,2.

1) For given values of p,6, and 6,, upper record
values of different sizes are generated from the MTR
distribution.

2) Generate pi,é?li and Hzi,i =1,2,---,u, from the
posterior PDF using MCMC algorithm.

3) Solving equations (53) when p is known and (66)
when p and 6; are unknown we get the 95% MLPI
for unobserved upper record values.

4) The MLPP for the future observation Y, , is com-
puted using (54) when p is known and (67) when p
and 6; are unknown.

5) The 95% BPI for unobserved upper record are ob-
tained by solving Equations (59) and (60) when p is

Table 1. Point and 95% interval predictors for the future upper record values T: when (p = 0.4, 6, = 1.24915, 0, = 3.19504,

Q =0.5).
Point predictions
(r,s)
BLINEX a=(0.01, 2, 3) BSEL ML
3, r+1) 1.30244 1.26763 1.257 1.3027 1.22518
3,r+2) 1.50949 1.44461 1.42573 1.50998 1.36665
G, r+1) 1.54467 1.54467 1.50303 1.5449 1.46006
5, r+2) 1.73144 1.67009 1.65177 1.73189 1.57457
(7,r+1) 1.4997 1.46631 1.4558 1.49993 1.40629
(7,r+2) 1.68695 1.62164 1.60205 1.68742 1.51416
Interval predictions
(r,s) Bayes ML
L U length L U length

@B, r+1) 1.07653 2.16685 1.09032 1.07264 1.59494 0.522302
(3,r+2) 1.14454 2.61449 1.46995 1.03036 1.80551 0.77515
5, r+1) 1.34499 2.34997 1.00498 1.34034 1.76244 0.422102
5, r+2) 1.41102 2.76539 1.35437 1.30879 1.94403 0.635244
(7,r+1) 1.30032 231374 1.01342 1.29492 1.69241 0.397485
(7,r+2) 1.37071 2.71872 1.34801 1.2662 1.8674 0.601199

Copyright © 2012 SciRes.
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Table 2. Point and 95% interval predictors for the future upper record values 7, when (p = 0.391789, 6, = 0.307317, 0, =
3.33166, Q = 0.5).

Point predictions

(") BLINEX a=(0.01, 2, 3) BSEL ML
@B, r+1) 2.322 2.23435 221354 2.32287 221747
3, r+2) 2.68054 2.52154 2.48465 2.68226 2.4958
G,rt1) 2.81243 2.74901 2.73223 2.813 2.74014
5, r+2) 3.13233 3.01438 2.98352 3.13346 3.00112
(7,r+1) 2.66724 2.62719 2.61879 2.6678 2.62507
(7,r+2) 2.8745 2.79894 2.78385 2.87574 2.79966

Interval predictions
(r,s) Bayes ML
L U length L U length

3,r+1) 1.91839 4.03255 2.11416 1.91487 2.94288 1.02801
3,r+2) 1.80949 5.02409 3.2146 1.82977 3.35066 1.5209
G,r+1) 2.46589 4.17173 1.70584 2.46339 3.42614 0.962751
5, r+2) 2.54923 5.01563 2.46641 2.53061 3.82785 1.29724
(7,r+1) 2.44491 3.71097 1.26605 2.44436 3.08759 0.643231
(7,r+2) 2.39459 4.67043 2.27584 2.39746 3.37074 0.97328

Table 3. Point and 95% interval predictors for the future upper record values Y, ,b=1,2 when (p = 0.4, 6, = 1.24915, 6, =
3.19504, @ = 0.5).

Point predictions

r.5 BLINEX a = (0.01, 2, 3) BSEL ML
3.1 0.669076 0.580084 0.552831 0.669789 0.55108
3.2) 1.06708 0.940272 0.901294 1.06814 0.905675
5.1 0.667379 0.581745 0.554524 0.668033 0.557414
(5.2) 1.05059 0.926826 0.888678 1.05157 0.879144
(7.1) 0.637403 0.552511 0.526817 0.638057 0.506104
(7.2) 0.999761 0.874356 0.838862 1.00077 0.790802
Interval predictions

(r,b) Bayes ML

L U length (CP) L U length (CP)
3.1 0.123947 2.03553 1.91158 (96.16) 0.0850494 1.47166 1.38661 (97.70)
3.2) 0.37762 2.70191 2.32429 (94.97) 0.267226 1.9068 1.63957 (98.54)
(€8)) 0.122991 1.97778 1.85479 (95.90) 0.0926795 1.36062 1.26794 (96.50)
(5.2) 0.377125 2.58594 2.20882 (94.75) 0.289275 1.75782 1.46854 (97.63)
7.1 0.122419 1.93781 1.81539 (96.01) 0.0854495 1.20807 1.12263 (95.03)
(7.2) 0.376222 2.51787 2.14165 (94.49) 0.266284 1.55638 1.2901 (95.43)
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Table 4. Point and 95% interval predictors for the future upper record values ¥, , b =1, 2 when (p = 0.391789, 6, = 0.307317,

0, =3.33166, Q = 0.5).

Point predictions

(*.0) BLINEX a =(0.01, 2, 3) BSEL ML

3.1 0.876869 0.696151 0.63902 0.878462 0.827878

3.2) 1.56559 1.22759 1.09298 1.56811 1.47625

(5.1) 0.88791 0.707462 0.647328 0.889363 0.828237

(5.2) 1.56375 1.25773 1.12298 1.56579 1.46954

(7.1) 0.813281 0.645203 0.598027 0.814804 0.695196

(7.2) 1.44473 1.15656 1.04976 1.44702 1.26946

Interval predictions
(r,b) Bayes ML
L U length (CP) L U length (CP)

3.1 0.100372 2.95917 2.8588 (97.15) 0.0974357 2.48911 2.39167 (95.56)
3.2) 0.320005 3.97264 3.65263 (97.32) 0.313335 3.18485 2.87151 (95.36)
(CN)) 0.0981198 2.80057 2.70245 (96.91) 0.0915446 2.42924 2.33769 (95.42)
5.2) 0.319049 3.64706 3.32801 (97.66) 0.297965 3.08572 2.78776 (95.16)
7.1 0.0971018 2.83087 2.73377 (96.94) 0.0826299 2.22201 2.13938 (94.13)
(7.2) 0.304841 3.74134 3.4365 (97.94) 0.26343 2.87667 2.61324 (93.33)

known and (72) and (73) when p and 6; are un-
known.

6) The BPP for the future observation Y, , is com-
puted based on BSEL function using (61) when p is
known and (74) when p and 6, are unknown.

7) The BPP for the future observation Y, , is com-
puted based on BLINX loss function using (63) when p
is known and (76) when p and 6; are unknown.

8) Generate 10, 000 samples each of size N = 6 from a
MTR distribution, then calculate the coverage percentage
(CP)of Y, .

The computational (our) results were computed by
using Mathematica 7.0. When p is known, the prior
parameters chosen as v, =2.3,v,=2.7,5 =05,5,=1.3
which yield the generated values of 6, =1.24915 and
6, =3.19504 . While, in the case of four parameters are
unknown the prior parameters (b;,b,,c,,c,,d,,d,) cho-
sen as (1.2,2.3,2,2,0.3,3) which yield the generated
values of p=0.391789, 6, =0.307317,6, =3.33166 .
In Tables 1-4 point and 95% interval predictors for the
future upper record value are computed in case of the
one- and two sample predictions, respectively.

5.3. Conclusions

It may be observed:

Copyright © 2012 SciRes.

1) Point and 95% interval predictors for future obser-
vations are obtained using a one-sample and two-sample
schemes based on a MTR distribution. Our results are
specialized to upper record values.

2) It is evident from all tables that, the lengths of the
MLPI and BPI decrease as the sample size increase.

3) For fixed sample size r the lengths of the MLPI
and BPI increase by increasing S or b.

4) The percentage coverage improves by use of a large
number of observed values.
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