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ABSTRACT

In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant sub-
model is introduced on the basis of parameter tests. One particular feature of the rule is that subjective grading of the
model complexity can be incorporated. We provide bounds for the mis-selection error. Simulations show that by using
the proposed selection rule, the mis-selection error can be controlled uniformly.
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1. Introduction

In this paper we consider a linear regression model with
fixed design and deal with the problem of how to select a
model from a family of models which fits the data well.
The restriction to linear models is done for the sake of
transparency. In applications the analyst is very often
interested in simple models because these can be inter-
preted more easily. Thus a more precise formulation of
our goal is to find the simplest model which fits the data
reasonably well. We establish a principle for selecting
this “best” model.

Over time the problem of model selection has been
studied by a large number of authors. The papers [1,2] by
Akaike and Mallows inspired statisticians to think about
the comparisons of fitted models to a given dataset.
Akaike, Mallows and later Schwarz (in [3]) developed
information criteria which may be used for comparisons
and in particular, may be applied to non-nested sets of
models. The basic idea is the assessment of the trade-off
between the improved fit of a larger model and the in-
creased number of parameters. Akaike’s approach is to
penalise the maximised log-likelihood by twice the num-
ber of parameters in the model. The resulted quantity, the
so called AIC, is maximised with respect to the parame-
ters and the models. The disadvantage of this procedure
is that it is not consistent; more precisely, the probability
of overfitting the model tends to a positive value. Subse-
quently, a lot of other criteria have been developed. In a
series of papers the consistency of procedures based on
several information criteria (BIC, GIC, MDL, for exam-
ple) are shown. The MDL-method was introduced by
Rissanen in [4]. In the nineties of the last century a new
class of model selection methods came into focus. The
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FDR procedure of Benjamini and Hochberg (see [5])
uses ideas from multiple testing and attempts to control
the false discovery rate, which we will call the mis-se-
lection rate in this paper. More recent papers of this di-
rection are published by Bunea ef al. [6], and by Benja-
mini and Gavrilov [7]. Surveys of the theory and existing
results may be found in [8-11]. In a large number of pa-
pers the consistency and loss efficiency of the selection
procedure is shown and the signal to noise ratio is calcu-
lated for the criterion under consideration. Among these
papers we refer to [12-16], where consistency is proved
in a rather general framework. A method for the sub-
model selection using graphs is studied in [17]. Leeb and
Potscher examine several aspects of the post-model-se-
lection inference in [9,18,19]. The authors point out and
illustrate the important distinction between asymptotic
results and the small sample performance. Shao intro-
duced in [20] a generalised information criterion, which
includes many popular criteria or which is asymptotically
equivalent to them. In this paper Shao proved conver-
gence rates for the probability of mis-selection. In [21] a
rather general approach using a penalised maximum like-
lihood criterion was considered for nested models.

Edwards and Havranek proposed in [22] a selection
procedure aimed at finding sets of simplest models that
are accepted by a test like a goodness-of-fit test. Unfor-
tunately, it is not possible to use the typical statistical
tests of linear models in Edwards and Havranek’s proce-
dure since the assumption (b) in the Section 2 of their
paper is not fulfilled (cf. Section 4 of their paper).

In this paper we develop a new universal method for
selecting a significant submodel from a linear regression
model with fixed design, where the selection is done
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from the whole set of all submodels. We point out the
several new features of our approach:

1) A new selection procedure based on parameter tests
is introduced. The procedure is not comparable with
methods based on information criteria and it is different
from Efroymson’s algorithm of stepwise variable selec-
tion in [23].

2) We derive convergence rates for the probability of
mis-selection which are better than those proved in pa-
pers about information criteria e.g. in [20].

3) Subjective grading of the model complexity can be
incorporated.

Concerning 1) we consider tests on a set of parameters
in contrast to FDR-methods, where several tests on only
one parameter are applied. Moreover w.r.t. 2), many au-
thors do not analyse the behaviour of mis-selection pro-
babilities. The results on bounds or convergence rates of
these probabilities are more informative than the consis-
tency. The aspect 3) is of special interest from the point
of view of model building. Typically model builder have
some preference rules in mind when selecting the model.
They prefer simple models with linear functions to mod-
els with more complex functions (exponential or loga-
rithmic, for example). The crucial idea is to assign to
each submodel a specific complexity number.

We do not assume that the errors are normally distrib-
uted. This ensures a wide-ranging applicability of the
approach, but only asymptotic distributions of test statis-
tics are available. From examples in Section 2, it can be
seen that applications are possible in several directions,
for instance to the one-factor-rANOVA model. The simu-
lations show an advantage of the proposed method in that
it controls the frequency of mis-selection uniformly. For
models with a large number of regressors, the problem of
establishing an effective selection algorithm is not dis-
cussed in this paper; we refer to the paper [24].

The paper is organised as follows: In Section 2 we in-
troduce the regression model and several versions of
submodels. The asymptotic behaviour of the basic statis-
tic is also studied there. Section 3 is devoted to the model
selection method. We provide convergence rates for the
probability that the procedure selects the wrong model
(mis-selection). We see that the behaviour is similar to
that in the case of hypothesis testing. The results of simu-
lations are discussed in Section 4. The reader finds the
proofs in Section 5.

2. Models

Let us introduce the master model
k
Y = Z;xijﬁj +¢g for i=L--,n,
=

where X = (xl.j) eR™ is the design matrix,
K

i=lm, =l
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p= ( BBy )T eR" is the parameter vector, and
&, +,&, are independent random variables. Assume
that B¢, =0, E|5i|p <+ forsome p>2,and

Var(g,)=0’. Y,,-Y, denote the values of the re-

sponse variable. In short we can write
Y=Xp+e, (N
where Y =(Y,,---.7, )T, = (g],---,gﬂ)r . The least square

n

estimator for £ is given by
B=(x"x)" Xx'r.
This leads to the residual sum of squares
R, =[r- X/}HZ —y7 (1 ~x(x'x) X" ) Y,

where |||| is the Euclidean vector norm.

The aim is to select model (1) or an appropriate sub-
model which fits the data well. Moreover, we search for
a reasonably simple model. In the following we define
the submodels of (1). The submodel with index
ve{l,---,v} has the parameter vector
)/:(7/1,72,---,71)T eR’, /=1(v), where the vector y
is related to f by f =D,y with an appropriate ma-
trix D, e R™ having maximum rank /<k . In a large
number of applications, the y;’s coincide with different
components of S . The submodel indices 1 and Vv
correspond to the model function equal to zero (no pa-
rameters) and to the full model, respectively. Thus we
can write the model equation for the submodel v as

Y=Xy+e, @

where X, = XD, . The parameter space of submodel v
in (1) is given by O, :{DvyzyeRl}. Next we give
several versions for the definition of submodels in dif-
ferent situations.

Example 1. We consider all submodels, where com-
ponents of [ are zero. More precisely, index v is
assigned to a submodel if y, =4 ,---,y, =f, are the

1

parameters of the submodel (i <i, <---<i), B,=0
for jeJ,={i,-i} and v:1+23zl2if71.Let

e = (O,"-,O,li,O,--‘)T € R* be the i-th unit vector. Then
DV=(ei],e,2,---,e,1)eRkX’,and

0, :{ﬂzﬂj =0 for alljezjv} . For example, for k=5,

the submodel with index v =14 has the parameters

n=p. 1n=p, = ad f,=p;=0 holds.
Moreover, we have
1 00
0 0 0
D=0 1 0], ©,={BckR’:p,=p =0
0 0 1
0 0 0
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in this case. Here the digits “1” in the binary representa-
tion of v—1 give the indices of the parameters S,
available in the submodel v. X, in (2) consists of the
columns i,---,i, of the design matrix X correspond-
ing to the present parameters in submodel v .o
Example 2 Let k=3.submodel1: g =0,
y=(B,/) - Submodel 2: B =1, y=(f,.5) . Sub-
model 3: identity (1). O
Example 3. We consider the one-factor ANOVA model

Y, =u+e,; for i=lL-,g, j=L-,n,
r n
where Y = (YH,le, ",K,,layzp"',ang) eR",

nle”

(,ul, vy )T eR* is the parameter
Vector. &, ", &, ~are independent random variables.
The submodels are characterised by the fact that several
s are equal. Let v be the k-th Bell number. A Sub-
model with index v e{l,---,v’} is determined by a par-
tition J,,,++,J, ,, of {1,---,g} inthe following way:

0, = {,5 tu; =y ifj, ke J,, for some i} . The submodel
with index v has /(v) parameters. Furthermore,

D, = (dij )izl’___,k,jzl,___’[(v) holds,
1forieJ

0 otherwise.

vj?

where d,.j = {

Example 3 shows that the model selection problem
occurs also in the context of ANOVA. In submodel (2)
with index v, the least square estimator 7, and the
residual sum of squares S, are given by

7, =(xIx,) Xy,

i 3)
S, =[r-x,7,| =

(I—XV (x7x,)" XVT)Y.

What is an appropriate statistic for model selection?
Let M,(v):=S, —R,.Here we consider a quantity
M, (v) , which is similar to F-statistics known from hy-
pothesis testing in linear regression models with normal
errors:

for v<i, M, (v)=0.
The main difference to classical F-statistics is that the

_1
n—I(v)

estimator S, of the model variance in submodel
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v appears in the denominator. The quantity ;S
n—I(v) "
is the proper estimator under the hypothesis of submodel
v. Classical F-statistics are used in Efroymson’s algo-
rithm of stepwise variable selection (see [23]).

In the remainder of this section we study the asymp-
totic behaviour of the statistic A, (v) when g, is the
true parameter of the model (1). For this reason, we first
introduce some assumptions.

. 1
Assumption A.Let G, =—X"X . Assume that
n

Rank(G,) =k,
limG,=I", I' regular.

n—»ow

Moreover,

p = max Z| U| —0( "/2 O

In a wide range of applications, the entries x, of the
design matrix are uniformly bounded such that

Bnp = O(n) =

A may be weakened in some ways, but we use this as-
sumption to reduce the technical effort. We introduce

o(np/z) since p > 2. The Assumption

T, =DITD, e R and
K, =B (I-TD,T,'D] )Tf, eR.

Proposition 2.1 clarifies the asymptotic behaviour of
the statistic M, (V)

Proposition 2.1. Assume that Assumption .4 is sat-
isfied.

1) Assume that £, €0,
have

and I(v)<k . Then we

M, (V)Lllf—l(v) :

2) Suppose that 3, ¢©®, and [(v)<k.Let
G, =T+ o(n’l/z) be satisfied 7 —> oo . Then we have

M, (v):(o-2 +KV)71 K,n+~InW, + o, (\/;),

where W, L)/\/(O,O';,), oy = 4(62 +K, )_2 o’K, .

Depending on whether the true parameter [, belongs
to submodel v or not, the statistic M, (v) has a dif-
ferent asymptotic behaviour. In the first case, it has an
asymptotic y’-distribution. In the second case it tends to
infinity in probability with rate Jn . Therefore, the sta-
tistic M, (v) is suitable for model selection. In the next
section a selection procedure is introduced based on
M R (v) serving as fundamental statistic.

3. The New Selection Rule

In this section we propose a selection rule which is based
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on the statistic (4). We introduce a measure d(v)eZ
of the complexity for submodel v with
0<d(v)<d,, . With this quantity d(v) it is possible
to incorporate a subjective grading of the model com-
plexity. The restriction to integers is made for simpler
handling in the selection algorithm. The following exam-
ples should illustrate the applicability of the complexity
measure.

Example 4. We consider the polynomial
p(x) =+ Byx+-+ B.x*". The regressor is observed
at the measurement points x,,---,x,. Hence x; =x/ -
for i=1-,n, j=1--k. P0551ble chmces for

d=d(v) are:

1) d is the degree of the polynomial plus 1,

2) d=I(v) is the number of parameters B, avail-
able in the submodel, the other parameters f3; are zero,

k(k

1
3) d :—)+l(v) , where [(v) is the number of

parameters /3, available in the submodel. This choice
has the advantage that a polynom of higher degree al-
ways gets a higher complexity number. O

Example 5. For a quasilinear model with regression
function f(x)=/f + f,x+ fIn(x), we can define d
as follows:

1 for submodel functions /' (x) = ﬂl, f(x)=px,

2 for submodel function f (x) =
d =<3 for submodel function f (x)

4 for submodel functions f (x) =

5 for the full model

This choice takes into account that the logarithm is a
more complex function in comparison to constants or
linear functions. o

Next we need restricted parameter sets defined by

Example 3: If d(v)=1I(v) then

={B:u;# p foralljeJ, ke,

Vi

Given values a,(0),--,, (d,,.)€(0.@), a <1, we
introduce special y*-quantiles:

v, (d.) =z (1-,(d))
for 1=0,---,k-1, y,(d,k)=1.

Here y, (d,l) is just the quantile of order 1-a, (d)
of the asymptotic distribution of M, (V) unter the null
hypothesis S, € ®,, cf. part 1) of Proposition 2.1. The
quantity «,(d) will play the role of an asymptotic
type-1 error probability later. A submodel is referred to
as admissible if M, (v)<y,(d(v),/(v)) is satisfied,
which in turn corresponds to the nonrejection of the hy-
pothesis that the parameter belongs to the space ®, of
the submodel. The generalised information criterion in-
troduced by Shao (see [20]) is given by
GIC, =S, +ll R / n k . We next show that there
is a relatlonshlp between the both approaches. A sub-
model v is admissible if

GIC, < GIC, ,

where 4, =t//"(n—k)/((k—l(v))(n—k—l//n)) . More-
over, note that our selection procedure is completely dif-
ferent from Shao’s one. Whereas A, in information
criteria is typically free of choice, the quantity y, is
well-defined and motivated. Let F, be the distribution
function of the y; -distribution. We introduce the fol-
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In(x)

1+ﬁ2

B+ By In(x), f(x) = fox+ f;In(x)

0, =0, \U_¢ ()®[.
for V—l V.
Example 1 d(v)=1(v) then
={ﬂ:ﬂ/¢0fora11jer,ﬂ/.=OforalljeJV}.D

It is assumed that G): 3G,

i#=lu, = ifj ke, forsomez}

lowing rule for the selection:
Select a model v" such that

d(v*) = min{d(v) I1<Sv<v,M,(v)<y, (d(v),l(v))}
and
Fk*l(v*) (M" (V*))
= min{Fk_l(v) (A7[n (V)) 1<v<v,d(v)= d(v*)}.

The central idea is to prefer any admissible model with
lower complexity. If there is more than one admissible
model with the same minimum complexity, then we take
the model with maximum p-value of M, (v).

The next step is to analyse the asymptotic behaviour of
the probability that the wrong model is selected; i.e. the
probability of mis-selection (PMS). Let S, @: ,
d=d(v), 1 =1(v). The following cases of mis-selec-
tion can occur:

(m1) M

(v)>
(m2) M,(v)<

F}c—l(i) (M" (l))
(
(m3) M,,(v)s(//n(a,l"), Mn( )ﬁ(//n(d(j),l(j))
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for some ; with d(j)< d.

The probability of mis-selection case (m2) may be de-
creased by reducing the number of submodels having the
same complexity. The Theorem 3.1 below provides
bounds for the selection error.

Theorem 3.1. Let f3, € ®, . Assume that Assumption
A is fulfilled, and

limnﬁmllnan(d):o forall d=0,---,d
n
DIf Gn=1"+o(n’1/2) as n—oo,and p=>3,then

P{(m1)}=a,(d)(1+0(1))+O(n"B,;)

3

max °

n
with B, = j;ggxkz x,.j|
=l

2)If a,(d)=Cn* forall d=0,-,d,,,
a,C >0, then

P{(m2)}=0(B,n") and P{(m3)}=0(B,n").

with some

The PMS of case (ml) behaves like a type-1-error in a
statistical test. It approaches asymptotically ¢, (d )
under the assumptions of part 1). The additional term
with rate O(n’3/ ’ B”3) comes from the application of the

central limit theorem, and has rate 0<n’l/ 2) in the case,

where the x;’s are uniformly bounded. This theorem
shows that the PMS of cases (m2) and (m3) tends to zero
at rate O(n'”) provided that the x;’s are uniformly
bounded and «,(d)=Cn™* forall d andsome

a > 0. These rates of PMS are rather fast. They are better
than in comparable cases in [20] (4, and w, can be
considered to have the same rate). One reason is that in
this paper alternative techniques such as Fuk-Nagaev
inequality are employed to obtain the convergence rates.
The results of Theorem 3.1 recommend the selection rule
above from the theoretical point of view. The behaviour
in practice is discussed in the next section.

4. Simulations

Here we consider the polynomial model:
Y, =B+ Box, + Bxl + Bux; +e, for i=1n

where x,,---,x, €[0,1] are the observations of the re-
gressor variable, and the ¢;’s are i.i.d. random variables.

o . i
For simplicity, we consider the case x, =—. The com-
n

plexity d is measured as given in Example 4(b). We
compare the selection method of the previous section
with procedures based on Schwarz’s Bayesian informa-
tion criterion (BIC, see [3]) and the Hannan-Quinn crite-
rion (HQIC, see [25]). The Tables 1-3 show the frequen-
cies of mis-selection. The results are based on 10° repli-
cations of the model. We choose the following error

Copyright © 2012 SciRes.

Table 1. Frequencies for mis-selection (FM) in percent in
the case n = 100, 6 = 0.2, & ~ MO, 6°).

FM new FM FM

b pr P Pa method  BIC HQIC

0 100 100 100 1910 2018 2.043
0.344 100 100 100 1998  1.895 1.869
100 0 100 100 1.900  2.006 2.029
100 3 100 100 1952 1.855 1.830
100 100 0 100 1918  2.029 2.055
100 100 6.99 100 1.943  1.844 1.822
100 100 100 0 1911 2017 2.043
100 100 100 458 2011 1910 1.886

0 0 100 100 2.049 3201 3239
03681 3.21 100 100 1.830  5.006 4.928
0 0 0 100 2.078  3.725 3.780
0377 338 765 100 1.936  3.490 3.432
0 0 0 0 2,102 4.008 4.060
038872 339 7.8987 51754  1.825 5269 5.178
—0.38872 339 7.8987 5.1754 1830 6309 6.198
038872 339 7.8987 51754  1.893 5297 5213
038872 339 —7.8987 51754  1.873  8.039 7.900
038872 339 7.8987 -5.1754 1.897 6452 6.347
—0.38872 -3.39 7.8987 51754 1893 5297 5213
—0.38872 339 -7.8987 5.1754 1864 14207 13.95
038872 339 7.8987 -5.1754 2029  6.736 6.622

Table 2. FM in percent for different error distributions.

FMnew FM FM

no B A &~ meth. BIC HQIC

100 0 0 0 0 o3 1735 3.895 3.951
0.468 4.104 9.516 6264 o-((3) 2.043 2966 2.943
400 0 0 0 0 N(0,0°) 0956 1.780 2.502
0 0 0 0 of(3) 0942 1736 2459
-0.216 1.873 4365 —2.863 N (0,6°) 1.122 53869 3.905
~0.216 1.873 4365 -2.863 o#3) 3.067 8.164 6275

probabilities: ¢, (1)=0.02, «,(2)=0.022,
a,(3)=0.024, «,(4)=0.026 inthecase n=100,and
a,(i)=0.01 inthecase n=400.

The selection rule of the previous section always gives
FM-values near the given values of ¢,. The methods
based on BIC and HQIC partially show FM-values also
near these «,, but in some special cases the FM-values
are much higher (for example, for S =-0.38872,

B, =339, B, =-7.8987, pB,=5.1754 according to
Tablel; g =-0.2569, p,=2.227, pB,=-5.197,
B, =3.405 according to Table 3). By our method we
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Table 3. FM in percent in the case n = 400, ¢ = 0.2, & ~
o-1(3).

FMnew  FM FM
b pr ps Ba method  BIC  HQIC

0 0 0 0 0.942 1.736  2.459
0.2569 2227  5.197  3.405 1.003 1.990  1.596
-0.2569 2227  5.197  3.405 0.958 2.086  1.657
0.2569  —2.227 5.197  3.405 0.984 2.169  1.728
0.2569 2227 -5.197 3.405 0.945 2.575  2.004
0.2569 2227 5197 -3.405 0.987 2.141  1.690
-0.2569 -2.227 5.197  3.405 1.011 2.005 1.606
-0.2569 2227 -5.197 3.405 0.798 3.567 2.652
-0.2569 2227 5197 -3.405 1.015 2299 1.823

0 100 100 100 1.200 1.064  1.427
0.217 100 100 100 0.983 1.059  0.890
100 0 100 100 1.004 0.873 1.217
100 1.89 100 100 0.969 1.046  0.868
100 100 0 100 0.984 0.844  1.202
100 100 4.38 100 0.976 1.059  0.876
100 100 100 0 0.948 0.817 1.168
100 100 100 2.87 0.992 1.070  0.887
100 0 0 100 0.973 1.0706  1.525

100 2.08 4.84 100 1.010 1.084 0.914
100 2.08 —4.84 100 0.868 22384 1.741

are able to control the FM-values by choosing an appro-
priate ¢, .

5. Proofs

By C, we denote a positive generic constant which can
vary from place to place and does not depend on other
variates. Throughout this section, we assume that As-
sumption A is fulfilled. In the following we prove aux-
iliary statements which are used later in the proofs of the
theorems.

Lemma 5.1.

IP’{gTXXTg > ;7} <C (Bnpn—p/z + e*Coiy/n)

holds for all 7 >0, where C,,C, >0 are constants not
dependingon 7, n.
Proof: Obviously,

JP’{STXXng 77} <>

k n 2
{[injsij > nkl}
=1 i=1

j
> \/;k—l/z }’

and Z”:x; <nTrace(G,)=0(n).
i1

j=1 i=1

Copyright © 2012 SciRes.

Applying Fuk-Nagaev’s inequality (see [26]), we ob-
tain the assertion of the lemma:

P{gTXXTg > 77}

< C(Bnpiy"’/2 +exp[—ﬁD. Gl
n

Lemma 5.2. Assume that S, € ®, for some
ve {1,---,\7} . Then

]P{
holds  for nn>8lc®, n<l and n large enough,

where [ :=I(v) and C,,C;>0 are constants not de-
pending on 77, n.The same upper bound holds for

2 ).

Proof: Observe that

I_SV—O'Z
n—I[

> 77} <C, (n—p/Zn-p/Z n e*C_wZn)

—cTe—0?

n—

s, :gT(I—XV(XVTXV)_I Xf)g

by (3). Hence
IP{ !

n—
Further an application of Fuk-Nagaev’s inequality from

[26] leads to
>0l op >
2 8

"
n 2
< C(n—p/zn—p/zzE|gi|p +exp(— ?];7 4nD ©6)
i=1 g

[\
w3

}

(5)
+]P’{ Loy, (x7x)) xTe zﬁ}.
] 2

¥(e2-0?)

i=1

—eTe—o?
n—1

< C(n—p/zn—p/z +e—C772n)
for nn>8lc*, n>2[ . Since
~ 1
D, =D, (—
n
therefore, D, has a bounded norm, we deduce
1

IP’{ _' X, (XTX,) Xle> Q}
] 2

n—

-1
X! ij D! - D,I', D] e R** holds, and

(7
< P{gTXXTg > Cf]nz} < C(B"pi’l_pﬂ_p/z Lo Cm )

by Lemma 5.1 for n large enough. A combination of
Inequalities (5)-(7) yields the lemma. []
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Note that
S, =(e+X8,) (I—XV (XVTXV)’1 Xj)(g+Xﬂ0)

®)
= Svl +2Sv2 + Sv37

where

S, =& (I—XV (x7x,)" Xf)g

v

=p (I-G,D,G, D] ) X"z,

n v vn

szznﬂo (G GDG 1DVT n)ﬂO’ Gvn ::%XZXV'

n 4 vn

]P’{ I_szn}s]P 1_(svl+lsvsjzﬁ piL
n—1[ n—1[ 2 2 n—1I

for some
I(v). Then

V

Lemma 5.3. Suppose that S, ¢ ©,
ve{l,-,v}. Let n>K,+207, I =

1) SV3=nKV+0(x/;) and
2)

.

for n>n, and n large enough with constants
C,,C; >0 notdependingon n, 7.

Proof: Part 1) is a consequence of G,, —»I', and
G, = I'.2) Using Lemmas 5.1 and 5.2, we deduce

1 n
S,+=8,; ==
( v2 2 V3j 2}

SP{%KV+n'I/2C+L_ng>Z}HP{%K +nPC+——

n
Lclxrdz 2}

_ 2
sp{ L grex? ’70;20 }+IP’{5TXXT32C(’7_’70)2"2}
o

T, 2

for n>2] large enough. This implies assertion 2) of
the lemma. [
An application of the central limit theorem and the
Cramér-Wold device leads to the following lemma:
Lemma 5.4. Let & :=n""X"¢. % denotes the i-th
column of X7 . Then

Then D,y

> 2’70}+C(B n (n-m)"" +e*C<"*”°>2") < C(n_p/z(ﬂ_ﬂo )" ”76(”7”0)2")

1 &
gn:ﬁ;x@—% N(0.0°T).

In the second part of this section we provide the proofs
of Proposition 2.1 and Theorem 3.1.
Proof of Proposition 2.1. 1) Let 5, €0, .

= [, holds with an appropriate vector y, € R ™) We have

M, (v)=Y" (X(X X)X -x, (x7x,) XVT)YT

- ,gTX((XTX)'1 -p,(x!x,) D! )XTg

:(;nT( -D,G,'D!

v vn

Moreover, the identity

limG,'-D,G,'Dl ="' —D,I;'D] ©9)

n—00

holds in view of Assumption A . An application of
Lemma 5.4 and the Cochran theorem leads to

oM, (v)—D—U(,f_,(V) . Lemma 5.2 implies that

We derive

)&,

1

n—1 (v)
position 2 is proved.

2) Let /420, . and

W, =2B8G ( DVGW 'D! )é‘n . By assumption,

G,'-D,G,D] =T =D,I;'D] +0(n™") holds true.

S,—"—>0c", and therefore assertion 1) of Pro-

M, (v)= (gTX+ﬂ0TXTX)((XTX)4 -p,(xIx,) D! )(XTXﬁO +XTe)

=£7(G,' =D,G,\D} )&, +nW, +npy (

From Lemma 5.4, (9) and G, — I, it follows that
W, L)J\/'(O, o-é) , where

o3 = 40”1 (I = D,I,' D] )T (I = D,I,' D] )T 4,
=40°K,.

Copyright © 2012 SciRes.

G,~G,D,G,D}G,) B, = nK, +~nW, +o, (\n).

. 1
We obtain n—l(v)SVl z

Moreover, we deduce

S =B (1-6,D,G00 )&, =0, ().

o’ using Lemma 5.2.
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Hence by (8) and Lemma 5.3,
|

n—1(v)
assertion 2). [

In the proof of Theorem 3.1, we need the following
Lemma which is proved before.

Lemmab.5. For B, ¢0,, K, >0 holds true.

Proof. Let Q:=1-T"*D,[,'DIT"*, and y=T""p,.
Then K, =3»"Qy>0 since Q is symmetric and idem-
potent. Moreover,

Rank (Q) = Trace(Q) =k - Rank(Dvl";lDVT)

S, —— 0o’ +K,, which completes the proof of

=k—-Il=m
Therefore we have the following representation
Q=Y hhl =HDH", D =diag(l,,---,1,,0,,,,--,0,),
i=1
and h,---,h, are the first m columns of the orthogo-

nal matrix H e R¥* . For xeR’,
T L T 2
X Qx=2(x hl.) =0 xlh
i=1

for i=1-,mexel(h,,,h).

We consider the linear independent vectors
zy=D,e,,z,=D,e, ¢ =(0,~~-,1j,0,---) eR' is the
J-th unit vector, and obtain

2Pz, =¢] (D/TD, - D.TD,T,'D/TD, )e; =0. (10)

Since z, ="?z,,--,7, =T"?z, ¢ L(h,,.,h, ) are lin-
ear independent, these vectors form a basis of
L(h,.,., -, h ). Assume that K, =0. Then there exist a
aeR' such that

!
g, = > az = ['’D,a,and hence B, =D,ac®,
i=1
in contradiction to the assumption. This proves the le-

mma. [l
Proof of Theorem 3.1: One shows easily that

1
v (d.1)>0.
n!//n( )=

Let & =0'G,"?¢, (&, asin Lemma 5.4), and
x>0 be a constant. Define

v, = (02 + Kn’l/“)l//n (57 l_) Since
M,(v)=0’¢/G¢E,.G,=1-G"D,G,!D!G) ,
tain by using Lemma 5.2

P{(ml)}=P{M, (v)>w,(d.T)}

_ __ 1
-1/
SIP’{M” (v)>wn(d,l),02—lcn " <msv}
1

~1/4
HP{n—l(v) = } (11)
<PM, (v)>y,j+0(n")
<P{§ Gé: >O_2[//n}+0( 71/2)
and analogously,
B, (v)>v, (d.0)| 2 B(E'G.E > 077, +O(n") .
(12)

we ob-

2
S, —o

Note that cov(&,)=07G,, which implies

cov(é‘n ) = I . Further by Assumption A,
SN E|G: Y25 _ -3/zB
S Bl s -0
Since {z eRF:Z7Gz < a} is a convex set for all

a >0, we can apply Bhattacharya’s theorem on a multi-
variate Berry-Esseen inequality (see [27])

‘P{gf&fn > 0_21/7,,} _P{ZTénZT > 0'21/7,1}‘ _ O(n—l/z) ’
where Z ~ N'(0,7). The Cochran theorem implies that

7'G, Z "~ x2+. We denote the distribution function of
the ;(k 7 -distribution by F, ;. Hence

P{z'G,2" > 07, =1-F,_;(o7,)
~(1=F (v, (4.1))) (14 0(1) =, (@) (1+0(1)),

and IP’{ZTGnZT > O'_zl/_/"} =q, (67)(1+0(1)) .
Combining these identities and (11), (12) we obtain

assertion 1).
2) One can show that v, (d 1(i )) O(In(n)). Let

{¢,} beasequence of real numbers with ¢, —> o,

v, = (02 —Kn*1/4),/,’1 (57,1_) , ¢, = o(m//n (c?,l(i))fl) . We deduce
P{(m2)} < IP’{M” (v)<y, (57,1_),17,(_1(0 (A7[n (z)) < Fk-z(v)M (v) for some i:d (i) 57}
< Wd(i):J]P{Fk_,(i) )<F, (y/n (a.7 )} = Wg(;):d IP’{Fk o (M, () <1-a,(d )}

Copyright © 2012 SciRes. 0oJS
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n

Define K, = f.G, (G’l —DI.G;,lD,.T)G,,/?0 .Let izv

with d(i)=d . Obviously, lim

K, =K, holds true.

n—o

161

Since B, ¢©,, we have K, >0 by Lemma 5.5. Fur-

thermore, by Lemma 5.1 we obtain

P{M, (i) <y, (d.0())¢,} = P{nl?m. +&(G,' = D,G,'Dl )&, +nW, <y, (E,l(i))cjn}

<P{nK,, +nW, <y, (d.1(i))¢,} = P{28,G,(G,' - D,G, D] )&, <y, (d.1(i))g,n " ~nK,, |

np

< P{‘zﬂgq (G,'-D,G, D] )5‘ >\nK, -y, (J,z(i))gnn-l/z} < P{||§,, |= CJZ} <P{e’'XX"e>Cn’|=0O(B,n")

for n large enough. On the other hand, we have

The bound for ]P’{(m3)}

1 _ -p/2 p-p/2 ~C¢an
P{n_l(i)sizgn}_o(n e )

P{(m3)} = ]P{ZV[n (i)<w,(d(i).1(i)) for some i,d (i) < 67} =

can now be established

along the lines of the proof for IP’{(mZ)} O

(1]
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