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Abstract 
In this work we propose a solution method based on Lagrange relaxation for 
discrete-continuous bi-level problems, with binary variables in the leading 
problem, considering the optimistic approach in bi-level programming. For 
the application of the method, the two-level problem is reformulated using 
the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking 
advantage of the structure of the leading problem. Using a Lagrange relaxa-
tion algorithm, it is possible to find a global solution efficiently. The algo-
rithm was tested to show how it performs. 
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1. Introduction 

The use of optimization techniques has been a fundamental part of solving prob-
lems. However, the most common mathematical programming models are often 
unsuitable for situations involving more than one goal and more than one deci-
sion-maker. 

In most cases, decisions about a given process are the result of an interaction 
between the preferences of a group of individuals, so deciding on a single crite-
rion seems insufficient, particularly when the decision-making process is applied 
to complex organizational environments. 

Consequently, it is more realistic to seek the achievement of several objectives 
at the same time. This implies that problems must be solved according to a crite-
rion that satisfies all decision-makers as a whole. As a result, contradictory and 
incommensurable criteria will commonly appear. This situation has led to the 
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development of multi-objective optimization. 
Another way to consider multiple objectives is through bilevel optimization 

problems, which involve two decision-makers and also consider interdepen-
dence between them. These problems are considered as the generalization of the 
Stackelberg problem [1] for non-cooperative games. 

The bilevel programming problem can be formulated as: 
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where 1nx∈  are the higher level variables controlled by the top-level deci-
sion-maker or “leader”, and 2ny∈  are the lower-level variables controlled by 
the lower-level decision-maker or “follower”. 1 2, : n nF f + →   are the upper 
and lower goal functions respectively. In the decision process, the leader makes a 
decision that optimizes his objective function. Once the leader has decided, the 
follower reacts by seeking to optimize his own objective function. 

For bi-level programming problem, its fundamental properties and concepts 
have been studied since the 1970s. A large number of references can be found in 
[2]. In general, a bi-level programming problem is difficult to solve: [3] proved 
that even the simplest case, as the linear bi-level problem, is NP-hard. 

Additionally, in many bi-level programming problems, a subset of variables is 
restricted to taking discrete values. With these characteristics, [4] [5] and [6] 
proposed branch and bound algorithms for mixed and binary integers. [7] de-
veloped a branch and bound algorithm to solve binary non-linear mixed integer 
problems. In the work of [8], it is pointed out that the branch and bound me-
thods require linear or non-linear convex functions at the lower level of the bi-level 
problem to be functional. 

[9] proposed fundamental properties to find a solution in bi-level linear pro-
grams with binary variables. They suggested penalty function methods to solve 
discrete bi-level problems. 

[10] proposed a reformulation and linearization algorithm for the whole bi-level 
mixed-integer general problem with continuous variables in the follower using 
the representation of its convex hull. [11] proposed an algorithm to solve the 
bi-level quadratic problem and the mixed-integer linear based on parametric 
programming. More recently, [12] used two algorithms using multiparametric 
programming to solve bi-level integer problems with the integer variables con-
trolled by the first level. [13] proposed an algorithm based on the same strategy 
for bi-level mixed integer problems where the follower solves an integer prob-
lem. 

[14] presented an algorithm for the global optimization of bi-level mixed-integer 
nonlinear problems consisting of generating a convergent lower bound and an 
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optimal upper bound. [15] proposed an exact algorithm for the linear mixed-integer 
bi-level problem with some simplifications. [16] considered integer bi-level prob-
lems with the leader objective function being linear-fractional and linear the 
follower; he proposes an iterative algorithm of cut generation to solve the prob-
lem. 

Using decomposition techniques, [17] proposed an algorithm based on Bend-
ers decomposition to solve the linear mixed integer binary problem; with this 
method, the target values are bounded, and Karush-Kuhn-Tucker (KKT) condi-
tions are used to transform the problem into two problems of one level. Based 
on the last proposal, [18] and [19] proposed the use of Benders decomposition 
with a continuous subproblem. 

Based on the dual decomposition, [20] proposed a method based on Lagran-
gian relaxation to obtain an acceptable solution solving a sequence of single level 
mixed-integer programs. Their heuristic pretends to solve a bi-level problem 
with binary variables in both levels, considering that the upper-level constraints 
do not contain any lower-level variable. 

In this work, a solution method for discrete-continuous bi-level problems 
based on Lagrangian relaxation is presented. For our proposal, the reformulation 
of the bilevel problem to a single level problem with Karush-Kuhn-Tucker con-
ditions is applied. This nonlinear problem can be linearized by taking advantages 
of the structure of the binary variables of the leader problem. Finally, the prob-
lem can be solved with a dual decomposition method. 

Due to their complexity, bilevel problems are usually solved by heuristic me-
thods. Our proposal allows us to find a global optimal through a decomposition 
technique, taking advantage of some characteristics of the problems involved. 
The paper is organized as follows: the following section presents the definition 
and formulation of the discrete-continuous bi-level problem. In Section 2, the 
solution algorithm is presented. In section 3 the results of the application of the 
algorithm are shown. 

2. Problem Definition and Mathematical Formulation  

In this section, we formulate the discrete linear binary problem (DCBLP), where 
partial cooperation (or optimistic approach) is assumed [21], in which, if the 
follower has alternative optimal solutions, choose the one that is the best for the 
leader. The problem can be written as: 

{ }
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When the lower-level problem is linear, it can be reformulated by replacing 
the lower-level problem with its Karush-Kuhn-Tucker (KKT) conditions [2] [22]: 

,
min

x y
 1 1c x d y+                         (3) 

subject to:  

1 1 1A x B y b+ ≤                          (4) 

2 2 2A x B y b+ ≤                          (5) 

( )T
2 2 2 0b A x B yλ − − =                      (6) 

( )T
2 2 0d B yλ+ =                         (7) 

{ }0,1 , , 0x y λ∈ ≥                         (8) 

where 
T T T T
2 2 2 2d y B y A x bλ λ λ≥ − ≥ −                   (9) 

For a given selection of the leader problem, the problem can be reformulated 
by relating the primal and dual constraints and requiring the duality gap to be 
zero. By including the equation: 

T T T
2 2 2d y A x bλ λ= −                      (10) 

satisfaction of both complementarity constraints is guaranteed. 
Then, the problem (2) can be written as: 
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Considering the problems (11)-(16), the term 
11, , nxλ µ µ µ = =   , where 

iµ  is the i-th column of µ , can be linearized [17] [18] [23] and Constraint (15) 
can be rewritten to obtain the following equivalent problem: 

,
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( ) 11 1, , ; 1, ,li l iM x l q i nµ λ≥ − − = =                  (22) 

11, ,i i nµ λ≤ =                      (23) 
T 1, ,l Mx l qµ ≤ =                      (24) 

0µ ≥                                 (25) 

{ }0,1 , , 0x y λ∈ ≥                            (26) 

where M is a large positive number. 
With Constraints (22)-(25), it is ensured that variables liµ  take value zero if 

0ix =  and lλ  if 1ix = , 11, ,i n=  , 1, ,l q=  . 
To avoid the use of binary variables, the problem can be transformed into the 

following model equivalent to the problem (17)-(26): 

,
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Constraint (36) is considered as a complicated constraint so that it can be du-
alized. From this idea, the following section proposes a solution method for the 
DCBLP. 

3. Solution Algorithm 
Lagrange Relaxation  

Considering the problem (27)-(37), Constraint (36) as complicated constraint, 
and a given 0u ≥ . A lagrangian relaxation is defined by: 

( )

1

2
1 1,

1 1 1

2 2 2
T

2 2

T T
2 2 2

1

min

subject to :
x y

n

i i
i

c x d y u x x

A x B y b
A x B y b

B d

d y A b

λ

µ λ
=

+ + −

+ ≤
+ ≤

− ≤

= −∑

 

https://doi.org/10.4236/ojop.2019.83009


Z. E. Alarcón-Bernal, R. Aceves-García 
 

 

DOI: 10.4236/ojop.2019.83009 105 Open Journal of Optimization 
 

( ) 1

1
T

1 1, , ; 1, ,
1, ,

1, ,
0

0 1, , 0

li l i

i

l

M x l q i n
i n

Mx l q

x y

µ λ

µ λ

µ
µ

λ

≥ − − = =

≤ =

≤ =

≥
≤ ≤ ≥

 




           (38) 

where the dual function ( )uω  is defined as the Lagrange subproblem: 
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From the previous function, for all 0u ≥  

( ) * *
1 1u c x d yω ≤ +                       (40) 

Then, the values of the dual function are lower bounds of the optimal value of 
(27)-(37). From this definition, we have the duality gap: 

( )* * *
1 1 0c x d y uω+ − ≥                     (41) 

To solve the problem, we try to reduce the duality gap, considering that if the 
problem (27)-(37) is nonconvex, the duality gap is usually greater than zero. How-
ever, for convex problems, the duality gap disappears [24]. 

So the dual problem is to find the vector of multipliers u for which the lower 
bound given by the dual function is maximum: 

( )max

subject to : 0
u

u

u

ω

≥
                     (42) 

If the set of feasible solutions could be available in the feasible region of 39, 
the problem could be solved by listing all of them as 

( ) ( )( )2

1 1,
min , 1, ,s s s s

x y
u c x d y u x x s rω = + + − =            (43) 

To solve the problem, a dual decomposition algorithm is proposed, for which 
a method of dual cutting planes is used. In this method, an approximation of the 
dual function is maximized and has convergence properties similar to those of 
the subgradient methods [25]. 

The dual function is concave and the problem can be reformulated as the fol-
lowing problem, called the master problem of Lagrangian relaxation [25] [26]: 
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where each constraint is a Lagrange cut. 
The optimization of the dual problem consists of the iterative resolution of the 

master problem whose number of Lagrange cuts increases with each iteration. 
With the solution of each master problem, a new value of the multiplier u is 

obtained, which, when evaluated in the Lagrange subproblem, generates a new 
cut for the master problem. 

When the multiplier generates non-bounded subproblems, a constraint must 
be entered on the master problem that eliminates the multiplier. This cut is 
known as a boundary cut and is obtained by solving the boundary subproblem 
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If the optimal solution is a negative value, a boundary cut must be entered in 
the master problem with the form: 

( )( )2

1 10 r r r rc x d y u x x≤ + + −                  (46) 

In this way, the Lagrangian relaxation algorithm iterates between a master 
problem formed by Lagrange and boundary cuts and a subproblem that eva-
luates the proposed multipliers. 

Lagrangian Relaxation Algorithm 
The structure of the Lagrangian relaxation algorithm considering the above in-

terpretation is described below: 
Step 0. Initialization 0k = , 610−=   
Step 1. Solve the Lagrangian Relaxation Master Problem 

( )

( )( )
( )( )

2

1 1

2

1 1

max

subject to : if generate a Lagrange cut

0 if generate a boundary cut

u

k k k k k

k k k k k

u

c x d y u x x u

c x d y u x x u

ω

ω ≤ + + −

≤ + + −

(47) 
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Get the value of ku  and go to step 2. 
Step 2. Solve the boundary subproblem (45). If ( )* 0uω ≥  go to step 3. In 

another case, obtain the solution kx , form the corresponding boundary cut, and 
go to step 1. 

Step 3. Solve the Lagrange subproblem (39). Get the solution kx , form the cor-
responding Lagrange cut, and go to step 4. 

Step 4. If 1k ku u− − <   stop. Otherwise go to step 1.  

4. Results and Discussion  
4.1. Comparisons  

In the literature, some articles consider the same type of problems that in this work. 
Those problems were used to test the performance of the proposed algorithm. 

Numerical experiments were performed on an Intel Core i7 2.5 GHz PC with 
8.0 GB RAM, compiling 64-bit GAMS 24.7.3 for Windows with the CPLEX and 
LINDO solvers. Table 1 shows the results obtained when using the algorithm and 
its comparison with published works. 

Based on the obtained results from the examples, the algorithm reaches the op-
timum in a very short time and with little iteration: 2, 4, 3, and 4 respectively. 

4.2. Test of Algorithm  

To show the algorithm operation solving an application problem, sixty-one prob-
lems were tested, for which the leader and follower solutions are presented. The 
performance of the algorithm was measured using the execution time and com-
paring the obtained solutions with those corresponding to the single-level re-
formulation with Karush-Kuhn-Tucker conditions and with the Benders de-
composition method proposed in [18]. The results are shown in Table 2.  

The experiments were performed on an Intel Core i7 2.5 GHz PC with 8.0 GB 
RAM, compiling 64-bit GAMS 24.7.3 for Windows with the CPLEX and IPOPT 
solvers. 

The behavior of the algorithm, in general, is good as can be seen in Figures 
1-3. Execution time is reasonable. Even for problems of 30 binary variables con-
trolled by the leader problem and 2700 by the follower, the maximum running 
time was 12 minutes. Using a Lagrange relaxation algorithm, it is possible to find 
a global solution efficiently. 

5. Conclusions  

In this paper, we propose an algorithm to solve the discrete-continuous bi-level 
problem with results very close to the optimum. Lagrangian relaxation is ap-
plied to the reformulation to a single-level of the problem considering the Ka-
rush-Kuhn-Tucker conditions, and the binary variables are relaxed for the construc-
tion of the Lagrange subproblem. 

The computational results of the approach show that the algorithm obtains 
good results. The method reaches the optimum in 68% of the solved problems, 
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Figure 1. Comparison of the optimal value of the leader objective function. 

 

 
Figure 2. Comparison of the optimal value of the follower objective function. 

 

 
Figure 3. Computing time in seconds. 
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Table 1. Comparison of results. 

No. No. Variables Reference 
Results in 
reference 

Algorithm 
results 

Running  
time (s) 

 Leader Follower     

1 4 3 [5] 1011.67F = −  1011.67F = −  2.294 

    4673.34f = −  4673.34f = −   

2 2 2 [27] 3.25F = −  3.25F = −  3.247 

    6f = −  6f = −   

3 1 1 [4] 13F =  13F =  2.169 

    1f =  1f =   

4 1 2 [17] 961.69F = −  960F = −  4.94 

    4673.36f = −  4616f = −   

 
Table 2. Lagrange relaxation algorithm results of test examples. 

Problem size Average Runtime Average Gap 

Leader  
variables 

Follower  
variables 

Benders  
decomposition 

Lagrange  
relaxation 

F f 

10 100 7.00 2.49 0.0% 0.0% 

10 200 8.08 3.26 0.0% 0.0% 

15 450 15.88 12.97 0.0% 0.0% 

20 800 38.28 29.93 0.0% 0.0% 

20 1000 73.45 25.54 0.0% 0.0% 

30 1800 202.86 204.60 0.5% 1.8% 

30 2250 319.16 289.92 1.7% 3.5% 

30 2700 473.54 338.35 0.0% 0.0% 

 
in relatively short times, being 12 minutes the maximum time necessary to find a 
solution, corresponding to a problem with 30 binary variables in the leader prob-
lem and 2700 in the follower, two restrictions on the leader and 5610 on the fol-
lower. 

As a future work, the approach will be used without considering the single-level 
reformulation of the bilevel problem and the consideration of more than one 
objective in the leader function. 

The method can be used for problems involving cooperative decision-making 
at two levels, e.g. allocation of resources at minimum cost considering maximi-
sation of the level of service, location of unwanted facilities, among others.  
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