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Abstract 
This paper reviews several recently-developed techniques for the mini-
mum-cost optimal design of water-retaining structures (WRSs), which inte-
grate the effects of seepage. These include the incorporation of uncertainty in 
heterogeneous soil parameter estimates and quantification of reliability. This 
review is limited to methods based on coupled simulation-optimization (S-O) 
models. In this context, the design of WRSs is mainly affected by hydraulic 
design variables such as seepage quantities, which are difficult to determine 
from closed-form solutions or approximation theories. An S-O model is built 
by integrating numerical seepage modeling responses to an optimization al-
gorithm based on efficient surrogate models. The surrogate models (me-
ta-models) are trained on simulated data obtained from finite element nu-
merical code solutions. The proposed methodology is applied using several 
machine learning techniques and optimization solvers to optimize the de-
sign of WRS by incorporating different design variables and boundary con-
ditions. Additionally, the effects of several scenarios of flow domain hy-
draulic conductivity are integrated into the S-O model. Also, reliability 
based optimum design concepts are incorporated in the S-O model to 
quantify uncertainty in seepage quantities due to uncertainty in hydraulic 
conductivity estimates. We can conclude that the S-O model can efficiently 
optimize WRS designs. The ANN, SVM, and GPR machine learning tech-
nique-based surrogate models are efficiently and expeditiously incorporated 
into the S-O models to imitate the numerical responses of simulations of 
various problems. 
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1. Introduction 

Construction of water-retaining structures (WRSs) [1] [2], such as dams, bar-
rages, regulators and weirs, is essential for stable and safe water management 
and to generate clean energy. However, significant considerations and hazards 
must be recognized in their design, such as economic factors and the risk of fail-
ure. Accordingly, the design and analysis of such structures require precise esti-
mation and understanding of relevant variables and parameters, especially those 
related to seepage quantities, and their impacts on WRS safety. This study presents 
a coupled simulation-optimization (S-O) approach to identifying minimum-cost 
WRS designs while incorporating numerical seepage analysis, uncertainty in 
seepage quantities, and hydraulic design safety factors.   

Hydraulic structures that impound a considerable amount of water (head) and 
are constructed on permeable soil foundations are associated with water seepage. 
Seepage forces threaten the hydraulic efficiency and structural stability of such 
structures. Another consequence of seeping water is pore-water pressure, which 
applies uplift (upward) pressure on the structure’s floor (apron) and may cause 
it to collapse. 

The mathematical relationship between seepage design variables with flow 
domain characteristics is complex and nonlinear. An analytical solution may be 
obtained only for simple and symmetrical cases. Many approximation and em-
pirical theories have been proposed for estimating seepage quantities (particu-
larly uplift pressure and exit gradient). These theories include Bligh’s creep 
theory, Lane’s weighted creep theory, the flow-net method, the fragment method 
and Khosla’s theory [3] [4]. Their applications are associated with significant 
amounts of error compared to applications that use analytical solutions or expe-
rimental modelling. Additionally, the analytical methods and approximation 
theories apply to ideal general soil conditions (homogeneous and isotropic), 
which are rarely found in real-life cases [5].  

Recently, as a result of the development of numerical methods and compute-
rized processes, many seepage problems related to WRS have been accurately 
simulated and solved by numerical methods such as the finite element method 
(FEM). Furthermore, hydraulic conductivity variation and other soil parameters 
can be integrated into a numerical model to study the consequences of varying 
soil parameters on WRS design. However, numerical techniques only provide 
solutions when certain parameters of the hydraulic structure are known, includ-
ing the boundary conditions and geometry of the flow domain. This means that 
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numerical models do not provide generalized performance equations similar to 
those provided by analytical solutions. 

Considering the above-mentioned arguments, the contradicting goals of effi-
ciency, accuracy, safety and cost must be simultaneously integrated into the de-
sign process to attain optimum, safe and economical WRSs. Hence, the optimi-
zation approach can be used to identify optimal WRS designs. As a result, the 
minimum cost and safest WRSs can be achieved. Directly coupling a numerical 
model to an optimization model to attain an optimum WRS design is computa-
tionally inefficient and time-consuming. Alternatively, the numerical model 
could be replaced by an approximate machine learning model (surrogate model) 
that accurately and expeditiously imitates the numerical model’s responses. Such 
surrogate models (meta-models) can be trained based on numerically simulated 
data (input and output) sets.   

Linked simulation optimization (S-O) models based on surrogated models 
have been applied to solving groundwater and water resource problems and 
other applications related to groundwater management and identification of 
contaminant sources [6]-[18]. Specifically, in WRS design involving seepage ef-
fects, few studies have utilized S-O techniques. Singh [19] [20] formulated an 
optimization model to find the optimum dimensions of a barrage at minimum 
cost. The author used Khosla’s theory to obtain seepage characteristics that were 
processed by an optimization algorithm. Kholsa’s theory is only applicable to 
small hydraulic structures and the resulting solutions have a noticeable amount 
of error. Al-Suhaili and Karim [21] implemented an indirect S-O model based 
on an artificial neural network (ANN) model to find optimum solutions for hy-
draulic structures at minimum cost. In their study, WRS safety factors were only 
considered in terms of exit gradient and uplift pressure, while sliding, overturn-
ing and eccentric load effects were ignored. Also, the ranges of the implemented 
cases were only applicable to small WRSs (total head less than 10 m). Accor-
dingly, there is limited potential to apply S-O models to the hydraulic design of 
WRSs. Additionally, no studies have yet considered the effects of uncertainty in 
some of the design parameters related to seepage analysis.   

The current paper presents a few innovative applications of a newly developed 
S-O technique that can determine optimal WRS designs (safe, reliable and eco-
nomic) based on adequately trained meta-models. Induced seepage forces, and 
many safety factors and design requirements related to WRSs such as overturn-
ing, sliding safety factors, and prevention of eccentric load conditions, are con-
sidered in the S-O approaches. Also, uncertainty in seepage characteristic esti-
mates due to uncertainty in hydraulic conductivity is integrated into the reliabil-
ity based optimum design using S-O model. For each S-O model, the type of 
machine learning technique and optimization solver are selected based on pre-
diction accuracy and efficiency.  

In the following sections, different scenarios and applications of linked S-O 
approaches were used to find the optimum WRS design. Section two encom-
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passes the linked S-O models for simple WRS including two end cut-offs and 
apron. The coupled S-O models in section three is used for comprehensive 
(complex) WRS incorporating 10 cut-offs and stratified flow domain based on 
different hydraulic conductivity values. The fourth section incorporates the re-
liability concept in the S-O models using RBOD framework to address uncer-
tainty in estimate the seepage characteristics due to uncertainty of hydraulic 
conductivity. The fifths section includes more advance application of RBOD us-
ing multi-objective multi-realization optimization (MOMRO) models.  

2. Application of the S-O Approach to a Simple Conceptual  
Seepage Model Related to WRS Design 

2.1. Conceptual Seepage Model and Data Generation  

A simple conceptual seepage model was proposed to illustrate the WRS design 
problem [22], as shown in Figure 1. This model uses fixed positions and variable 
depths for the cut-offs at each end of a WRS (upstream, downstream) and a va-
riable apron length between the cut-offs. The proposed training ranges of the 
input design variables were: 1 - 40 for cut-off depths at the upstream (d1) and 
downstream side (d2); 1 - 60 for upstream water head (H) and half the WRS 
apron width (b). 

Training of meta-models is based on datasets simulated by a numerical see-
page modeling code (Geo-Studio/SEEP/W) [23]. Five hundred input data points 
are used as independent variables (d1, d2, 2b, H) and are randomly generated using 
the Latin hypercube sampling (LHS) method [24]. The output data is obtained  
 

 
Figure 1. Conceptual seepage model. 
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from numerical seepage modeling for each input set. The most important output 
data are uplift pressure on the floor at the upstream cut-off (PC), uplift pressure 
on the floor at the downstream cut-off (PE) and the exit gradient (ie) at the toe 
of the WRS. 

The ANN technique is used to develop the meta-models in this section. ANN 
can explore complex, discontinuous and nonlinear relationships between data-
sets [25]. For seepage and groundwater problems related to hydraulic structures, 
ANN has been utilized to simulate and identify seepage characteristics [21] 
[26]-[32]. Based on the 500 generated data points related to the WRS seepage 
system, ANN was used to build three meta-models. These models provide accu-
rate predictions of seepage characteristics without utilizing further numerical 
seepage simulation, i.e., Geo-Studio/SEEP/W code. To select the best parameters 
for the ANN models and provide accurate predictions, many designs of experi-
mental models were implemented using the Taguchi method [33] to find the 
ideal ANN parameter [34] combination for each surrogate model of each see-
page characteristic. The final PC model had 11 neurons, 60/40 training-to-vali- 
dation ratio, logsig transformation function for the hidden layer, and purelin 
transformation function for the output layer. The final PE model had four neu-
rons, 50/50 training-to-validation ratio, logsig transformation function for the 
hidden layer, and purelin transformation function for the output layer. Similarly, 
the final ie model had five neurons, 50/50 training-to-validation ratio, logsig 
transformation function for the hidden layer, and tansig transformation func-
tion for the output layer. 

2.2. Formulation of the Optimization Model  

The optimization model was formulated as follows:  
Find { } { }*

1 2 3 4 1 2, , , , , ,X x x x x d d b b= =
 

Minimize 

( ) ( )1

1

2
2

2
f

c s s
s

c b t t
f X t c d

=

+
= + ∑                    (1) 

Subject to: 

( )1 2, , , ,ie crtFS H d d b ieε=  

ie exitFS FS≥                            (2) 

( ) 
1 2, , ,fl usFs H d d b− =   

 
fl us upliftFs FS− ≥                          (3) 
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3
bEcc ≥                              (5) 

2
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where  
1t ,  

2t  represent the floor thicknesses at the upstream and downstream 
sides, respectively. fc  is the construction cost of the floor per cubic meter 
($400/m3), cc  is the construction cost of the cut-offs per cubic meter, which is a 
function of the cut-off depth (d1, d2) as shown in Equation (9) and Equation (10), 
and ct  is the cut-off thickness, which equals 1.0 m. 

3 2
1 1 1 120 200 400C x x x= + + +                     (9) 

3 2
2 2 2 220 200 400C x x x= + + +                    (10) 

ieFs  is exit gradient safety factor determined by the meta-models {ε( )}. 
  
fl usFs − ,   

fl dsFs −  are safety factors imposing weight on the upstream and down-
stream floors of the WRS to safely counterbalance the uplift pressures (PC, PE) 
[35] [36]. Computing of   

fl usFs − ,  
fl dsFFs −  is mainly based on the developed 

meta-models ( ){ } , ( ){ }γ , respectively. Ecc  is an eccentric distance (condi-
tion) to prevent eccentric loading on the WRS foundation. Mpas  is the passive 
momentum obtained from all forces, which increases the stability of the WRS, 
Mact  is the active momentum obtained from all forces, which decreases the 
stability of the WRS, and Vload  is the resultant of all vertical loads influencing 
the WRS. , ,Mpas Mact Vload  are determined based on *

1 2, , , , , , ,c wH b b t t G G PC  
and PE .  

overFs  is the overturning safety factor and  
slidFs  is the sliding safety 

factor. C is the soil cohesion resistance, and  tanf = ∅ , where ∅  is the inter-
nal friction angle [5]. The values of f and C are assumed to be  tan 0.7f = ∅ =  
and C = 20 kPa. Hl is the resultant of all horizontal loads affecting the WRS. 

2.3. Results and Discussion 
Simulation-Optimization Model 
The S-O technique was implemented for different H values ranging from 2 m to 
40 m. The design requirement of the WRS and all the constraints were satisfied 
for each optimum solution. The optimum solutions for the different H values 
show that d1 and d2 make considerable contributions to the hydraulic safety of a 
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WRS (see Figure 2 and Figure 3). Nonetheless, the length of d2 is more impor-
tant than that of d1, because d2 has a substantial impact on the ie value, which is 
the critical factor in the hydraulic design of WRSs [37] [38].   

The optimum width (2b) of a WRS effectively influences its optimum hydrau-
lic design, because the total width is directly integrated into the specified safety 
factors. Reduction of the optimum WRS width (2b) could be attributed to in-
creasing floor thicknesses at the upstream and downstream sides (t1, t2) with in-
creases in head, which results in an expensive design. Therefore, the S-O model 
reduces the total width and simultaneously augments the depths of d1 and d2, 
which is an efficient and cost-effective solution to reducing the tremendous up-
lift pressure and exit gradient effects experienced at large H values. Moreover, b* 
considerably contributes to the optimum hydraulic design of the WRS. The 
weight of water head above b* counterbalances the uplift pressure and enhances 
the stability of the WRS. This means that the value of b* substantially contributes 
to WRS safety and provides a cheaper solution. 

3. Coupled Simulation-Optimization Technique for  
Optimum WRS Hydraulic Design Incorporating Complex  
Seepage Scenarios  

Often, the seepage prevention components of WRS projects are the end cut-offs  
 

 
Figure 2. Optimum solutions (d1, d2) for different head values. 
 

 
Figure 3. Optimum solutions (2b, b*) for different head values. 
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(upstream and downstream) and the apron between them. Limitations in the 
orientation, length, and number of cut-offs, and the width of the apron reduce 
the opportunity of finding a feasible optimum solution using the linked S-O 
technique. Including the effects of different scenarios of hydraulic conductivity 
and anisotropic ratios on WRSs is an important concept that must be considered 
in their optimum design. Moreover, studying soil stratification based on differ-
ent values of hydraulic conductivity and quantifying its effects on optimum 
WRS design is another concept that needs to be considered.  

Hence, a comprehensive conceptual model is proposed, as shown in Figure 4. 
This model includes ten cut-offs distributed along the apron of the WRS. The 
cut-off lengths, orientations, and distance between them (the apron) are consi-
dered as variables. These variables are used to build meta-models and, within the 
S-O model, their optimum values can be determined. Based on the optimum so-
lutions for safe, minimum-cost WRS designs that consider seepage impacts, the 
most important and active sets of optimum values can be identified. This section 
investigates the effects of soil properties on the optimum solutions and identifies 
the most important and effective seepage control components for optimum 
WRS design. 

The geometry of the assumed numerical model comprised ten cut-offs (sheet 
piles) with varied positions, lengths, and orientations. Additionally, three subsoil 
layers were assumed and the principle (horizontal) hydraulic conductivity (kx) 
and anisotropic ratio (ky/kx) were varied for each layer and each case. As a re-
sult, the contribution of each variable of the comprehensive model to the optim-
al design can be explored for various boundary conditions.  

The prescribed range of each design variable and parameter is shown in Table 1.  
 

 
Figure 4. Seepage conceptual model scheme. 
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Table 1. Summary of the variables used in the model. 

Symbol H b1, b2, …, b11 d1, d2, …, d10 β1, β2, …, β10 LD1, LD2, LD3 kx1, kx2, kx3 (ky/kx)1, (ky/kx)2, (ky/kx)3 

Units m m m degrees m m3/day - 

Range 2 - 100 1 - 120 0 - 60 30 - 150 5 - 100 0.01 - 20 0.1 - 1.5 

 
The ranges of hydraulic conductivity and anisotropic ratios used cover a wide 
range of typical real-life values [39] [40] [41] [42]. The 41 input variables in-
cluded in the conceptual model were: total upstream water head (H), ten cut-off 
depths ( 1 2 10, , ,d d d� ), their angles ( 1 2 10, , ,β β β� ), the distances (widths) be-
tween cut-offs ( 1 2 10, , ,b b b� ), three subsoil layer depths (LD1, LD2, LD3), their 
hydraulic conductivities in the horizontal direction (

1 2 3
, ,x x xk k k ), and their ani-

sotropic ratios (ky/kx)1, (ky/kx)2, (ky/kx)3, respectively. The most important see-
page design characteristics for each numerical seepage model were the uplift 
pressures in front of (PEi) and behind (PCi) each single cut-off ( 1 2 10, , ,S S S� ) in 
addition to the exit gradient (ie) at the toe of the hydraulic structure. Hence, 21 
meta-models were required, one for each seepage characteristic.  

3.1. Support Vector Machine Surrogate Model 

The support vector machine (SVM) is one of the most popular machine learning 
techniques and has recently been used for various nonlinear and complex engi-
neering problems [43]-[54]. The Matlab programing language was utilized to 
develop the meta-models used in the present study because it is a versatile tool 
that has many options that can be modified to build efficient SVM-based me-
ta-models. Twenty-one models were built to determine the uplift pressures in 
front of and behind each cut-off, and the exit gradient near the toe of the WRS. 
These models were trained on 1500 scenarios of numerically simulated data. The 
input variables were randomly generated using LHS, then numerically simulated 
to determine seepage characteristics (output variables).   

For each uplift pressure dependent variable, two different SVM models were 
built and trained on different training/testing datasets randomly selected from 
source data. A basic version of the ensemble surrogate model based on an aver-
age of the two models was developed. This procedure provides a more robust 
and accurate prediction. Also, any uncertainty arising from source data or me-
ta-model prediction can be reduced by using the ensemble surrogate model. For 
exit gradient, three different models were developed. The coefficient of determi-
nation (RSQ) and mean square error (MSE) for the training and testing phases 
were used as measures of the predictive accuracy of the meta-models based on 
detached data. The parameters of each SVR model were carefully selected after 
performing trial-and-error iterations until the best RSQ and MSE values were 
obtained.  

3.2. Optimization Model  

The optimization model described in this section includes 31 decision variables 
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( 1 2 11, , ,b b b� , 1 2, ,d d � , 1 2 10, , ,β β β� ) and several constraints. Also, the opti-
mization solver evaluates the objective function and constraint values based on 
21 ensemble surrogate model responses. This makes the optimization problem a 
complex task. Safety factors and other hydraulic design requirements represent 
the imposed constraints of the optimization model within the S-O model. The 
best value of each design/decision variable was selected by the optimization al-
gorithm to provide a safe and economic design. For this complex optimization 
task, the hybrid genetic algorithm (HGA) was used. The HGA is a combination 
of two optimization algorithms: GA and the interior point algorithm (IPA) [55] 
[56] [57]. The HGA provides a global optimum solution and can deal with com-
plex problems.  

Formulation of the optimization model in this section is similar to that in Sec-
tion 2. However, because many cutoffs were used, flotation constraints (safety 
factors) were applied at all key uplift pressure points associated with different 
cut-off locations. Moreover, the construction cost incorporates the effect of in-
clination angle. Hence, Equation (11) is used in determining the construction 
cost of the cut-offs. 

2 2 20.05 200 0.0698 12.558 565.93c i i i iC d d iβ β= + + − + ∀        (11) 

3.3. Results and Discussion 
Head Variation Effects  
The linked S-O was implemented for different head values ranging from 20 m to 
100 m. Other parameters were kept constant, such as hydraulic conductivity for 
all layers (kx = 5 m/day), anisotropic ratio ((ky/kx)1 = 1) and the depth of soil lay-
ers (50 m). The obtained optimum solutions can determine the vital values of all 
the provided design (decision) variables. This means that the optimization solver 
selects the design variables that provide the safest and most cost-efficient WRS 
design for the optimum solution.  

In general, the optimum solutions obtained demonstrate that the contribu-
tions of variables b1 to b8 and d2 to d8 to WRS safety are insignificant. The opti-
mum values for these variables approached zero. In contrast, values b9, b10, b11, d9 
and d10 had vital roles in optimum WRS design, as shown in Figure 5 and Fig-
ure 6. These variables, for most implemented cases, had considerable values 
which varied according to head values. The function of d9 is to reduce PC9 and 
PE10 uplift pressure and exit gradient value. More importantly, the function of 
d10 is to directly reduce the exit gradient value, which is the most critical seepage 
characteristic. The functions of b9 and b10 are to provide sufficient weight to sta-
bilize the WRS, reduce uplift pressure, and provide sufficient width to counter-
balance overturning and sliding forces. 

Other important variables were β9 and β10, which are related to d9 and d10, re-
spectively. The optimum value of β10 is 150˚. This is logical, as making the incli-
nation angle of the last cut-off toward downstream (greater than 90˚) substantially 
decreases the exit gradient value. This can be attributed to the augmentation of  
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Figure 5. Optimum width between cut-offs for the implemented cases according to head 
values. 
 

 
Figure 6. Optimum cut-off depths for the implemented cases according to head values. 
 
the streamline length of seeping water, particularly when β10 reaches 150˚. Thus, 
the duration and distance of seeping water would increase, which can reduce the 
exit gradient value. The optimum value of β9 was 30˚ in all implemented cases. 
Such an inclination angle can reduce uplift pressure under b10. This helps de-
crease the construction costs of WRSs.    

In general, it seems that effective and optimum WRS designs must include 
two upstream and downstream cut-offs, the width (b10) between them, and the 
width (b9) on the upstream side. These widths are necessary to provide sufficient 
weight for the WRS to resist external hydrostatic loads and uplift pressure and 
play a vital role in satisfying WRS design requirements (constraints) such as 
sliding, overturning and eccentric load conditions.  

All the optimum solutions satisfied the safety factors and requirements of 
WRS design. For all implemented cases, the optimum solution attained the 
minimum allowable value of the exit gradient safety factor, which is five. This 
reflects the significance of the exit gradient safety factor in WRS design and how 
it affects the construction cost because it is mainly controlled by the depth and 
inclination angle of the last cut-off (d10, β10), which are indispensable and expen-
sive components used to reduce the exit gradient impact. 
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3.4. Hydraulic Conductivity (kx1) and Anisotropic Ratio (ky/kx)1  
Effects 

The same procedure which was applied to study the effects of upstream water 
head was implemented to quantify the effects of the hydraulic conductivity (kx1) 
and anisotropic ratio (ky/kx)1 of the first layer. The first layer is the nearest layer 
to the foundation of the WRS (Figure 4). The effect of (ky/kx)1 was studied by 
assuming eight different values ranging from 0.1 to 1.5. Ten values of kx1 ranging 
from 0.01 m/day to 20 m/day were specified and processed using the S-O tech-
nique. The values of the other design variables and parameters were left con-
stant. 

Generally, the optimum solutions obtained revealed that increases in (ky)1 and 
the (ky/ky)1 ratio significantly decrease the total cost of the WRS, as shown in 
Figure 7 and Figure 8. The reason for this is that when kx1 increases with a con-
stant anisotropic ratio ((ky/kx)1 = 1), seeping water can easily move from the 
high-pressure zone (upstream) to the low-pressure zone (downstream). Conse-
quently, the pore-water pressure underneath the WRS and the exit gradient val-
ues decrease. Thus, great cut-off depths and significant widths between cut-offs 
are unnecessary. Similarly, when the anisotropic ratio (ky/kx)1 is large with a spe-
cified hydraulic conductivity (kx1 = 5), the seeping water motion in the vertical 
direction becomes faster and the exit gradient becomes smaller compared to that  
 

 
Figure 7. Minimum-cost optimum WRS design for different values of kx1. 
 

 
Figure 8. Minimum-cost optimum WRS design for different values of (ky/kx)1. 
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obtained for small (ky/kx)1 ratios. Hence, for high values of (kx)1 and (ky/kx)1, the 
optimum values of d9, d10, b9, and b10, which are the most effective variables, de-
crease and, consequently, the optimal cost declines.  

For small values of (ky/kx)1 and kx1, the exit gradient safety factor and safe ec-
centric distance play crucial roles in the optimum solution, compared to the 
other safety factors. This is evident as these safety factors reached the maximum 
or minimum allowable limit to satisfy the design requirements, while the opti-
mum design attained the minimum construction cost. Table 2 and Table 3 
demonstrate the safety factor variations for different values of (ky/kx)1 and kx1, 
respectively.   

The S-O results demonstrate that the contributions of b1 to b8 and d1 to d8 to 
WRS safety are insignificant because their optimum values approached zero. 
Optimum solutions for WRS were based on increasing the values of b9 and b10 to 
counterbalance the uplift pressures, and on augmenting d9, d10 and β10 to de-
crease the exit gradient, as shown in Figures 9-12. Also, there is a significant 
contribution of d9 associated with the minimum value of β9 required to decrease 
uplift pressure beneath b10, which represents a large portion of the WRS floor.  
 
Table 2. Safety factors for the implemented cases for different values of kx1. 

kx1 Exit gradient safety factor Overturning safety factor Sliding safety factor 

0.10 5.00 1.83 2.38 

0.50 5.00 1.82 2.33 

0.90 5.00 1.81 2.30 

1.50 5.00 1.79 2.25 

4.00 5.00 1.72 2.04 

7.00 5.00 1.61 1.50 

10.00 5.00 1.59 1.50 

13.00 5.00 1.59 1.50 

17.00 5.00 1.60 1.50 

20.00 5.00 1.61 1.50 

 
Table 3. Safety factors for the implemented cases for different values of (ky/kx)1. 

(ky/kx)1 Exit gradient safety factor Overturning safety factor Sliding safety factor 

0.1 5.0 2.0 6.5 

0.3 5.0 1.9 5.7 

0.5 5.0 1.9 3.8 

0.7 5.0 1.8 2.2 

0.9 5.0 1.7 2.1 

1.1 5.0 1.7 2.0 

1.3 5.0 1.7 2.1 

1.5 5.0 1.8 2.2 
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Figure 9. Optimum widths between WRS cut-offs for various values of kx1. 
 

 
Figure 10. Optimum WRS cut-off depths for various values of kx1. 
 

 
Figure11. Optimum width between WRS cut-offs for various values of (ky/kx)1. 
 

 
Figure 12. Optimum cut-off depths for various values of (ky/kx)1. 
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In particular, the optimization solver increased the d10 and β10 values to 
achieve a safe exit gradient, even though it is a more expensive option (Equation 
(11)). These variables were more effective at reducing the exit gradient, which is 
the most critical safety factor. Hence, the optimum value of β10 was 150˚, which 
is the maximum specified limit for this variable. For the same reason, the incli-
nation angle of the upstream cut-offs (β9) approached the minimum allowable 
limit (30˚) for all implemented cases. 

Simultaneously, to corroborate WRS stability and satisfy related safety factors, 
the required optimum WRS width was provided by b9 and b10. Furthermore, the 
uplift pressure on the downstream side decreased with increases in total width, 
which contributed to reductions in exit gradient. Therefore, the values of b9 and 
b10 mainly provide an efficient cross-section and weight to resist external loads 
and uplift pressures, and partially reduce the uplift pressure and exit gradient.  

4. Reliability Based Optimum Design of WRSs Constructed  
on Heterogeneous Porous Media 

Soil properties, and especially hydraulic conductivity, have large covariance val-
ues of 200% - 300%, which means the level of uncertainty in hydraulic conduc-
tivity is high [58]. Therefore, many studies have been conducted to study the ef-
fects of uncertainty and variations in soil properties on the reliability of designs 
[59]-[66]. Specifically, for groundwater and seepage for hydraulic structures, 
most studies have concentrated on stochastic analyses of seepage characteristics 
based on different realizations of hydraulic conductivity generated from differ-
ent probability distribution functions (PDF) or sets of means and standard devi-
ations [61] [67]-[72]. The important conclusion of such studies is that the degree 
of uncertainty drastically influences the seepage characteristics, which may ne-
gatively affect a design’s performance and safety. 

This section concentrates on developing a reliability based optimum design 
(RBOD) framework to find optimum WRS designs at minimum cost and with a 
particular level of reliability while considering uncertainty in hydraulic conduc-
tivity and seepage. This can be achieved by formulating a constrained mul-
ti-realization optimization model linked with an S-O technique utilizing a GA 
optimization solver and incorporating many stochastic ensemble GPR me-
ta-models. The minimum-cost objective function and stochastic constraints 
within the S-O model are based on the responses of ensemble meta-models. Re-
liability constraints are simultaneously integrated into the S-O model and are 
based on the ensemble surrogate responses to quantify the reliability of the de-
sign. Each meta-model in the ensemble model is trained and tested based on 
large datasets simulated by a numerical seepage modeling code (SEEP/W) [23]. 
Each meta-model imitates the numerical seepage modeling responses based on a 
particular field of heterogeneous hydraulic conductivity. The characteristics of 
each random field are based on means (μ) and standard deviations (σ) from a 
log-normal probability distribution function (PDF). Predictions of each surro-
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gate model represent one of the seepage characteristics based on a particular 
random field involving different realizations of heterogeneous hydraulic con-
ductivity. The process used to quantify the reliability of design within the RBOD 
framework is based on determining the number of stochastic responses and sa-
tisfying a particular constraint of the total number of meta-models (stochastic 
responses) in the ensemble. These meta-models were trained and tested based 
on various seepage datasets resulting from numerical simulation of various see-
page models and scenarios of heterogeneous hydraulic conductivity.  

Reliability level was formulated as an additional constraint. All stochastic con-
straints were continually controlled until the desired reliability level was achieved 
for each single iteration of the optimization model. Reliability constraints, sto-
chastic constraints, and deterministic constraints were simultaneously evaluated 
with the objective function to attain the optimum solution. The majority of the 
constraints and the objective function were based on the ensemble surrogate 
model responses within the S-O model.  

The optimization model is considered a complex one. Hence, the optimization 
solver and machine learning technique had to be efficient and accurate enough 
to provide reliable and accurate solutions. Therefore, GA was utilized as an op-
timization solver for this task. Based on the conceptual model shown in Figure 
13, input data could be generated. The important design variables influencing 
seepage quantities were upstream cut-off (d1), downstream cut-off (d2), total 
width of WRS (b), upstream water head (H), and hydraulic conductivity.  

The input data comprised 150 sets of seepage design variables (d1, d2, b, H), 
which were randomly generated utilizing the Halton sequences (HS) method 
 

 
Figure 13. Conceptual model of a WRS. 
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[73]. Heterogeneous hydraulic conductivity was assumed to be a random field 
sampled from a log-normal distribution. Five standard deviations (0.85, 1.55, 
2.25, 2.95 and 3.65) were assumed based on a constant mean of 2 m/day.  

Based on each standard deviation value, a random field of hydraulic conduc-
tivity was generated and incorporated in the numerical seepage model. As unli-
mited realizations could be generated from a log-normal distribution for a cer-
tain standard deviation value, each input dataset (d1, d2, b, H) was simulated 
with four different random realizations (random fields) of the same standard 
deviation value. Some 600 simulated datasets were used for training each surro-
gate model for a particular seepage characteristic. This procedure ensures that 
the numerical responses for different hydraulic conductivity realizations are 
recorded and incorporated into the surrogate model’s training data. Figure 14 
and Figure 15 represent different realizations of hydraulic conductivity for the 
same case and its effects on exit gradient (contours). 
 

 
Figure 14. Different/random realizations of hydraulic conductivity for same standard deviation value.  

 

 
Figure 15. Effect of different realizations (for the same σ value) of hydraulic conductivity variation on exit gradient contours.  
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Accordingly, the varied seepage quantities, such as uplift pressure on the up-
stream side (Pc1), downstream uplift pressure (Pe2) and exit gradient (ie), were 
determined by the numerical seepage modeling code four times for each input 
dataset (case). Furthermore, because exit gradient value is more critical than 
other quantities and hydraulic conductivity varies randomly, four points, shown 
in Figure 13, were selected at which exit gradient values were determined for 
each simulation. Determining four values of exit gradient and ensuring each 
value was within allowable limits ensured safety for WRS constructed on a hete-
rogeneous flow domain. Hence, each training data set for a single meta-model 
included one set of input design variables (d1, d2, b, H) and four stochastically 
varied sets of output data (Pc1, Pe2, ie1, ie2, ie3, ie4). Therefore, the responses of 
meta-models reflect variation of seepage characteristics obtained from the four 
scenarios of random hydraulic conductivity. For each seepage design variable, 
five meta-models were trained to imitate different responses, reflecting the in-
fluence of five different hydraulic conductivity random fields drawn from the 
five log-normal distributions. As a result, thirty meta-models were built and 
grouped to develop six ensemble stochastic meta-models linked to the optimiza-
tion model within the RBOD framework. Deterministic meta-models were de-
veloped separately to compare stochastic optimum solutions with deterministic 
solutions. Deterministic responses were used to train three meta-models (Pc1, 
Pe2, ie) based on expected hydraulic conductivity (σ = 0, μ = 2). Deterministic 
meta-models were incorporated in the deterministic S-O model to find the op-
timum solution of WRS for different head values.  

4.1. Gaussian Process Regression (GPR) Surrogate Model  

The meta-models were built based on Gaussian process regression (GPR) [74] 
[75], a machine learning technique that imitates numerical model responses un-
der various conditions. Many researchers dealing with geotechnical and civil en-
gineering problems have demonstrated that GPR predicts certain responses 
more precisely than other machine learning techniques, such as SVM and back-
propagation neural networks [76]-[84]. Building a surrogate model to use in the 
S-O approach is a delicate task. Although meta-models provide an expeditious 
alternative to numerical models, the training and testing phases need to be es-
tablished carefully and accurately. The performance of meta-models must be 
precisely evaluated before being used in the S-O approach. The efficiency and 
accuracy of the developed meta-models increase the robustness of the linked 
S-O-based RBOD technique. The evaluation strategy is based on several statistical 
error measures (indices), such as the correlation coefficient (R), Nash-Sutcliffe 
efficiency (NSE) and mean square error (MSE), as shown in Table 4. These 
measures and others are briefly described by Gupta, Sorooshian, and Yapo [85], 
Moriasi et al. [86]. 

4.2. Formulating the Reliability Based Optimization Model  

Formulation of the optimization model was based on the multi-realization  
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Table 4. Samples of surrogate model training testing error measures. 

Error  
measure 

ie1 ie2 ie2 ie2 pc1 pe2 

Train Test Train Test Train Test Train Test Train Test Train Test 

MSE 0.17 0.28 0.107 0.121 0.09 0.25 0.14 0.12 3.09 5.69 9.76 8.78 

NSE 0.54 0.37 0.696 0.428 0.74 0.73 0.64 0.54 1.00 0.99 0.99 0.98 

R 0.73 0.64 0.830 0.710 0.86 0.88 0.80 0.77 0.99 0.99 0.99 0.99 

 
(“stacking”) optimization technique [18] [87] [88]. The reliability level is speci-
fied beforehand and the optimum design of the WRS satisfies the desired level of 
reliability at minimum cost. This can be achieved when the optimum solution 
satisfies a certain number of stochastic responses of all safety factors (con-
straints) of the total incorporated responses. This means that a particular relia-
bility value (n/m) could be established within the S-O model by imposing a can-
didate design to satisfy n stochastic constraints of the total number (m) of con-
straints based on the WRS design’s safety factors. Each stochastic constraint is 
based on the responses of m meta-models within the stochastic ensemble surro-
gate model. For each safety factor, the reliability value n/m of the optimum de-
sign indicates that at least n stochastic constraints of all involved stochastic con-
straints (m) in the S-O model must be satisfied. Reliability is considered to be 
100% when m/m of all constraints are satisfied and is considered to be 50% 
when 0.5 m/m of the stochastic constraints are satisfied, etc.  

It is also important to note that some stochastic design variables, such as the 
thicknesses of upstream and downstream floors (t1, t2), involved in computation 
of the objective function are based on stochastic ensemble meta-models. There-
fore, to provide a safe design, the maximum values of each thickness are consi-
dered in determining the objective function. The multiple-realization optimiza-
tion-based RBOD using the stochastic S-O model is formulated as:  

Find { } { }*
1 2 3 4 1 2, , , , , ,X x x x x d d b b= =  

Minimize 

( )
( ) ( )

3

21 2

1

max max

2

m m
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f c s s
s

t t
f X c x t c x

=

+
= + ∑             (12) 

The term ( ){ }max mt  is a function returning the maximum of many stochas-
tic values related to upstream and downstream floor thickness (t1, t2) of WRS. 
Similar constraints to those shown in Section 2 are utilized to formulate the op-
timization model described in this section. However, because we used stochastic 
responses due to uncertainty in seepage characteristics, there were 5 stochastic 
constraints for each safety factor. Based on a satisfaction percentage of these 
constraints, the desired reliability level can be achieved as shown below. 

    / ,m m m
q logical q q allowableZ Fs Fs q m= ≥ ≤ ∀                (13) 

( )
m

m
logicalqg x Z DR q= ≤ ∀∑                   (14) 
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where 1
mt , 2

mt  represents the stochastic floor thicknesses at the upstream and 
downstream sides (Figure 13), respectively. These thicknesses were determined 
utilizing (m) stochastic meta-models related to uplift pressure. fc  is the cost of 
constructing the floor per cubic meter ($400/m3); cc  is the construction cost of 
the cut-offs per cubic meter, which is a function of cut-off depth, as shown in 
Equation (15), while ct  is the cut-off thickness and equals 1.0 m. 

3 220 200 400s
c
s s sc x x x s= + + + ∀                (15) 

4.3. Results and Discussion  

A RBOD framework based on stochastic S-O methodology was applied to hypo-
thetical cases to study the effect of varying reliability on optimum WRS design. 
In these cases, the upstream head values (H) considered were 10 m, 20 m, 40 m, 
60 m, 80 m and 100 m. The S-O models were implemented with different relia-
bility levels (20%, 40%, 60%, 80% and 100%). The percentage of reliability only 
reflects the uncertainty of seepage quantities under WRS due to uncertainty as-
sociated with heterogeneous hydraulic conductivity.  

The effect of reliability on optimum WRS design could be clearly seen by 
comparing the minimum construction costs obtained for different reliability le-
vels, as shown in Figure 16. As logically expected, augmenting reliability signif-
icantly increases construction cost. For instance, the construction cost of a WRS 
which impounded 100 m water head and 100% reliability was around $143 mil-
lion/m, whereas the cost was $102 million/m with 60% reliability. This infers 
that reliability substantially affects WRS design. Furthermore, ignoring uncer-
tainty in hydraulic conductivity may result in unsafe designs. The deterministic 
optimum design, based on constant hydraulic conductivity (2 m/day), is presented  
 

 
Figure 16. Optimum costs of WRSs with various reliability levels and head values. 
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in Figure 16. In general, the deterministic minimum cost curve was below the 
60% reliability curve. This provides a general indication that the equivalent re-
liability of the deterministic design can be considered to be 50% - 60%, which is 
unsatisfactory for such an important structure.  

The main role of d1 is to directly reduce the uplift pressure under the floor of 
the WRS and, indirectly, to reduce the exit gradient value. This is because the 
exit gradient is proportional to the uplift pressure located before the downstream 
cut-offs. In general, the optimum length of d1 decreases with reductions in head 
value, as shown in Table 5. In contrast, the optimum length of d1 is augmented 
by increasing the degree of reliability. However, for some values, especially with 
100% reliability at H = 80, 40 m, the optimum length was less than for other re-
liability levels. This can be explained by considering that the objective function 
minimizes construction cost. Therefore, the optimization algorithm identifies 
the minimum construction cost solution for each case separately, as long as the 
design (decision) vector satisfies the constraints. On the other hand, because the 
meta-model responses are stochastic, it is difficult to expect the optimum value 
with different reliability ranks. Furthermore, if the optimization solver could 
provide an optimum solution that satisfies, for example, three out of five (60% 
reliability) of the stochastic constraints, this does not promise that the optimum 
solution with 80% reliability is in vicinity of the 60% solution. The justification is 
that additional stochastic constraints may require larger values of the variable, 
e.g. d1, which significantly increases the objective function value. Consequently, 
the optimization solver (GA) changes the direction of the search and continues 
in a more promising direction that provides a lower cost. Moreover, while the 
objective function is for minimum construction cost, the optimum solution for a 
certain reliability level does not necessarily follow the general trend of the other 
reliability levels. For instance, the optimum value of d1 at H = 80 m and 100% 
reliability was unexpectedly less than for other values. That may be logical if the 
values of d2, b and b* are considered simultaneously for this case. The value of d2, 
shown in Table 6, for the same case, was much larger than for other reliability 
levels because d2 is more important for reducing the crucial exit gradient value to 
the safe limit. 
 
Table 5. Optimum length of upstream cut-off (d1) for various reliability (%) and head 
values. 

Head (m) 20% 40% 60% 80% 100% Deterministic 

100 75.4 52.2 60.1 66.5 83.7 47.0 

80 45.2 59.4 55.9 68.1 44.7 40.7 

60 23.3 36.2 40.7 42.2 40.5 26.0 

40 18.4 21.0 27.7 24.9 13.6 13.4 

20 10.1 6.2 7.6 9.5 9.8 9.2 

10 2.3 3.9 6.7 7.0 8.1 6.6 

https://doi.org/10.4236/ojop.2018.74005


M. Al-Juboori, B. Datta 
 

 

DOI: 10.4236/ojop.2018.74005 100 Open Journal of Optimization 
 

Table 6. Optimum length of downstream cut-off (d2) for various reliability and head val-
ues. 

Head (m) 20% 40% 60% 80% 100% Deterministic 

100 57.3 91.2 90.1 89.6 89.2 90.0 

80 42.3 43.2 62.0 62.2 81.6 74.8 

60 37.4 37.6 41.1 40.5 56.6 45.4 

40 21.2 20.3 22.3 25.1 35.5 22.0 

20 7.6 7.7 15.9 15.8 16.2 12.1 

10 3.2 3.0 5.2 5.5 4.8 7.9 

 
On the other hand, the optimum value of d2, shown in Table 6, proportionally 

increases with increases in reliability. This design variable is the most important 
one as it controls the exit gradient value. In the reliability results, the majority of 
violated constraints were caused by the exit gradient safety factor. Therefore, the 
optimum solution for d2 with 100% reliability presents the highest value for dif-
ferent values of H to satisfy all stochastic seepage responses and relevant con-
straints. 

Table 7 shows the optimum total WRS widths (b). The optimum width of b is 
the lowest for high reliability for different head values. Also, the optimization 
solver decreases the value of b and simultaneously increases the value of b*, 
which provided additional weight from upstream water (Table 7 and Table 8). 

5. Optimum WRS Design Incorporating Uncertainty in  
Heterogeneous Hydraulic Conductivity Using MOMRO  
Models 

To improve the efficiency and accuracy of the RBOD model and direct search 
optimization solver, a new approach was utilized. This approach is based on 
MOMRO model. The advantage of this approach is that some stochastic opti-
mization constraints based on many ensemble meta-models are formulated as a 
second objective function to be minimized in the MOMRO model. The stochas-
tic constraints used to achieve a safe exit gradient are formulated as a second 
stochastic objective function. The multi-objective optimization solver minimizes 
two stochastic objectives: exit gradient and construction cost. Desired reliability 
levels are implicitly incorporated into the objective functions and explicitly for 
the constraints. This significantly improves the solver’s search efficiency and 
aids in exploring more feasible candidate solutions in the search space. In this 
case, the multi-objective non-dominated sorting genetic algorithm-II (NSGA-II) 
was used. 

The objective of this section is to find a safe, reliable and minimum-cost op-
timum WRS design that incorporates uncertainty in HHC estimates. The RBOD 
framework was implemented based on a more efficient and productive approach 
using the MOMRO technique. MOMRO integrates many stochastic responses  
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Table 7. Optimum WRS width (b) for various reliability and head values. 

Head (m) 20% 40% 60% 80% 100% Deterministic 

100 149.1 147.9 89.5 90.8 91.3 99.1 

80 109.3 97.6 78.5 73.1 72.2 71.4 

60 104.3 91.1 54.4 54.5 53.5 53.2 

40 58.8 93.2 58.8 94.8 35.0 59.5 

20 29.7 70.3 17.4 17.5 30.1 32.5 

10 8.5 8.5 36.3 37.7 65.4 18.6 

 
Table 8. Optimum width of b* for various reliability and head values. 

Head (m) 20% 40% 60% 80% 100% Deterministic 

100 39.6 50.2 86.0 89.3 87.5 64.1 

80 39.7 65.7 67.5 71.2 71.4 66.3 

60 5.8 31.9 52.3 52.7 49.9 49.8 

40 0.0 1.7 7.8 10.8 31.2 30.7 

20 3.9 0.3 15.0 15.5 1.0 17.4 

10 5.4 6.6 0.4 2.4 6.1 4.7 

 
from well-trained meta-models based on GPR machine learning techniques. 
These stochastic responses represent the uncertainties in estimates of particular 
seepage design variables, which are embedded in stochastic constraints and ob-
jective functions of MOMRO.  

The steps used to generate data were the same as those mentioned in Section 
4. The input design variables and seepage characteristics used were also the 
same. Some 150 random cases of input design variable data were generated. 
However, as random field HHC was used, the number of simulations for each 
input design variable was 20, including 20 different realizations of HHC for each 
case to cover a wide range of uncertainty in HHC. Each single realization 
represented a unique and randomly-varied distribution of hydraulic conductivi-
ty values from finite elements in the numerical model. Five log-normal distribu-
tions with standard deviations (σ) of 0.85 m/day, 1.55 m/day, 2.25 m/day, 2.95 
m/day, and 3.65 m/day and constant a mean (μ = 2 m/day) were proposed to 
generate different HHCs. For each seepage quantity, a stochastic ensemble sur-
rogate model was developed containing 20 meta-models. Therefore, for a single 
input dataset, 20 stochastic responses were obtained by the ensemble surrogate 
model for processing in the MOMRO model based on the RBOD technique. 
Similar to Section 4, GPR machine learning was used to develop 120 me-
ta-models and build six stochastic meta-models. For each surrogate model, there 
were 150 sets of training and testing data (cases).   

The training/testing performance of meta-models must be accurately eva-
luated before using them in the RBOD model. The developed GPR meta-models 
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were evaluated using several error measures as described in Section 4. The ma-
jority of meta-models demonstrated perfect training and testing performance 
(Table 9).   

5.1. Formulation of the Reliability Based MOMRO Model  

Formulation of a multi-realization optimization model based on a single objec-
tive function with numerous stochastic constraints may lead to sub-optimum or 
infeasible solutions. The RBOD approach required imposition of a large number 
of explicit constraints, which needed to be satisfied as binding conditions for a 
feasible solution. Many attempts were made to formulate an RBOD model for 
this study with a large number (120) of stochastic meta-model-based stochastic 
constraints using a single objective function, but the majority of solutions were 
infeasible.  

As multi-realization technique-based reliability requires a large number of 
stochastic constraints, an optimal solution search process based on evolutionary 
algorithms may produce an infeasible solution. Search efficiency decreases with 
increasing numbers of constraints and problem complexity [89] [90]. Therefore, 
a new formulation of the RBOD model was adopted in this study to improve the 
search process for such complex optimization tasks. The most important sto-
chastic constraints are exit gradient constraints, as they are significantly influ-
enced by HHC uncertainty and have critical impacts on WRS design and safety. 
These constraints were transformed as a second objective function to be mini-
mized in addition to the first objective function related to WRS construction 
cost. Hence, a multi-objective optimization formulation was implemented to 
significantly decrease the number of constraints and improve searching effi-
ciency. Reliability was included for exit gradient (objective function) and also 
implemented for stochastic constraints using a multi-realization technique.   

The multi-realization optimization technique was based on formulating sto-
chastic constraints based on the developed ensemble stochastic meta-models. 
For each safety factor or condition in the optimization model, there was one or 
more ensemble stochastic surrogate model/s encompassing 20 surrogate model 
responses for a specified seepage design variable. The desired reliability level was 
attained by allowing the optimum solution to satisfy any fraction (n) of the total 
number (m = 20) of constraints for all stochastic constraints, where n/m is 
equivalent to the required reliability level.   
 
Table 9. Samples of surrogate model training testing error measure. 

Error  
measure 

ie1 (2.95) ie2 (1.55) ie3 (1.55) ie4 (2.95) pc1 (3.65) pe2 (3.65) 

 
Train Test Train Test Train Test Train Test Train Test Train Test 

MSE 0.00 0.03 0.02 0.05 0.05 0.07 0.07 0.06 20.52 12.08 4.16 24.73 

NSE 1.00 0.71 0.93 0.67 0.81 0.74 0.81 0.70 0.97 0.99 0.99 0.98 

R 0.99 0.88 0.96 0.82 0.90 0.87 0.91 0.84 0.98 0.99 0.99 0.99 
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The second objective function, which minimizes the exit gradient value, inte-
grates reliability by incorporating exit gradient stochastic responses in deter-
mining the objective function. As exit gradient is minimized, 20 stochastic exit 
gradient responses based on ensemble stochastic meta-models are determined 
and sorted in ascending order. The maximum value of all obtained exit gradients 
is then selected to be minimized. This is equivalent to 99.9% reliability because 
the resulting exit gradient is the safest of all other stochastic values. To attain 
80% reliability, for example, the optimization solver is formulated to minimize 
the fifth maximum value (based on 20 responses) and allow up to four stochastic 
responses of exit gradient to be higher than the one selected for the objective 
function.  

As there are four locations at which to determine the exit gradient values (ie1, 
ie2, ie3, ie4) the maximum value for each location is determined and their average 
is considered as the second objective function. The same technique is applied to 
the first objective function of minimizing construction cost. Construction cost is 
based on the upstream and downstream cut-off depths (d1, d2), and thicknesses 
(t1, t2), and floor width (b). Floor thicknesses are based on the stochastic res-
ponses of uplift pressure ensemble meta-models (pc1, pe2).  

The constraints for each safety factor, based on 20 developed meta-models, 
are formulated as shown in Section 1. However, the exit gradient safety factors 
(constraints) are formulated as a second objective function. Furthermore, the re-
liability constraints and all other variables and parameters are exactly the same 
as in Section 4. The modification in the formulation of the optimization model 
for MOMRO is as shown below 

Find { } { }4
*

1 2 3 1 2, , , , , ,X x x x x d d b b= =  

Minimize, ( ) ( ) ( ) ( ) ( )2
1

21

1

max max

2

m m
m m c

f c s ss

t t
f X c b t c dω ω− −

=

+
= + ∑    (16) 

Minimize,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4
2

max max max max

4

m m m m
m m m mie ie ie ie

f X ω ω ω ω− − − −+ + +
= (17) 

( )1 2, , , , ,m m
i i mie H d d b k i mε= ∀                    (18) 

where ( )max m ω−  is a function sorting stochastic responses in ascending order 
and returns the ( )thm ω−  value of the sorted vector. m is the number of sto-
chastic responses (20), and ω  is based on the desired reliability level. 

5.2. Results and Discussion 

The MOMRO technique was applied to hypothetical design scenarios/cases to 
evaluate the performance of the RBOD-based MOMRO technique. These cases 
included five different upstream head values (100 m, 80 m, 60 m, 40 m, 20 m) 
each subject to four reliability levels. The obtained Pareto-optimum fronts for 
each head value, including different scenarios of reliability level, are presented in 
Figure 17 to Figure 18. To make an appropriate decision, minimum allowable  
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Figure 17. Optimum Pareto front for different reliability levels (H = 100 m). 
 

 
Figure 18. Optimum Pareto front for different reliability levels (H = 80 m). 
 
deterministic safe exit gradient [4] [91] values were used to locate safe and feasi-
ble optimum solutions, as shown in Figure 17 and Figure 18. There are two 
vertical lines showing the locations of safe exit gradient factors 5 and 3, consi-
dering a critical gradient value of 1.15. Based on these values, the minimum safe 
exit gradient can be allocated for different reliability levels. To provide greater 
safety related to exit gradient, many possible Pareto optimal solutions were 
available for consideration with ascending construction costs, and a WRS de-
signer could select one according to their preference. 

The effects of reliability on optimum WRS design were significant. Increasing 
reliability increased construction cost. For instance, the minimum construction 
costs for H = 100 m, reliability levels of 40%, 60%, 80% and 100%, and exit gra-
dient safety factor = 5 were $112,191,378, $129,171,757, $162,166,799 and 
$268,206,048, respectively. Similarly, for the same reliability levels and an exit 
gradient = 3, the construction costs were $59,951,442, $79,158,696, $106,049,766 
and $160,838,745. This means that considering reliability in WRS design signifi-
cantly affects the optimum design attributes. Moreover, for high reliability levels, 
only a few applicable (feasible) scenarios can be obtained from the Pareto op-
timal front. For example, for H = 100 m, 99.9% reliability, and exit gradient 
safety factor = 5, only a few points were found at higher construction cost 
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($268,206,048.88).  
The deterministic optimum Pareto front related to the expected hydraulic 

conductivity (2 m/day) was also considered in this study. In general, the deter-
ministic Pareto optimal was located close to 60% reliability trade-offs. However, 
some deterministic optimum solutions approached 40% reliability solutions. The 
60% or 40% reliability of the deterministic solutions mean that there is a high 
probability of the exit gradient approaching the critical value, which might lead 
to piping failure. Based on this, we can deduce that the deterministic safety fac-
tors of 3 and 5 are insufficient to provide adequate safety for such important 
projects (WRSs), and are inappropriate to measure the safety of seepage designs 
that incorporate a degree of uncertainty. This is true if we assume that the pre-
scribed safety factor is used to quantify uncertainty in the HHC only.  

One important benefit of using multi-objective optimization in RBOM is the 
diversity of provided optimum solutions. The multi-objective optimization solv-
er provides many optimum solutions for the same objective function values (ap-
proximately). These solutions could not be obtained by a single objective opti-
mization model. These solutions provide more flexible options because some 
optimum solutions are more applicable in terms of design requirements, such as 
field limitation and construction procedures, etc. Table 10 presents a few arbi-
trarily selected example solutions with the same objective function values in-
cluding different optimum solution (X) scenarios. 

6. Summary and Conclusions  

This study presents several applications for a coupled simulation-optimization 
methodology that can optimize the design of WRSs. The method uses multiple 
meta-models of the seepage characteristics associated with such structures. 
These meta-models were trained on multiple datasets of simulated seepage sce-
narios to provide accurate seepage solutions. The methodology was extended to  
 
Table 10. Optimum solution values for the same objective function values obtained by 
NSGA-II. 

H Reliability Construction cost ($) Exit gradient d1 d2 b b* 

100 40% 
93,811,995.8 0.280 65.02 85.18 158.46 71.76 

93,403,373.0 0.282 56.51 88.54 92.46 91.59 

80 40% 
28,275,868.8 0.374 58.34 52.27 85.58 77.91 

27,327,404.2 0.374 30.73 65.07 75.37 74.53 

60 99.9% 
57,740,766.3 0.342 37.93 80.34 61.05 47.25 

56,752,425.9 0.343 71.71 62.54 86.34 46.50 

40 60.0% 
72,446,076.0 0.072 61.19 79.87 113.16 68.76 

66,394,331.9 0.072 47.71 82.12 68.76 59.16 

20 80.0% 
40,547,213.5 0.073 34.53 73.33 23.75 12.63 

40,367,765.1 0.074 72.09 41.34 39.87 29.61 
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optimize the design of WRSs based on complex seepage models that consider 
non-homogenous and anisotropic hydraulic conductivity. Furthermore, the ef-
fect of uncertainty in seepage characteristics due to uncertain hydraulic conduc-
tivity was considered to determine reliable, minimum-cost designs. 

The various meta-models are based on machine learning techniques such as 
ANN, SVM, and GRP. Many error measures were used to evaluate the predictive 
accuracy of the models to ascertain that their predictions were within allowable 
error ranges. The parameters of the optimization solver and machine learn-
ing-based meta-models were carefully selected according to multiple systematic 
experiments and trial-and-error iterations.  

The results demonstrate that the S-O technique is a useful and efficient me-
thod of optimizing WRSs design with simple and complex seepage flow domains 
by integrating seepage modelling. The most important advantage of the S-O 
methodology is the incorporation the effect of uncertainty in seepage due to un-
certainty in hydraulic conductivity on optimum design. This includes the incor-
poration of many levels of uncertainty or reliability based optimum design. Fur-
thermore, several formulations based on multi-objective multi-realization opti-
mization models were implemented to provide less restrictive formulation-based 
optimization models. This approach presents diverse optimum solutions, pro-
viding several design alternatives for the same objective functions (e.g. cost and 
exit gradient). 

It is recommended for futures studies apply this S-O methodology to WRS 
design while incorporating different sources of uncertainty such as those of the 
upstream water table, critical exit gradient, and meta-model predictions. Fur-
thermore, incorporating the requirement of structural design in WRS as addi-
tional constraints is a more advanced step to optimizing their designs. 
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