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Abstract 
In this paper, we present a regularized Newton method (M-RNM) with correction for minimizing a 
convex function whose Hessian matrices may be singular. At every iteration, not only a RNM step 
is computed but also two correction steps are computed. We show that if the objective function is 
LC2, then the method posses globally convergent. Numerical results show that the new algorithm 
performs very well. 
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1. Introduction 
We consider the unconstrained optimization problem [1]-[3] 

( )min ,
nx R

f x
∈

                                    (1.1) 

where : nf R R→  is twice continuously differentiable, whose gradient ( )f x∇  and Hessian ( )2 f x∇  are 
denoted by ( )g x  and ( )H x  respectively. Throughout this paper, we assume that the solution set of (1.1) is 
nonempty and denoted by X, and in all cases ⋅  refers to the 2-norm. 

It is well known that ( )f x  is convex if and only if ( )H x  is symmetric positive semidefinite for all 
nx R∈ . Moreover, if ( )f x  is convex, then x X∈  if and only if x is a solution of the system of nonlinear 
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equations  

( ) 0.g x =                                      (1.2) 

Hence, we could get the minimizer of ( )f x  by solving (1.2) [4]-[8]. The Newton method is one of efficient 
solution methods. At every iteration, it computes the trial step  

1 ,N
k k kd H g−= −                                    (1.3) 

where ( )k kg g x=  and ( )k kH H x= . As we know, if kH  is Lipschitz continuous and nonsingular at the so-
lution, then the Newton method has quadratic convergence. However, this method has an obvious disadvantage 
when the kH  is singular or near singular. In this case, we may compute the Moore-Penrose step [7]  

MP
k k kd H g+= − . But the computation of the singular value decomposition to obtain kH +  is sometimes prohibi-

tive. Hence, computing a direction that is close to MP
kd  may be a good idea. 

To overcome the difficulty caused by the possible singularity of kH , [9] proposed a regularized Newton 
method, where the trial step is the solution of the linear equations  

( ) ,k k kH I d gλ+ = −                                  (1.4) 

where I is the identity matrix. kµ  is a positive parameter which is updated from iteration to iteration. 
Now we need to consider another question, “how to choose the regularized parameter kµ ?” Yamashita and  

Fukushima [10] chose 2
k kgλ =  and showed that the regularized Newton method has quadratic convergence 

under the local error bound condition which is weaker than nonsingularity. Fan and Yuan [11] took k kg δλ =   
with [ ]1,2δ ∈  and showed that the Levenberg-Marqulardt method preserves the quadratic convergence. Nu-
merial results ([12] [13]) show that the choice of k kFλ =  performs more stable and preferable. 

Inspired by the regularized Newton method [13] with correction for nonlinear equations, we propose a mod-
ified regularized Newton method in this paper. At every iteration, the modified regularized Newton method first 
solves the linear equations  

( )     with  k k k k k kH I d g gλ λ µ+ = − =                          (1.5) 

to obtain the Newton step kd , where kµ  is updated from iteration to iteration, and solves the linear equations  

( )k k k k kH I d g dλ λ+ = − +                               (1.6) 

to obtain the approximate Newton step ks . 
It is easy to see  

  ( ) 1,    .k k k k k k k ks d d d H I dλ λ −= + = +                          (1.7) 

Then it solves the linear equations 

( ) ( )    with k k k k k kH I s g y y x sλ+ = − = +                         (1.8) 

to obtain the approximate Newton step ks . 
The aim of this paper is to study the convergence properties of the above modified regularized Newton me-

thod and do a numerical experiment to test its efficiency. 
The paper is organized as follows. In Section 2, we present a new regularized Newton algorithm with correc-

tion by trust region technique, and then prove the global convergence of the new algorithm under some suitable 
conditions. In Section 3, we test the regularized Newton algorithm with correction and compared it with a regu-
larized Newton method. Finally, we conclude the paper in Section 4. 

2. The Algorithm and Its Global Convergence 
In this section, we first present the new modified regularized Newton algorithm by using trust region technique, 
then prove the global convergence. First, we give the modified regularized Newton algorithm. 

Let ks  and ks  be given by (1.6) and (1.8), respectively. Since the matrix k kH Iλ+  is symmetric and pos-
itive definite, ks  is a descent direction of ( )f x  at kx , however 

k ks s+  may not be. Hence we prefer to use 
a trust region technique. 
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Define the actual reduction of ( )f x  at the kth iteration as  

( ) ( ).k k k k kAred f x f x s s= − + +                            (2.1) 

Note that the regularization step kd  is the minimizer of the convex minimization problem  

2T T1 1min .
2 2n k k k

d R
d H d g d dλ

∈
+ +  

If we let  

( ) 1
,1 ,k k k k kd H I gλ −∆ = = − +  

then it can be proved [4] that kd  is also a solution of the trust region problem  

( ) T T

,1

1min ,
2

 . .  .

n k k
d R

k

d d H d g d

s t d

ϕ
∈

= +

≤ ∆
 

By the famous result given by Powell in [14], we know that  

( ) ( ) 10 min , .
2

k
k k k

k

g
d g d

H
ϕ ϕ

  − ≥  
  

                         (2.2) 

By some simple calculations, we deduce from (1.7) that  

( ) ( )

   

  

   

T T T T

T TT

T T

T T

1 1
2 2

1
2

1
2

1
2
0,

k k k k k k k k k k k k

k k k k k k k k

k k k k k k

k k k k k k

d s g d d H d g s s H s

g d d H d d H d

d d d H d

d H d d d

ϕ ϕ

λ

λ

− = + − −

= − − −

= −

= +

≥

 

so, we have  

( ) ( ) ( ) ( )0 0 .k ks dϕ ϕ ϕ ϕ− ≥ −                              (2.3) 

Similar to kd , ks  is not only the minimizer of the problem  

( ) ( )T T1min
2n k k k

s R
g y s s H I sλ

∈
+ +

 
but also a solution to the trust region problem  

( ) ( )TT

,2

1min ,
2

 . . ,

n k k
s R

k

s s H s g y s

s t s

φ
∈

= +

≤ ∆  

where ( ) ( ) 

1
,2k k k k kH I g y sλ −∆ = − + = . Therefore we also have  

( ) ( ) ( ) 

( )10 min , .
2

k
k k k

k

g y
s g y s

H
φ φ

  − ≥  
  

                      (2.4) 

Based on the inequalities (2.2), (2.3) and (2.4), it is reasonable for us to define the new predicted reduction as  

( ) ( ) ( ) ( )0 0 ,k k kPred s sϕ ϕ φ φ= − + −                           (2.5) 
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which satisfies  

( ) 

( )1 1min , min , .
2 2

kk
k k k k k

k k

g yg
Pred g d g y s

H H

     ≥ +   
      

               (2.6) 

The ratio of the actual reduction to the predicted reduction  

,k
k

k

Ared
r

Pred
=                                     (2.7) 

plays a key role in deciding whether to accept the trial step and how to adjust the regularized parameter. 
The regularized Newton algorithm with correction for unconstrained convex optimization problems is stated 

as follows. 

Algorithm 2.1 
Step 1. Given 0

nx R∈ , 0ε ≥ , 0 0mµ > > , 0 1 20 1p p p< ≤ ≤ < . Set : 0k = . 
Step 2. If kg ε≤ , then stop. 
Step 3. Compute k k kgλ µ= . 

Solve 

( )k k kH I d gλ+ = −                                  (2.8) 

to obtain kd . 
Solve 

( )k k k k kH I d g dλ λ+ = − +                               (2.9) 

to obtain ks  and set  
.k k ky x s= +  

Solve  

( ) ( )k k kH I s g yλ+ = −                                (2.10) 

to obtain ks  and set 


k k kt s s= +  

Step 4. Compute k
k

k

Ared
r

Pred
= . Set  

0
1

,

, if ,
otherwise.

k k k
k

k

x t r p
x

x+

+ ≥
= 


                             (2.11) 

Step 5. Choose 1kµ +  as  

[ ]
{ }

1

1 1 2

2

4 , if ,
, if , ,

max 4, , if .

k k

k k k

k k

r p
r p p

m r p

µ
µ µ

µ
+

 <
= ∈
 +

                       (2.12) 

Set : 1k k= +  and go step 2. 
Before discussing the global convergence of the algorithm above, we make the following assumption. 
Assumption 2.1. ( )g x  and ( )H x  are both Lipschitz continuous, that is, there exists a constant 1 0L > , 

2 0L >  such that  

( ) ( ) 1 , , ng y g x L y x x y R− ≤ − ∀ ∈                          (2.13) 

and  

( ) ( ) 2 , , .nH y H x L y x x y R− ≤ − ∀ ∈                         (2.14) 
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It follows from (2.14) that  

( ) ( ) ( )( ) 2
2 , , .ng y g x H x y x L y x x y R− − − ≤ − ∀ ∈                   (2.15) 

The following lemma given below shows the relationship between the positive semidefinite matrix and sym-
metric positive semidefinite matrix. 

Lemma 2.1. A real-valued matrix A is positive semidefinite if and only if ( )T 2A A+  is positive semidefi-
nite. 

Proof. See [4].                                                                           ♢ 
Next, we give the bounds of a positive definite matrix and its inverse. 
Lemma 2.2. Suppose A is positive semidefinite. Then,  

A Iϕ ϕ+ ≥  

and 

( ) 1 1A Iϕ ϕ− −+ ≤  

hold for any 0ϕ > . 
Proof. See [13].                                                                         ♢ 
Theorem 2.1. Under the conditions of Assumption 2.1, if f is bounded below, then Algorithm 2.1 terminates 

in finite iterations or satisfies  

lim inf 0.kk
g

→∞
=                                  (2.16) 

Proof. We prove by contradiction. If the theorem is not true, then there exists a positive τ  and an integer k  
such that  

, .kg k kτ≥ ∀ ≥                                   (2.17) 

Without loss of generality, we can suppose 1k = . Set { }1| k kT k x x += ≠ . Then  

{ } { }11, 2, | .k kT k x x += =   

Now we will analysis in two cases whether T is finite or not.  
Case (1): T is finite. Then there exists an integer 1k  such that  

1 1 11 2 .k k kx x x+ += = =  

By (2.11), we have  

0 1, .kr p k k< ∀ ≥  
Therefore by (2.12) and (2.17), we deduce  

, .k kµ λ→∞ →∞                                  (2.18) 

Since 1k kx x+ = , 1k k∀ ≥ , we get from (2.8) and (2.18) that  

( ) 1 1 0.k k k k k kd H I g gλ λ− −= − + ≤ →                        (2.19) 

Duo to (1.7), we get  
 2 ,    0.k k k k ks d d d s= + ≤ →  

From (2.10), we obtain  
 ( ) ( )

( ) ( )( )
( ) ( )

1

1

1 1

21
2

1 ,

k k k k

k k k k k k

k k k k k k k

k k k k

k

s H I g y

H I g y g H s

H I g H I H s

L s d s
d

λ

λ

λ λ

λ
γ

−

−

− −

−

= − +

≤ + − −

+ + + +

≤ + +
≤

                     (2.20) 
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where 1γ  is a positive constant. 
It follows from (2.1) and (2.5) that  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )   ( ) 

( ) ( )

( ) ( )

T T

T T

22

0 0

1
2

1   
2

.

k k k k k k k k

k k k k k k k k

k k k k k k k

k k

Ared Pred f x f x s s s s

f y s f y s H s g y s

f y f x s H s g s

o s o s

ϕ ϕ φ φ− = − + + − − + −

≤ + − − −

+ − − −

≤ +

          (2.21) 

Moreover, from (2.6), (2.17), (2.13) and (2.19), we have  

1

1 1min , ,
2 2k k kPred d d

L
ττ τ

 
≥ ≥ 

 
                         (2.22) 

for sufficiently large k. 
Duo to (2.21) and (2.22), we get  

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )
1

22

1

0 0

1 min ,
2

0,

k k
k

k

k k k k k k

k

k k

k

Ared Pred
r

Pred

f x f x s s s s

d
L

o s o s

d

ϕ ϕ φ φ

ττ

−
− =

− + + − − + −
≤

 
 
 

+
≤ →

              (2.23) 

which implies that 1kr → . Hence, there exists positive constant 2γ  such that 2kµ γ≤ , holds for all large k, 
which contradicts to (2.18). 

Case (2): T is infinite. Then we have from (2.6) and (2.17) that 

( ) ( ) ( ) ( )( )

( ) ( )( )

( ) 

( )

1 1
1

1 0

0

0
1

lim inf

1 1min , min ,
2 2

min , ,
2

k i ik i

k k k
k T k T

kk
k k k k

k T k k

k
k T

f x f x f x f x

f x f x p Pred

g yg
p g d g y s

H H

p d
L

τ τ

∞

+→∞ =

+
∈ ∈

∈

∈

∞ > − ≥ −

= − ≥

       ≥ +           
 

≥  
 

∑

∑ ∑

∑

∑

             (2.24) 

which implies that  

,
lim 0.kk k T

d
→∞ ∈

=                                    (2.25) 

The above equality together with the updating rule of (2.12) means  
.kλ →∞                                      (2.26) 

Similar to (2.20), it follows from (2.25) and (2.26) that  


3 , 2 ,  k k k ks d s d k Tγ≤ ≤ ∀ ∈
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for some positive constant 3γ . Then we have  
 ( )3 2 ,  .k k k kt s s d k Tγ≤ + ≤ + ∀ ∈  

This equality together with (2.24) yields  

,k
k T

t
∈

< ∞∑  

which implies that  
*.kx x→                                      (2.27) 

It follows from (2.8), (2.27), (2.26) and (2.20) that  
0,  0.k ks s→ →                                   (2.28) 

Since ( )k k k k kH g I d gµ+ = −  from (2.8), we have from (2.13), (2.17) and (2.28) that  

11 ,k
k k k k k k

k

H Ld d d d
g

µ µ
τ

≤ + ≤ +  

which means  
.kµ →∞                                      (2.29) 

By the same analysis as (2.23) we know that  
1.kr →                                      (2.30) 

Hence, there exists a positive constant 4 mγ >  such that 4kµ γ≤  holds for all sufficiently large k, which 
gives a contradiction to (2.29). The proof is completed.                                             ♢ 

3. Numerical Experiments 
In this section, we test the performance of Algorithm 2.1 on the unconstrained nonlinear optimization problem, 
and compared it with a regularized Newton method without correction. The function to be minimized is  

( ) ( ) ( )
1 12 4

1 1
1 1

1 1 ,
2 12

n n

i i i i i
i i

f x x x x xα
− −

+ +
= =

= − + −∑ ∑                        (3.1) 

where 0iα ≥  ( )1, , 1i n= −  are constants. It is clear that function ( )f x  is convex and the minimizer set of 
( )f x  is  

{ }1 2|n
nS x R x x x= ∈ = = =  

The Hessian ( )2 f x∇  is given by 

( )

1 1

1 1 2 2
2

2 2 1 1

1 1

1 1
1 2 1

,
1 2 1

1 1
n n n n

n n

a a
a a a a

f x
a a a a

a a
− − − −

− −

−−   
   − + −− −   
  ∇ = +
  

− + −− −   
   −−   

      

where ( ) ( )2
1i i i ia a x a x x += = − , ( )1,2, , 1i n= − . Matrix ( )2 f x∇  is positive semidefinite for all x, but  

singular as the sum of every column is zero. Since the Hessian kH  is always singular, the Newton method 
cannot be used to solve nonlinear Equations (1.2). But by using the regularization technique, both regularized 
Newton method and Algorithm 2.1 work quite well. 

The aims of the experiments are as follows: to check whether Algorithm 2.1 converges quadratically as stated 
in Section 3 and also to see how well the technique of correction works. We set 0 0.001p = , 1 0.25p = , 

2 0.75p = , 1 0.25p = , 3 4p = , 2
0 10µ −=  and 510m ε −= =  for Algorithm 2.1. 

Table 1 reports the norms of kg  at every iteration when 10n = , ( )1 1,2, , 1i i nα = = − ,  
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( )1 1,2, , 1i i nβ = = −  and ( )T
0 1, 2, ,10x =  . Algorithm 2.1 only take four iterations to obtain the minimizer 

of ( )f x ; kg  decreases very quickly. The results show the sequence { }kg  quadratic convergence. The 
iteration is as follows  

( )T
1 3.2142,3.4357,3.8874, 4.4813,5.1523,5.8477,6.5187,7.1126,7.5643,7.7858x =  

( )T
2 5.2666,5.2742,5.3159,5.3859,5.4690,5.5391,5.6161,5.6841,5.7258,5.7334x =  

( )T
3 5.4991,5.4991,5.4992,5.4995,5.4998,5.5002,5.5005,5.5008,5.5009,5.5009x =  

( )T
4 5.5000,5.5000,5.5000,5.5000,5.5000,5.5000,5.5000,5.5000,5.5000,5.5000x =  

( )T
5 5.5000,5.5000,5.5000,5.5000,5.5000,5.5000,5.5000,5.5000,5.5000,5.5000 .x =  

We may observe that the whole sequence { }kx  converges to ( )T* 5,5, ,5,5x =  . 
We also ran the regularized Newton algorithm (RNA) without correction, that is, we do not solve the linear 

equations (2.9)-(2.10) and just set the solution of (2.8) to be the trial step. Then, we tested the regularized New-
ton algorithm without correction and Algorithm 2.1 for various of n, iα  and different choices of the starting 
point. The results are listed in Table 2. iα : the selected value of iα ; Dim: the dimension n of the problem; 0x : 
the ith element 0x ; niter: the number of iterations required; f∇ : the final value of ( )kf x∇ ; *x : the final 
value of kx . We use ( ) 510kf x −∇ ≤  as the stopping criterion.  

 
Table 1. Results of Algorithm 2.1 to test quadratic convergence. 

k 0 1 2 3 4 5 

kg  1.8856 0.4890 0.0315 1.0368e−05 5.6523e−15 0 
 

Table 2. Results of RNA and Algorithm 2.1. 

iα  Dim  
0x  niter f∇  *x  

0 

10 
i 3/1 1.63e−07 5.5 

1/i 2/1 1.85e−06 0.2929 

50 
i 13/4 4.28e−06 25.5 

1/i 19/6 4.28e−06 0.09 

100 
i 16/3 1.62e−06 50.5 

1/i 5/2 1.15e−08 0.519 

500 
i 49/6 6.31e−07 250.5 

1/i 18/8 2.08e−08 0.0136 

1 

10 
i 5/1 2.66e−06 5.5 

1/i 8/2 5.6e−12 0.2929 

50 
i 7/3 3.84e−10 25.5 

1/i 25/14 4.86e−09 0.09 

100 
i 8/2 4.95e−06 50.5 

1/i 11/5 2.30e−06 0.519 

500 
i 38/19 3.45e−07 250.5 

1/i 11/5 5.48e−06 0.0136 

i 

10 
i 9/4 9.56e−08 5.5 

1/i 5/1 9.00e−06 0.2929 

50 
i 39/16 2.77e−07 25.5 

1/i 19/10 3.10e−08 0.09 

100 
i 59/35 4.85e−07 50.5 

1/i 19/10 2.81e−06 0.519 

500 
i 45/23 6.20e−07 250.5 

1/i 19/10 1.56e−06 0.0136 
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Moreover, we can see for the same iα , n and 0x , the number of iterations of Algorithm 2.1 is always less 
than that of RNA. And the correction term does help to improve RNA when the initial point is far away from the 
minimizer. These facts indicate that the introduction of correction is really useful and could accelerate the con-
vergence of the regularized Newton method. 

4. Concluding Remarks 
In this paper, we propose a regularized Newton method with correction for unconstrained convex optimization. 
At every iteration, not only a RNM step is computed but also two correction steps are computed which make use 
of the previous available Jacobian instead of computing the new Jacobian. Numerical experiments suggest that 
the introduction of correction is really useful. 
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