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Abstract 
Necessary conditions for optimality are proved for smooth infinite horizon optimal control prob-
lems with unilateral state constraints (pathwise constraints) and with terminal conditions on the 
states at the infinite horizon. The aim of the paper is to obtain strong necessary conditions in-
cluding transversality conditions at infinity, which in many cases lead to a set of candidates for op-
timality containing only a few elements, similar to what is the case in finite horizon problems. 
However, strong growth conditions are needed for the results to hold. 
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1. Introduction 
The aim of this paper is, in a control problem with unilateral state constraints and terminal conditions at infinity, 
to obtain necessary conditions, with a full set of transversality conditions at infinity, which frequently make it 
possible to narrow down the set of candidates for optimality to only a few, or sometimes a single one. In infinite 
horizon problems without unilateral state constraints (pathwise constraints), with or without terminal conditions 
on the states at the infinite horizon, there exist various types of necessary conditions for optimality, and exam-
ples are [1] (without a transversality condition), and a number of results with certain limited types of transver-
sality conditions, for example [2], slightly generalized in [3]. See the latter paper and [4] for several further ref-
erences (see also [5]). The limited types of transversality conditions mentioned are in problems with several 
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states-often insufficient if one wishes to avoid getting an infinite number of candidates. With strong growth 
conditions there exist necessary conditions, with a full set of transversality conditions at infinity, which in many 
cases make it possible to narrow down the set of candidates to only a few, or sometimes a single one, see Theo-
rem 16, p. 2441 in [5]. For nonsmooth problems with a full set of transversality conditions in the infinite horizon 
case, see [6]. For such problems, see also [7]. 

The novelty of the results in this paper is hence the establishment of necessary conditions that include a full 
set of transversality conditions at infinity in an infinite horizon problem with both terminal constraints at the in-
finite horizon and unilateral state constraints (constraints of the form ( ), 0jg t x ≥  for all t). Strong growth 
conditions are needed for the results to hold. 

For Michel-type necessary condition in the case of unilateral state constraints, sees [8]. 
The growth conditions used below, ((11), (12), (13)) are more demanding than the conditions applied in [9] 

for the case of no unilateral state constraints and no terminal constraints (problems with a dominant discount). In 
later work the authors use even more general conditions, see [10] (see also [11], and [12] for problems with a 
special structure). 

The results below are of especial interest in the case where not all states are completely constrained at infinity. 
In the opposite case, generalizations of Halkin’s infinite horizon theorem in [1] to problems with unilateral state 
constraints where no transversality conditions appear, like Theorem 9, p. 381 in [6], frequently yield enough in-
formation for determining one or a few candidates for optimality. When not all states are completely constrained 
at infinity, transversality conditions related to the terminal conditions are needed, unless one can accept the pos-
sibility of an infinite number of candidates for optimality. 

In certain cases there is a danger of degeneracy of multipliers. See the early review in [13] and [14]. We have 
added conditions that secure nondegeneracy of multipliers in some such cases, in particular in the case where 
unilateral constraints are satisfied as equalities by the initial state (the state at time zero). See [15]-[17] for a 
presentation of similar conditions in the finite horizon case, as well as for a number of references for this case 
(see for example [18]-[22]). 

2. The Control Problem, Necessary Conditions, and Examples 
Consider the problem 

( )0
0

max , , df t x u t
∞

∫                                        (1) 

where ( )1, , ,nx x x=   subject to 

( ) ( ) 0, , , , 0 nx f t x u u U x x= ∈ = ∈
                              (2) 

( ), 0 for , : , 1, ,j j
j jg t x t a b J j j∗ ≥ ∈ = =                             (3) 

( ) { } ( ) { }, 1, , , , 1, , ,i i i ix x i n x x i n n n n′ ′ ′′ ′′∞ = ∈ ∞ ≥ ∈ + ≤                    (4) 

where we require that ( ) ( )lim :i i
t x t x→∞ = ∞  exists for i n′′≤  and where ( )1, , .nf f f=   Here, , ,j n∗ ′  

n′′  and n are given natural numbers, and we allow for the case where there are no equality constraints or no in-
equality constraints in (4) (in which cases 0n′ =  and ,n n′′ ′=  so { }1, ,n′  and/or { }1, ,n n′ ′′+   are emp-
ty sets). Furthermore, < , ,k

j ja b U ⊂


  0 , , , ,i i jx x f g  are fixed entities, u the control. It is possible that 
,jb = ∞  in which case ,j ja b    is replaced by ), .ja ∞  We want to maximize the objective in (1) over the set 

 of all measurable functions ( ).u  taking values in U and being bounded on bounded time intervals, subject 
to (2)-(4). When the solution ( ).x  corresponding to such a ( ).u  satisfies (2)-(4), we call ( ) ( )( ). , ,x u  ad-
missible. Below ( ) ( )( ). , .x u∗ ∗  will be a given optimal admissible pair, assumed to exist. 

We assume that jg  is continuous in ( ) [ ), 0, ,nt x ∈ ∞ ×  that if  is measurable in [ )0, ,t∈ ∞  continuous 
in ( ), ,nx u U∈ ×  with derivatives j

xg  and i
xf , where j

xg  is continuous in x and i
xf  is continuous in 

( ), .x u  We also assume, for any bounded sets [ ): 0,J J′ ⊂ = ∞  and ,U U′ ⊂  that ( )( )sup , ,j
t J xg t x t∗

′∈ < ∞
 

and that for any x, ( ) ( )( )0
, , , , , , .sup t J u U f t x u f t x u′ ′∈ ∈ < ∞  These assumptions are called the basic smoothness 

assumptions. At various points some strengthening of these assumptions are added. 

 

 

1In that theorem, correct the inequality b k>  by replacing it by ( )b n m k> − . 



A. Seierstad 
 

 
102 

The following definitions are needed: let ( ) ( ) ( )( ): , , ,f t f t x t u t∗ ∗ ∗=  ( ) ( ) ( )( ): , , ,x xf t f t x t u t∗ ∗ ∗=  
( ) ( ) ( )( )0 0: , , ,f t f t x t u t∗ ∗ ∗=  ( ) ( ) ( )( )0 0: , , ,x xf t f t x t u t∗ ∗ ∗=  let ( ),C t s  be the resolvent of the equation 

( )xq f t q∗=  ( ( ), ,C s s I=  I the identity map), ( ), 0C t s =  if ,t s<  ( ) ( )( ): , , ,F t f t x t U∗=
 

{ }: : ,jG j b∞ = = ∞  ( )( ){ }: : liminf , 0 ,j
tG j G g t x t∞ ∗

∞ →∞= ∈ >  ( ) : \ .G G G∞
∞∞ =  

In Theorem 1, in addition to the basic assumptions, assumptions (5)-(15) below are needed. It is assumed that 
for all ( )j G∈ ∞  

( )( ) ( ) ( )( ) ( )ˆ ˆlim , : and lim , : existj j j j
t t x xg t x t g g t x t g∗ ∗
→∞ →∞= ∞ = ∞                  (5) 

We shall make use of some constraint qualifications, (6) and (8) below, related to 0.jg ≥  Define  
{ } ( ){ }: 1, , : ,k kk k n n x x∞ ∗′ ′′= ∈ + ∞ =  { }: : 0 for , 0 forn k kC c c k n c k k∞ ∞′= ∈ = ≤ ≥ ∈ , 

( ) ( )( ){ }, : : , ,j jJ j t J g t x tβ β∗ ∗= ∈ ≤  { }: : ,j
tG j t J= ∈  ( ) ( )( ){ }: : , 0j

tG t j G g t x t∗= ∈ = , 

( ) ( ) ( )( ){ }: for some arbitrarily near , , 0jG t j G t s t t g s x s∗+ = ∈ > =  

( ) ( )ˆFor some , for all , 0j
xc C j G g c∗ ∞ ∗∈ ∈ ∞ ∞ >                           (6) 

((6) holds vacuously if ( )G ∞ = ∅ ). 
1is for 1, ,jg C j j∗=                                             (7) 

( ) ( ) ( ) ( ) ( )Either 0 , or 0 and for all 0 , 9 and 10 below holdG G j G+ = ∅ + ≠ ∅ ∈ +                (8) 

( )( ) ( )( )( )0 , , , , , is, for all , right continuoust f t x t u f t x t u u∗ ∗→  

( )and for some in co 0v F∗  

( ) ( )( ) ( )( )for any 0 , 0, 0 0, 0 0j j
x tj G g x v g x∗ ∗ ∗∈ + + >                      (9) 

Either2 
( ) ( )0 contains only one index , orG jα +  

( ) ( )( ) ( )( )( )0
0 00 is a right Lebesgue point of ., , . , ., , . , orf x u f x uβ ∗ ∗  

( ) ( ) ( )0For any , , is continuous in ,u f f t xγ  

( ) ( )( )and differentiable in , at , for allt x t x t t∗                       (10) 

The following growth conditions are also needed: For some 1n n′′≥  

( ) ( )( ) 1
0

, , d , 0, ,if t x t u t t i n n
∞ ∗ ∗ < ∞ = ≤∫                               (11) 

and there exist some positive constants , , , , ,A B C a b κ  such that 

( ) ( )( )
1

1
1

e for
for 0, , , for all , , , ,

e for
j

at
i

x bt

A j n
i n t x f t x u t

B j n

−
∗

−

 ≤= ≤ 
>

                   (12) 

( ) ( )( )
1

1
1

e for
for , for all , , , ,

for
j

t
i

x

C j n
i n t x f t x u t

j n

κ

κ
∗  ≤> ≤ 

>
                    (13) 

where ( )1b n nκ> − . In (10) (γ), we also need that for some 0,k >  ( )( ), ,i
tf t x u t A∗ ≤  for all ( ), ,t x  .t k≤    

Assume finally that, for all j 

 

 

2A right Lebesgue point s of any integrable function ( ) [ ): 0, na t ∞ →  means a point s such that 

( ) ( ) ( )0lim 1 d 0
s d

d s
d a t a s t

+

↓
− =∫ . If v∗  in (9) even belongs to ( )0F  and (10) (β) holds, then the right continuity in (9) can 

be weakened to 0 being a right Lebesgue point of ( )0, ,t f t x u→  for all u U∈ . 
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1depends only on ,j ig x i n≤                                (14) 

( )( )
[ )

( )( )
0,

For , , is continuous, uniformly in , ,supj j
x x

t
j G z g t x t z t g t x t∗ ∗

∞
∈ ∞

∈ → + < ∞                (15) 

Define ( ) 0 0
0 0 0 1, , , , .n i i

iH t x u p p p f pf p f p f
=

= + = +∑  The following necessary conditions for optimality 
holds. 

Theorem 1. (Necessary condition, infinite horizon) Assume (5)-(8), (11)-(15) and the basic smoothness as 
sumptions. There exist a number { }0 0,1 ,p ∈  vectors ( )1ˆ ˆ ˆ, , np p p∞ ∞ ∞=  , ( )1: , , ,np p p∞ ∞ ∞=   bounded vector 

functions ( ) ( ) ( )( )1: , , np t p t p t=   and ( ) ( ) ( )( )1: , , ,jt t tν ν ν
∗

=   jν  nondecreasing and right continuous 

on ( )0,∞ , such that if ( ),p t T 3 satisfies, for [ ]0,t T∈ , the equation 

( ) ( ) ( ) ( )( ) [ ) ( )( ) ( )0 ,
ˆ, , , , , , d , d

T j j
x xt t T

j
p t T p p H r x r u r p p r T r g r x r rν∗ ∗ ∗

∞ ∞= + + +∑∫ ∫          (16) 

then ( ) ( )lim ,Tp t p t T→∞=  (the limit does exist), ( ) ˆlim ,t p t p p→∞ ∞ ∞= +  ( )p t  is left continuous on ( )0,∞  
and satisfies (16) for T = ∞  (the integrals exist), and 

( ) ( )( ) ( ) ( ) ( )( )0 0, , , , , , , , for all , for a.e.H t x t u p p t H t x t u t p p t u U t∗ ∗ ∗≤ ∈                (17) 

Moreover, 

( ) ( )0 0,
ˆ, , d 0j

j
p p p tν∞ ∞ ∞

 
+ ≠ 

 
∑∫                              (18) 

( ) ) ( ) ( )( )is constant on 0, and , and on intervals on which , 0j j
j jt a b g t x tν ∗ ∞ >          (19) 

{ }0 for 1, ,ip i n n∞ ′ ′′≥ ∈ +   

( ){ }0 for and for : ,i i ip i n i i n i n x x∗
∞ ′′ ′ ′′= > ∈ < ≤ ∞ >                   (20) 

Finally, ( ) ( )ˆ ˆj j
xj Gp gγ∞ ∈ ∞

= ∞∑  for some 0jγ ≥  and if (6) fails, then (18) must be replaced by 

( ) ( ) ( )( )0 0,
, , d , 0.j j

j j Gp p tν γ∞ ∈ ∞∞
≠∑ ∑∫   

Remark 1. For ( )1 1, , ,i j n n= ∈ +   the growth condition in (13) can be weakened to : For some 0,κ∗ <  

for all ( ), ,t x  ( )( ), ,i
i

x
f t x u tκ κ∗

∗ ≤ ≤  (where still κ  satisfies ( )1b n n κ> − ).  

In the sequel three trivial examples with rather obvious optimal controls will be presented, but to illustrate the 
use of the necessary conditions, we derive the form of the optimal controls from these conditions. 

Example 1. 4
0

max e d ,tx t
∞ −∫  x ux= , ( )0 1,x =  ( )x ∞  free, [ ]1,2 ,u∈  3e ,ty x −=  ( )0 0,y =  3 4,y ≤  

( )y ∞  free. 
Solution: 
Evidently ( ) 0x t∗ >  and, because 0,y >  by necessity, ( ) 3 4y t <  for all t. For ( ) ( ) ( )( ), ,x yp t p t p t=  

from (16) we get 4 3
0e e ,x t x y tp p up p− −= − − −  0.yp =  Then ( ) ( ) ˆ : 0.y y y yp t p p kγ∞= ∞ = = − = ≤  The maxi- 

mum condition is that 

( ) ( ) ( ) ( ) ( )4 3
0( ) maximizes e et x y tu t p x t p t ux t p t x t∗ ∗ − ∗ ∗ −+ +                (21) 

Consider first the case that we might have 0 1,p =  0k <  ( )( )3 4 .y⇒ ∞ =  Let T∗  satisfy 
4 3

0e e 0.T Tp k∗ ∗− −+ =  Now, for ,T T∗>  0,T >  ˆ 0x xp p∞ ∞= =  means that ( ), 0xp t T >  for t close to T, ,t T<  

 

 

3 ( ),p t T  always exists, and is left continuous on ( ]0,T . 
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see the expression for ,xp  so ( ), 0xp t T <  for t close to T. But this surely continues back to { }max 0,T∗  (see 
the expression for xp  again). So even ( ) 0xp t <  for { }max 0,t T∗≥  (for such t, in fact, ( ) ( ),x xp t T p t↓  when T →∞ ). Let t∗  be the smallest t∗  such that ( ) 0xp t <  for .t t∗>  Consider first the subcase 0.t∗ >  
Then ( ) 0xp t∗ =  and by the expression for xp , ( ) 0xp t∗ <  and ( ) 0,xp t >  .t t∗<  By the maximum condi-
tion 2u =  for ,t t∗<  1u =  for .t t∗>  We must have ln 2,t∗ =  in order to obtain ( ) 3 4 :y ∞ =  we get  

( ) 2e ,  ,tx t t t∗ ∗= ≤  ( ) 2e 4,tx t
∗∗ ∗ = =  ( ) 2etx t∗ =  for ,t t∗>  ( ) 2 2

0
e d 2e d 1 1 2 1 4 e

t tt t t
t

y t t t
∗

∗
∗ − − −= + = − + −∫ ∫  

for ,t t∗>  so ( ) 3 4.y∗ ∞ =  For ,T t t∗> >  ( ) ( ) ( )4 3
0, 1 3 e e 2 ex t t tp t T p C k− − −= + +  ( C  an arbitrary  

constant). Using ( ) ˆ, 0,x x xp T T p p∞ ∞− = + =  we get ( ) ( ) ( )3 2
0 1 3 e 2 e ,T TC C T p k− −= = − −  hence ( ) 0.C ∞ =  

Thus, ( ) ( ) ( ) ( )4 3
0lim , 1 3 e 2 ex x t t

Tp t p t T p k− −= = + , ,t t∗≥  with k satisfying ( ) 0,xp t∗ =  i.e. 

( )( ) ( )( )1 3 1 16 2 1 8 0,k+ =  so 1 3.k = −  (By the way, note here that as ( )xp t  satisfies the equation for 

,xp  we would know that ( ) ( ) ( )4 3
0 1 3 e e 2 ex t t tp t p C k− − −= + +  for some constant C, but 

( ) ˆ 0x x xp p p∞ ∞∞ = + =  would not determine the constant. This shows the usefulness of the formula 

( ) ( )lim ,Tp t p t T= ) The subcase 0t∗ =  is impossible, then 1,u ≡  and ( ) 3 4.y∗ ∞ <  The case 0 1,p =  

0k =  is impossible, then ( ), 0xp t T <  for t close to T, so ( ), 0xp t T >  for such t and then for all t (see the 

expression for xp ). In fact, ( ) ( ),x xp t T p t↑  when ,T →∞  so ( ) 0xp t >  for all t, implying 2,u ≡  and 

( ) 3 4,y∗ ∞ >  a contradiction. Consider finally 0 0.p =  Then, by (18), ˆ 0,p∞ ≠  so 0,k <  and then 

( ), 0xp t T >  for t close to T, so ( ), 0xp t T <  for such t, in fact for all t (see the expression for xp ), and 

( ) ( ), .x xp t T p t↓  Hence, ( ) 0xp t <  for all t, which gives 1u ≡  and ( ) 3 4,y∗ ∞ <  contradicting 0.k <   
Remark 2. (Further non-triviality properties) 
a) Replace (6) by the assumption that either ( )G ∞  is empty, or (if not), for some 0,T ′′ >  some 0,ε >  for 

any ,s T ′′≥  there exists a ( )( )co , ,sv f s x s U∗∈  such that ( ) ( )ˆ ˆj j
t x sg g v ε∞ + ∞ ≥  for all ( ) ,j G∈ ∞  where 

( ) ( )( )ˆ : lim ,j j
t t tg g t x t∗

→∞∞ =  is assumed to exist. Assume also that ss v→  and ( ) ( )( ), , ,if s x s u s∗ ∗  

1, , ,i n=   are bounded4. Then 
( ) ( )( )0 0,

, , d 0.j
jp p tν∞ ∞

≠∑ ∫  

b) Assume in addition that, for any 0,s >  either ( )G s  is empty, or (if not), there exists a 

( )( )co , ,sv f s x s U∗∈  such that ( ) ( )ˆ ˆ 0j j
t x sg s g s v+ >  for all ( )j G s∈  and, in case 1,j∗ >  that for each u, 

( )( ), ,t f t x t u∗→  is continuous, that ( ) ( )( ), , ,if t x t u t∗ ∗  11, , ,i n=   is left continuous at each 0t >  and 

has a limit when .t →∞  Then ( )0 , 0.p p∞ ≠   
For finite horizon normality conditions, see [23] and [24]. 
The main reason for including the next theorem is that it forms a basis for obtaining Theorem 1, but it has 

some interest of its own. 
It contains necessary conditions for the case where (14) and/or (15) fail, in particular where jg  also depends 

on ,ix  1.i n>  We then need three conditions, see (25)-(27) below, that automatically hold if (14) and (15) are 
satisfied. 

Theorem 2. In the situation of Theorem 1, with (5), (6), (8), (14), and (15) deleted, assume that the three con-
ditions (25), (26), (27) below are satisfied. Then the following necessary conditions hold: for some { }0 0,1 ,p ∈  
for some vector p∞  and some bounded nonnegative finitely additive set functions 1, , ,

j
µ µ ∗  vanishing on 

 

 

4For 1i n>  it suffices that ( ) ( )( )e , , 0s if s x s u sω− ∗ ∗ →  when s →∞ , ( ) ( )( )11 2 b n nω κ= − − , note that for 1i n> , 

( ) ei sp s C ω−≤  for some C. 
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sets of Lebesgue measure zero, for a.e. s, for all ,u U∈  

( ) ( ) ( ) ( ) ( ) ( ) [ ) ( ) ( ) ( ) ( )0 0
0 ,

ˆ, d , , d 0j
x x js s

j
p v s f t C t s v s t p C s v s g t C t s v s tµ

∞ ∗
∞ ∞

 + + ∞ + ≤   ∑∫ ∫      (22) 

where ( ) ( )( ) ( ): , , ,v s f s x s u f s∗ ∗= −  ( ) ( )( ) ( )0 0 0, , ,v s f s x s u f s∗ ∗= −  ( ) ( )( )ˆ : ,j j
x xg t g t x t∗=  ( ( ),C s∞  and 

the integrals exist). Moreover, [ )( ) [ )( )( )0 1, , 0, , , 0, 0,
j

p p µ µ ∗∞ ∞ ∞ ≠  p∞  satisfying (20). Finally, defining 

( ) ( )( ){ }, : , : , ,j
j jJ j t a b g t x tβ β∗ = ∈ ≥   we have 

( ) ( )( ), 0 and , 0 for all 0j j j ja b J jµ µ β β  = = >                          (23) 

( ) [ ]( )For 0 , for positive close enough to 0, 0, 0jj G s sµ∉ + =                     (24) 

If (7) and (8) hold, [ )( )( )0 0, , lim , 0.s jjp p sµ∞ → ∞ ≠∑  Moreover, 

( ) [ ]( )( )0 , liminf , lim 0, 0,s s jjp p s sµ→∞ →∞ ≠∑  if, for some c C∗ ∞∈  and some positive ˆ, ,T δ  

( )( ) ( ), ,j
xg t x t C t s c δ∗ ∗ ≥  when ˆt s T≥ ≥  for all \ ,j G G∞

∞ ∗∈  ( )( ){ }: : liminf , 0 .j
tG j G g t x t∞ ∗

∗ ∞ →∞= ∈ >  

Finally, if both the last condition and (7) and (8) hold, then 

( ) [ ]( )( )0 , liminf , lim 1 , 0.s s jjp p s s sµ→∞ →∞ ≠∑   

As before when ,jb = ∞  ,j ja b    is replaced by ), .ja ∞  
Assume, for some arbitrarily large 0,T ′ >  that the conditions (25)-(27) hold 

( )( ) ( ) [ )For all , , , is bounded on ,j
xj t g t x t C t T T∗ ′ ′→ ∞                      (25) 

Let ( )x t∗∗  be a solution on [ ),T ′ ∞  of ( )( ), ,x f t x u t∗=  for ( )x T∗∗ ′  given. For some positive second 

order term ( )1o z  (i.e. ( )10lim 0z o z z↓ = ), if ( ) ( ) ,x T x T d∗∗ ∗′ ′− ≤  then, for all j, for all t T ′≥  

( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )1, , ,j j j
xg t x t g t x t g t x t x t x t o d∗∗ ∗ ∗ ∗∗ ∗− − − ≥ −            (26) 

Moreover, for any given number K ′  and any given positive second order term ( )2 ,o d  a positive second 
order term ( )3o d  exists such that the following property holds. Let ( )q t  be a solution on [ ),T ′ ∞  of  

( ) ,xq f t q∗=  for ( )q T ′  given, ( )q T K′ ′≤ . Then, if ( ) ( ) ( ) ( )2x T x T dq T o d∗∗ ∗′ ′ ′− − ≤  

( )( ) ( ) ( ) ( )( ) ( )3for any , ,j
xt T g t x t x t x t dq t o d∗ ∗∗ ∗′≥ − − ≥ −                      (27) 

As an example in which (25)-(27) hold, consider a case where 1 0,n =  (11) and (12) hold for 0,i =  where f  
is concave in x, and where, for some positive ,κ  ,κ ′  ,κ∗  ( )e ,j n t jg h xκ ′−=  jh  is 1C  and convex, 

( )0 ,i
j

x
h x κ∗≤ − ≤  and ( )0 , , ,j

i
x

f t x u κ κ ′≤ ≤ ≤  0,i >  all j, .b nκ>  (For ( ) ,z x x dq t∗∗ ∗= − −  in a short 

hand notation 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )j

i i i i
x

i i i i i
x

i j
j x

z f z x dq f x f x dq

f z x dq f x dq f x dq f x f x dq

f x dq z n zκ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗
∗

= + + − −

≤ + + − + + + − −

≤ + ≤∑



 

where { }1: max 0, , , ,nz z z∗ =   which means that, a.e., ( ) ,z n z tκ∗ ∗≤  so ( ) ( ) ( )e ,n t Tz t z T κ ′−
∗ ∗ ′≤  .t T ′>  If 

( ) ( )2 ,z T o d′ ≤  then ( ) ( ) ( )20 max i
iz T z T o d∗ ′ ′≤ ≤ ≤  and then 

( ) ( )( ) ( ) ( )2max 0, e ei
j j i n t n t
x i x

g z t g z t j z T j o dκ κκ κ′− ∗ ∗ ∗ ∗
∗ ′− ≤ − ≤ ≤∑  

Remark 3. For Theorem 2 to hold, we can weaken (7) and the basic assumptions on i
xf  and j

xg  as follows: 
the derivatives j

xg  and i
xf  exist at ( )( ),t x t∗  for all t and the three conditions on jg  below are satisfied: 
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For all 0N >  

( ) ( )( ) [ ], is differentiable at , , uniformly in 0,jx g t x t x t t N∗→ ∈                 (28) 

( ) ( ) ( )( ), , is differentiable at , for alljt x g t x t x t t∗→                     (29) 

( )( ) ( )( ) ( )( )( ), , , , , is continuousj j
x tt g t x t g t x t g t x t∗ ∗ ∗→                  (30) 

Moreover in the growth conditions (12) and (13), roughly speaking, the inequalities need not hold for states x 
that cannot possibly occur, more precisely, the conditions can be modified as follows. Define for each t, 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) [ ]{ }.: co : . , . , . , . exists on 0, ,u uX t x t u u u x tδ σ δ∗= ∈ ≤
 

( ) ( )( ) ( ) ( ){ }. , . : meas : ,u u t u t u tσ ∗ ∗= ≠  
( ) ( ). .ux  the solution of (2) corresponding to ( ).u . Then (12), (13) need only hold for some 0,δ >  for ( ),t x  

such that ( ) ( )( ) ( )( ){ }: , : : dist , .x X t B X t x x X tδ
δ δδ δ∈ = = <  In (10)(γ) we must add the assumptions that, 

for some 0,θ >  ( ),jg t x  is differentiable in ( ),t x  at ( )( ),t x t∗  uniformly in [ ]0, ,t θ∈  with a derivative 

at this point bounded uniformly in [ ]0, .t θ∈  

Finally, U can be replaced by a time dependent subset ( ) ( ){ } ( ): ,U t u t U t∗=




  where 

( ) ( ){ }: : , 0 for all such that , ,k kU t u U u t k t a bκφ  = ∈ > ∈  


 kφ , 1, , ,k k ′=   continuous, we then require all 

control functions to satisfy ( ) ( ).u t U t∈   We assume ( )0 ,U ≠ ∅


 and in case ( )0 ,G + ≠ ∅  in (9), we require 

( )( )0co 0, , 0 .v f x U∗ ∈


 Then the maximum conditions (17) and (22) hold only for ( ).u U t∈


 (The set U can 

even be replaced by ( ){ } ( )cl ,u t U t∗ 

  with (17) and (22) holding for ( )cl .u U t∈


 We must then still require 

( )0 ,U ≠ ∅


 and, in (9), ( )( )0co 0, , 0 .v f x U∗ ∈


 In the proof below, the perturbations iu  of the optimal control 

have to belong to ( )U t


.  
Example 2. 

2
0

max e d ,tu t
∞ −∫  [ ]2,2 ,u∈ −  ( ) 0x t ≥  for all t, ,x x u= −  ( )0 1,x =   

( )x ∞  free. It is convenient to replace 0x ≥  by e 0tg x−= ≥  (Then (25)-(27) will be satisfied). Choose t∗  
as the largest possible t∗  such that ( ) 0x t∗ >  for .t t∗<  If ,t∗ = ∞  and even, for some 0,ε >  ( )e t x t ε− ∗ ≥  
for all t, then 0 1,p =  ( ) ( )0 , ,p t T p t= =  so 2u ≡  by the maximum condition 

( ) ( ) ( )( )2
0maximizes e su s p u p s x s u∗ − ∗+ −                      (31) 

and ( ) 2 etx t∗ = − , contradicting the last inequality. Consider now the case where [ ) ( )0,: inf e 0.t
t x tγ − ∗
∈ ∞= =   

Let J  be the set of time points s for which (31) holds. Now, 0γ =  implies the existence of some 

)0,t s J t∗′ = ∈ 


  for which ( ) 2u t∗ ′ > − 5, ( ( ) ( )0 0
e e d ,

tt rx t x u r r∗ − ∗ −= − ∫  see the state equation). If ,t∗ = ∞  

t′  can be chosen arbitrarily large, if ,t∗ < ∞  t′  can be chosen arbitrarily close to t∗ . Now, ( ), e ,sC s t t= −  

so ( ) ( )ˆ , e .t
xg s C s t −=  If 0 0,p =  then ( ) ( ){ } ( ) [ )( ) ( )e , 2 d e , 2 0s t

t
C s t u t s t u tµ µ

∞ ′− ∗ − ∗
′

   ′ ′ ′ ′− − − = ∞ + ≤   ∫  

(use (31) for 2u = − ), implying [ )( ), 0,tµ ′ ∞ =  contradicting ( )0 , 0.p µ ≠  Hence, 0 1p =  (Note that this  

argument would not work if we had replaced 0,x ≥  by, say, 2e 0t x− ≥ ). For 2,u = −  by (31), 

[ )( )2e e , 0t t tµ′ ′− − ′− ∞ ≥  and because [ )( )2e e ,t t tµ− −− ∞  is strictly decreasing on )0,t∗  ( [ )( ),tµ ∞  is con- 

stant on )0,t∗ ), in fact 2u∗ =  on [ )0, ,t′  in fact on all )0, ,t∗  by (31). Hence, on )0, ,t∗  

 

 

5Or even ( ) 0u t∗ ′ > , an observation needed in the next example. 
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( ) e 2,tx t∗ = − +  so t∗  is finite and ( ) 0x t∗ ∗ =  and ln 2.t∗ =  It is easily seen by a similar argument that on  

( ), ,t∗ ∞  0u∗ = : to see this, having ( )e 0t x t− ∗ >  on an interval ( ),a b , assuming that ( ),a b  is as large as  

possible, is impossible: Let ( ), ,c a b∈  and define [ ) ( ): inf , e .t
c t c x tγ − ∗= ∈ ∞  Now, 0cγ >  leads to 

( ) 0,p t =  2u∗ =  on [ ), ,c ∞  which is impossible, and both for b < ∞  and ( ) 0,x b∗ =  and for b = ∞  and 
0,cγ =  certain time points in ( ),a b J  close to b  (i.e. arbitrarily large if b = ∞ ) exist at which 2,u∗ > −  

but then 2u∗ =  in ( ),a b  by (31), as [ )( )2e e ,t t tµ− −− ∞  is strictly decreasing in ( ),a b . But 2u∗ =  in  

( ),a b  contradicts ( ) 0,x a∗ =  ( ) 0x t∗ >  in ( ),a b . Hence, on ( ),t∗ ∞ , 
[ ) ( )2

,
e e e dt s s

t
t sµ− −

∞
= −∫  by (31), so 

[ ) ( )
,

e d ,t
t

sµ−

∞
= ∫  or e t µ− =   on ( ),t∗ ∞  ( µ  can be represented by an integrable function µ  here). If we 

put { }( ) ( )1: inf 1 , 1 0nt t n t nµ µ∗ ∗ ∗
≥  = − + =  , we have a valid proposal for the multipliers (It can be seen that 

{ }( ) 0tµ ∗ =  is even necessary, compare (89(ii)) on p. 333 in [6]). 

Example 3. 
1 2 2

0
max 2 e d ,tu t

∞ −∫  [ )0, ,u∈ ∞  0,x ≥  x x u= − , ( )0 1,x =  ( )x ∞  free. It is convenient to replace ( ) 0x t ≥  

by ( )e 0.t x t− ≥  The maximum condition is 

( ) ( ) ( )( )1 2 2
0maximizes 2 e su s p u p s x s u∗ − ∗+ −                          (32) 

Again, assuming, for some 0ε >  that ( )e t x t ε− ∗ ≥  for all t, and (in the opposite case) 0 0p =  both yield 

contradictions. So 0 1.p =  Now, 0u∗ =  in (32) is impossible, so 0u∗ >  all the time. But, due to the con-

straint e 0,t x− ≥  then ( ) 0x t∗ >  all the time (see the state equation). Let ( ) [ )( )0inf , .s sµ µ≥∞ = ∞  The 

maximum condition (32) yields ( )2 1 2e e ,t tu µ− ∗ −= ∞  ( )
2 2e et tu aµ∗ − − = ∞ =  , for ( )21 ,a µ= ∞  

( ) 0.µ ∞ ≠  Now, 2d e
d

tx x a
t

∗
∗ −= − . The general solution is ( ) 2e 3 e .t tx t a C∗ −= +  To have the initial condition 

and ( )liminf e 0t
t x t− ∗
→∞ =  ( )( )0µ ∞ ≠  satisfied we need 3,a =  0,C =  and hence ( ) ( ) 1 23 .µ −∞ =  

Remark 4. Assume in the problem (1)-(7), (11)-(15), that U  is convex and that there are given additional 
constraints in the problem of the form ( ), , 0,jg t x u ≥  , , 1, , .j jt a b j j j∗ ∗∗ ∈ = +    (Perhaps .jb = ∞  In this 

case, here and below, replace ,j ja b    by ),ja ∞ .) Assume that ( ) ( )( ). , .x u∗ ∗  is optimal in this problem. 

We assume for j j∗>  that jg  is continuous and depends only on ,ix  1i n≤ , that j
xg  and j

ug  exist, that 

( ) ( )( )sup , , ,j
t xg t x t u t∗ ∗ < ∞  ( ) ( )( )sup , , ,j

t ug t x t u t∗ ∗ < ∞  that 

( ) ( ) ( )( ) ( ) ( )( )( ), , , , , ,j j
x uz v g t x t z u t v g t x t z u t v∗ ∗ ∗ ∗→ + + + +  is continuous in ( ), ,x v  uniformly in t and that 

if  is 1C  in ( ),x u  and measurable in t. We assume, for some positive constants , , , , , , ,A a B b Cδ κ  for all 

( )( ), , , ,t x u B u t δ∗∈   that for 10, , ,i n=   ( ), , ei at
uf t x u A −≤  and ( ), , ej

i at
x

f t x u A −≤  for 1j n≤  and 

( ), , ej
i bt

x
f t x u B −≤  for 1,j n>  and, for 1,i n>  that ( ), , ei t

uf t x u C κ≤  and ( ), , ej
i t

x
f t x u C κ≤  for 1j n≤  

and ( ), ,j
i

x
f t x u κ≤  for 1,j n>  ( )1 .b n nκ> −  Define ( ) :U t =  { u U∈ : For all j j∗>  such that 

, ,j jt a b ∈    ( )( ), , 0jg t x t u∗ > }. Assume that ( )0 ,U ≠ ∅  and that (8) holds, for ,j j∗≤  for 

( ) ( )( )0 : , , 0F f t x U=  in (9). Write ( ) ( ) ( )( )ˆ , , ,j j
x xg t g t x t u t∗ ∗=  ( ) ( ) ( )( )ˆ , , ,j j

u ug t g t x t u t∗ ∗=  .j j∗>  Then, 

in addition to { }0 0,1 ,p ∈  ,p∞  and 0jµ ≥  satisfying (20), (23), and (24), ,j j∗≤  there exist bounded non- 
negative finitely additive set functions ,jµ  ,j j∗>  also vanishing on Lebesgue null sets, such that (22) holds  
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for ( )u U t∈ , summing now over 1, , .j j∗∗=   Moreover, for ( ) ( ) ( )0 0, , d ,
t

xs
C t s f r C r s r∗= ∫  for all 

( ) ( ) [ )( ) ( ) ( ){ }ˆ ˆ. : . 0, , : for allkw W w L u t w t U t∗ ∗
∞∈ = ∈ ∞ + ∈

  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0
0 0 0 0

0 d , d , du u up f t w t t C t f t w t t p C t f t w t t
∞ ∞ ∞∗ ∗ ∗

∞
 ≥ + ∞ + ∞  ∫ ∫ ∫              (33) 

[ ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0, 0

1
ˆ ˆ, d d

j tj j
x u u j

j
g t C t r f r w r r g t w t tµ

∗∗

∗

∞
=

 + +  ∑∫ ∫                    (34) 

( ( ) ( )0 , , ,C t C s∞ ∞  and the integrals exist). Furthermore, for j j∗>  we have 0jµ =  on ,j ja b    and 

on ( ) ( ) ( )( ){ }, : , : , ,j
j jJ j t a b g t x t u tβ β∗ ∗ = ∈ ≥   for all 0.β >  Finally, 

( ) [ )( )( )0 0 ˆ, liminf , lim ,1 , 0,s sp p s s sµ µ→∞ ↓ ≠  where ( ) ( )1 1
ˆ , , , , , .

j j j
µ µ µ µ µ µ∗ ∗ ∗∗+
= =   (If (6) fails, then 

the last property must be replaced by [ )( )( )0 0 ˆ, , lim , , 0sp p sµ µ∞ ↓ ∞ ≠ ). 

When for some vectors jg∞ , ,j j∗>  ( )ˆlimsup 0,j j
t xg t g→∞ ∞− =  the following properties hold: the maxi- 

mum condition (17) holds for ( )u U t∈ , together with 

( ) ( ) ( )( ) ( ) [ ) ( ) ( ) ( )00 0,
ˆ, , , , d d 0j

u u j
j j

H t x t u t p p t w t t g t w t tµ
∞ ∗ ∗

∞
∗>

+ ≤∑∫ ∫              (35) 

for all ( ). ,w W ∗∈  where now ( ) ( )lim ,Tp s p s T→∞=  

( ) ( ) ( ) ( )( ) [ ) ( ) ( )0 ,
1

ˆ ˆ, , , , , , d d
jT j

x x js s T
j

p s T p p p H t x t u t p p t T t g t tµ
∗∗

∗ ∗
∞ ∞ ∞

=

= + + + +∑∫ ∫
            (36) 

and where, for some nonnegative ,jγ  1, , ,j j∗∗=   ( )ˆ ˆj j
xj jp gγ∗∞ ≤

= ∞∑ , j j
j jp gγ∗∞ ∞>

= ∑ , 0jγ =  for 

( ) , ,j G j j∗∉ ∞ ≤  and 0jγ =  for j j∗>  if jb < ∞  or if ( ) ( )( )liminf , , 0j
t g t x t u t∗ ∗
→∞ >  for 

{ }: .jj j j b∗∈ > = ∞  Moreover, [ )( ) ( )0inf , : ,j
s j jsµ µ γ≥ ∞ = ∞ =  and in (36), for ,j j∗≤  jµ  can be 

represented by a bounded nondecreasing right-continuous function ,jν  and, finally,  

( ) ( )( )0 0,
ˆ, , d , 0.j

j jp p p tν µ∗∞ ∞ ≤ ∞
+ ≠∑ ∫

  (If (6) fails, then this property must be replaced by 

( ) ( ) ( )( )0 ,0,
, , d , , 0j j

j j G j jp p tν γ µ∗∞ ∈ ∞ ≤∞
≠∑ ∑∫

 ). 

When, in addition, for some ( ). ,w W ∗∈  some 0,δ >  0,β >  for all ,j j∗>  the inequality 

( ) ( )( ) ( ), ,
ˆ 1 0

j j

j
u a b J j

g t w t
β

δ   
− ≥






 holds for all t, then ( ) 0jµ ∞ =  for ,j j∗>  and, for ,j j∗>  in both (36) 

and (35), jµ  can be represented by a nonnegative function ( ).jµ  in [ )( ) [ )( )10, , 0, ,L L∞ ∞ ∞   (replace 

( )d j tµ  by ( )dj t tµ ) and, moreover, 
( ) ( )( )0 0,

ˆ, , d 0j
j jp p p tν∗∞ ∞ ≤ ∞

+ ≠∑ ∫  (If (6) fails, then this property must 

be replaced by 
( ) ( ) ( )( )0 ,0,

, , d , 0j j
j j G j jp p tν γ∗∞ ∈ ∞ ≤∞

≠∑ ∑∫ ). Finally, in this case, for a.e. t, for all u U∈  

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )ˆ, , , 0.j j
u uj jH t x t u t p t u u t g t t u u tµ∗

∗ ∗ ∗ ∗
>

− + − ≤∑   

3. Proofs of the Results 
Proof of Theorem 2. To simplify the notation, instead of the criterion (1), we can and shall assume that ( )ax ∞  
is the criterion to be maximized, ( )1,0, ,0 ,na = ∈   that ( )1x ∞  is free, hence is not required to be equal to 

1.x  The proof will be carried out under the assumptions of Theorem 2, allowing for the weakening of these as-
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sumptions in Remark 3. 
Overview of the proof. A rough outline of the proof is as follows. We are going to make a number of strong 

(needleshaped) perturbations of ( ). .u∗  This gives rise to first order variations of the optimal trajectory (the q∗ - 
functions below). We introduce a convex subset of these variations ( Qτ′  below) consisting of variations satisfy-
ing a first order version of the unilateral constraint. We then introduce the convex set of endpoints (at infinity) of 
these variations as is standard in traditional proofs of the maximum principle, and show that it has to be sepa-
rated from the set of “better, first order admissible” points, the set { ( )1 1, , : 0, 0n iδ δ δ δ′′ > =  for , 0ii n δ′≤ ≥  
if ( ) ,

i ix x n i n∗ ′′ ′∞ = ≥ > } (The endpoints we consider consist actually only of the first n′′  components of the 
state). The separation argument (carried out in n′′ ) consists of a standard use of the Brouwer fixed point theo-
rem combined with the fact the endpoints are “good” first order approximations of the endpoints of the exact 
solutions following from the perturbations. We need the fact that these exact solutions satisfy the unilateral state 
constraint, and this is shown first. The separating functional ( n′′ -vector) is denoted p∞ . Another separation ar-
gument, carried out in L∞ -space’ gives the multipliers jµ  related to the unilateral state constraints. 

Detailed proof. To avoid certain problems connected with coinciding perturbation time points, the following 
construction is helpful (we then avoid coinciding perturbation time points). Let U ′  be a countable dense set in  
U  and let J ′  be the set of right Lebesgue points of ( ).f ∗  and all ( )( ), , ,f t x t u∗  u U ′∈  in 

[ ) { }10, \ , , .
j

b b ∗∞   Then choose some set { }1\ 0, , ,
j

J J a a ∗′′ ′⊂   of full measure (i.e. meas [ )( )0, \ 0J ′′∞ = ),  

such that for each ,u U ′∈  a subset uJ  of J ′′  exists with the property that if ,u u U′ ′∈  and ,u u′≠  then 
,u uJ J ′ = ∅  and with the property that for each ,s J ′′∈  each ,u U ′∈  there exists a sequence ,ns s→  such  

that ( ) ( )nf s f s∗ ∗→  and ( )( ) ( )( ), , , , ,n nf s x s u f s x s u∗ ∗→  .n us J∈  For any given ,Jτ ′∈  

( ) ( ] ( ){ }ˆ: 0 for 0, , , 0 ,j jt g s s t t J j Gτ ∈ > ∈ ∈ ∉ +  let mDτ  be the collection of m -tuples of the type 

( ) ( )( )1 1, , , , ,m mP s u s u=   1 2 ,ms s sτ = ≤ ≤ ≤  ,iu U∈  ,is J ′∈  and for all i  such that ,is τ>  iu  belongs 

to U ′  and is  belongs to 
iuJ  (This means that for any ( ), ,i is u′ ′  ( ), ,i is u  if ,i is s τ′ = >  then 

,
i iu uJ J
′

≠ ∅  which implies i iu u′ = ). The separate treatment of the case ,is τ=  where we can have several 
perturbations at the same time, is useful for obtaining nondegeneracy results (i.e. informative necessary condi-
tions). Below m  is varying ( )1 .m ≥  

Let ( ){ }1: , , : 0, 1m m i iE c c c c c= = > <∑  and for ( )1, , ,m mc c c E= ∈  ( ) ( )( )1 1, , , , ,m m mP s u s u Dτ= ∈  
define 

{ }:

ˆ ,
i i

i i i i i
i i s s

c c c c c
′

′
′ ′∈ =

= = ∑                                   (37) 

and 

( ) { } ( ) ( )( ) ( )( ):, , , , ,
i i i i i i i ii i s c tq t c P C t s c f s x s u f s∗ ∗

∗ ∈ + ≤
= −∑   

( ) { } ( ) ( )( ) ( )( ):, , , , ,
i i i i i i ii i s tq t c P C t s c f s x s u f s∗ ∗ ∗

∈ ≤
= −∑  

( ) { } ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( ) [ ) ( )

:

,

, , , , ,

ˆ, , , 1
i i

i i i

i i i i i ii i s c t

i i i i i i i s s ci

q t c P C t s c f s x s u f s

C t s c t s f s x s u f s t

∗∗ ∗ ∗
∈ + ≤

∗ ∗
+

= −

+ − −

∑

∑





 

where a sum over an empty set is put equal to zero. For [ ), ,i i ii
t s s c∉ + 


 ( ) ( ) ( ), , , , , , .q t c P q t c P q t c P∗ ∗∗
∗= =  

Let ( ) { }{ }: ., , : , , 1,2,m mQ q c P c E P D mτ
τ

∗′′ = ∈ ∈ ∈   and note that Qτ′′  is convex6. Define Qτ′  to be the 
convex subset of Qτ′′  consisting of functions ( )., ,q c P∗  that satisfy: For some 0,α >  0β >  

( ) ( ) ( )ˆfor all , , , for all , ,j
xj g t q t c P t J j tα β τ∗ ∗≥ ∈ ≥                       (38) 

where ( ) ( )( ){ }, : : , , .j jJ j t g t x t t Jβ β∗ ∗= ≤ ∈  

The linear variations ( )., ,q c P∗  are the ones that will appear in the necessary conditions that will be ob-

 

 

6One may consult Observation 1 below at this point. 
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tained (see (53), (54) below). These variations are jumping at each perturbation time points, so, near these points, 
they do not approximate (to the first order) the corresponding (continuous) exact solutions. Yet, we are able to 
show that the latter solutions satisfy the unilateral constraints when ( )., .q c P∗  belongs to Qτ′ . To show this, 
the “better”, continuous, approximations ( )., ,q c P∗∗  are used. 

3.1. Satisfaction of the Unilateral Constraints by Perturbed Solutions 
Fix a pair ( ),c P∗ ∗  such that ( )., ,q c P∗ ∗ ∗  satisfies (38) for certain numbers , ,α β  

( ) ( )( )1 1, , , , ,
m m

P s u s u∗ ∗
∗ ∗ ∗ ∗ ∗=   ( )1 , ,

m
c c c ∗
∗ ∗ ∗=  . Let max 1i iT s∗′ ≥ +  be some number for which (25), (26) and 

(27) hold. There exists a 0γ >  so small that 

( ) ( )38 holds for replaced by 2 when , ,c B c P Pα α γ∗ ∗∈ =                    (39) 

To see this, choose γ  such that (39) is satisfied in this manner both for ( ]0,t T ′∈  and (by using (25)) for 
.t T ′>  Then, for ( ]0,1 ,d ∈  ( ), ,c B c γ∗∈  ( )., ,q dc P∗ ∗  satisfies 

( ) ( ) ( )ˆfor all , , , 2 for all , ,j
xj g t q t dc P d t J j tα β τ∗ ∗≥ ∈ ≥                (40) 

For some positive 1,d  for ( ]10, ,d d∈  for all ,i i′ , when ,i is s ′≠  then ',i i is s dc∗ ∗ + 
  and ',i i is s dc∗ ∗

′ ′ + 
  

are disjoint for all ( ), ,c B c γ∗∈  and, moreover, ( ), , 2i i is s dc J j β∗ ∗ ∗ + = ∅ 


  if ( ), 2is J j β∗ ∗∉   

( ( ), 2J j β∗  is closed). Let ,
,

j
d cJ β  be the set of points t  in [ ) ( )1, , 2dc J jτ β∗+ ∞   for which 

( ) ( ) ( )ˆ , , 4 for all ,j
xg t q t dc P d c B cα γ∗∗ ∗ ∗≥ ∈                              (41) 

Now, 

( ) )( ) [ ), ,
, ,

ˆ : , 2 \ , ,j j
d c i i i d ci

J J j s s dc Jβ ββ τ∗ ∗ ∗ = + ∞ ⊂ 






                     (42) 

by (40) because ( ) ( ), , , ,q t dc P q t dc P∗∗ ∗ ∗ ∗=  in ,
,

ˆ .j
d cJ β  Let 0 1 2a =  and define na  inductively by the for 

mula ( )2
1 1n n na a a− −= −  ( 0na ↓ ). Let 1 ,n n nb a a−= −  and, for { }1, , : max : ,ii i i s τ∗= = =  let  

( 1
, 1 1

ˆ ˆ, ,i ic
n i n n k n n kk kM a b c a b cτ τ−

= =
= + + + + ∑ ∑  ,1

c c
i n in

M M
≥

=


 (see (37) for ˆkc ). Then, assuming right conti-

nuity at τ , (see (9)7), it is easily seen that 

( ) ( ) ( )( ) ( )( )
=1 =0

ˆ1 1 , , d , ,c
i

i i

i i iM
i i

t f t x t u t c f x u
τ η

τ
η η τ τ

∗ ∗
+ ∗ ∗ ∗ ∗  − 

  
∑ ∑∫                    (43) 

is small when η  is small, 0,η >  uniformly in .
m

c E ∗∈  See the arguments connected with (74) below. For  

( ]10, ,d d∈  let ( ) ( ) ( )1, , : 1 c
i

i
ii M

u t dc P u t t u
∗

∗ ∗
=

= = ∑  for ( ]1, ,t dcτ τ∈ +   let ( ), , iu t dc P u∗ ∗=  for 

, ,i i it s s dc∗ ∗ ∈ + 
  i i∗>  (recall that these intervals are disjoint when the left ends differ and that  

i i i is s u u∗ ∗ ∗ ∗
′ ′= ⇒ = ), and ( ) ( ), ,u t dc P u t∗ ∗=  elsewhere. Let ( ), ,x t dc P∗  be the corresponding solution. Define 

( ) ( ) [ ] ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( )

1,0

,0

0

, , : , 1 , , d

ˆ, 1 , , d

, , , , , d

i i i

t

dc

t
i ii i s s dc

t

q t dc P C t s s f s x s u s f s s

C t s s c f s x s u f s s

C t s f s x s u s dc P f s s

τ τ

∗ ∗ ∗

∗ ∗ ∗
+

∗ ∗ ∗
 > + 

∗ ∗ ∗

 = − 

 + − 

= −

∫
∑ ∫

∫







 

 

 

7Only when there are more than one perturbation iu  at τ  right continuity is needed to obtain (43). If there is a single per-
turbation at τ , (i.e. for all { }: ii i s τ= = , iu  = some u ) it suffices that τ  is a right Lebesgue point of ( )( ), ,f t x t u∗ . Fi-

nally, if ( )0G + =∅ , then we shall throughout assume a single perturbation u U ′∈  at τ . 
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Now, for d  small, ( ) ( ), , iC t s C t s∗  for ( , ,i i is s s dc∗ ∗ ∈ + 
  hence by (43) and the Lebesgue point proper-

ty of ( ).f ∗  and ( )( ), , if t x t u∗ ∗  at ,is∗  ( ) ( ), , , ,q t dc P q t dc P∗ ∗∗ ∗−  is of the second order in d  uniformly 

in 
m

c E ∗∈  and [ ], .t Tτ ′∈  Let ( ) [ ){ }, ,
, , , 2 , .j j

d c d cJ J J jβ β β τ= ∞


   We want to prove that for some 0d∗ >  

( ) ( ] ( )( ) ,
,for , and 0, , , , , 0 for allj j

d cc B c d d g t x t dc P t J βγ∗ ∗
∗∈ ∈ ≥ ∈



               (44) 

Because ( ) ( )ˆ ,j
xg t C t T ′  is bounded by assumption (25), and ( ) ( ), , , ,q T dc P q T dc P∗ ∗∗ ∗′ ′−  is of the second 

order, ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )ˆ ˆ, , , , , , , , ,j j
x xg t C t T q T dc P q T dc P g t q t dc P q t dc P∗ ∗∗ ∗ ∗ ∗∗ ∗′ ′ ′− = −  is of the second or-

der, uniformly in [ ), .t T ′∈ ∞  Moreover, ( ) ( ) ( )( )ˆ , , , ,j
xg t q t dc P q t dc P∗ ∗∗ ∗−  is of the second order, uniformly 

in [ )1, ,t dc Tτ ′∈ +   by the boundedness of [ ] ( )0, ˆsup .j
xt T g t′∈  Hence, by (41), for some positive 2 1,d d≤  for 

( ]20,d d∈  

( )( ) ( ) ( ),
,, , , 8 for for all ,j j

x d cg t x t q t dc P d t J c B cβα γ∗ ∗ ∗≥ ∈ ∈                    (45) 

Next, it is well-known that 

( ) ( ) ( ), , , , is of the second order inx t dc P x t q t dc P d∗ ∗ ∗− −                     (46) 

uniformly in [ ], ,t Tτ ′∈  
m

c E ∗∈  (see Lemma D in Appendix). Moreover, by the differentiability assumption 

on jx g→  at ( )( ),t x t∗  ((28)), for some positive second order term ( )o d∗ , we have 

( )( ) ( )( ) ( ) ( ) ( ) ( )ˆ, , , , , ,j j j
xg t x t dc P g t x t g t x t dc P x t o d∗ ∗ ∗ ∗

∗
 − − − ≥ −                  (47) 

for all [ ],t Tτ ′∈  (because ( ) ( )., , .x dc P x∗ ∗−  is of the first order in [ ],Tτ ′ ). Hence, for some positive second 

order term ( ) ,o d∗  for ( ),c B c γ∗∈  

( )( ) ( )( ) ( )( ) ( ) ( ), , , , , , ,j j j
xg t x t dc P g t x t g t x t q t dc P o d∗ ∗ ∗ ∗ ∗− − ≥ −               (48) 

both for all [ ],t Tτ ′∈  by boundedness of ˆ j
xg  on [ ],Tτ ′  (combine (46) and (47)) and for all t T ′≥  (com- 

bine (27) and (26)). Then, by (45), for some positive 3 2 ,d d≤  
( )( ) ( )( ) ( ), , , , 8 16,j jg t x t dc P g t x t d o d dα α∗ ∗ ∗≥ + − ≥  for ( ]30, ,d d∈  ( ), ,c B c γ∗∈  ,

, .j
d ct J β∈  Moreover,  

for some positive 4 3 ,d d≤  for ( ]40, ,d d∈  for all t, by (48), 

( )( ) ( )( ) ( )( ) ( ), , , , , , , 4j j j
xg t x t dc P g t x t g t x t q t dc P β∗ ∗ ∗ ∗− − ≥ −  and (by (25)), 

( )( ) ( ), , , 4j
xg t x t q t dc P β∗ ∗ ≤  uniformly in [ ), ,t τ∈ ∞  ,

m
c E ∗∈  so uniformly for ( ), 2 ,t J j β∈  ,t τ≥  

m
c E ∗∈  

( )( ) ( )( ) ( )( ) ( )
( )( ) ( )

, , , , , , , 4

2 4 , , ,

2 4 4 0

j j j
x

j
x

g t x t dc P g t x t g t x t q t dc P

g t x t q t dc P

β

β β

β β β

∗ ∗ ∗ ∗

∗ ∗

≥ + −

≥ − +

≥ − − =

                (49) 

Hence, (44) has been shown, and in particular, (see (42)) 

( ) ( ) ( ) ( ){ } [ )44 holds for , 2 \ , , 2 ,i i ii
t J j s s dc J jβ β τ∗ ∗ ∗  ∈ + ∞  



 



           (50) 

So far, we have only used the basic assumptions and the first of the three conditions on g  in Remark 3, 
namely (28). The other two properties, (30) and (29), will be used in what follows. 
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We want to show that ( ) ,
,, , 2 j

i i i d cs s dc J j J ββ∗ ∗ ∗ + ⊂ 


  when ( ), 2 ,is J j β∗ ∗∈  ,is τ∗ >  ( ), .c B c γ∗∈  

Now, ( ), 2is J j β∗ ∗∈  implies ( ),s J j β∗∈  for ,is s∗<  s  close to is∗  (recall { }1, ,i j
s a a ∗
∗ ∉  ). Thus, by 

(40), ( ) ( )ˆ , , 2j
xg t q t dc P dα∗ ∗ ≥  for ( ), , 2i i it s s dc J j β∗ ∗ ∗ ∈ + 



  and 

( ) ( ) ( ) ( )ˆ ˆ, , , , 2,j j
x i i x i ig s q s dc P g s q s dc P dα∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ = − ≥  ( ), .c B c γ∗∈  For d  small ( ( ]50, ,d d∈  5 4d d≤ ), 

( ) ( )ˆ , , 4j
xg t q t dc P dα∗ ∗

∗ ≥  when , ,i i it s s dc∗ ∗ ∈ + 
  ( ),c B c γ∗∈  (by continuity, 

( ) ( ) ( ) ( )ˆ ˆ, , ,i j
x k x i i kg t C t s g s C s s∗ ∗ ∗ ∗−  ,k i<  is small, when it s∗−  is small). Note that if [ ),i i it s s dc∈ +   for 

some i , ( ), ,q t dc P∗∗ ∗  is a convex combination of ( ), ,q t dc P∗  and ( ), ,q t dc P∗  (the former one has weight 

( )i it s dc−  ). Hence, for any ), ,i i it s s dc∗ ∗∈ +
  ( ), ,q t dc P∗∗ ∗  belongs to the segment between ( ), ,q t dc P∗ ∗  

and ( ), , ,q t dc P∗
∗  hence ( ) ( )ˆ , , 4j

xg t q t dc P dα∗∗ ∗ ≥  for ) ( ), , 2 ,i i it s s dc J j β∗ ∗ ∗∈ +


  ( ]50, ,d d∈   

( ), .c B c γ∗∈  

So far, we have proved (44) for ( ) [ ){ } ( ) [ ){ }1, 2 , , 2 , ,t J j dc J jβ τ β τ∗∈ + ∞ ∞

    recall that if 

( ), 2 ,is J j β∗ ∗∉  then for ( ]10,d d∈ , ( ) ,
,, , 2 j

i i i d cs s dc J j J ββ∗ ∗ ∗ + = ∅ ⊂ 


  (in particular this holds for 

,is τ∗ =  so for ( ), 2 ,J jτ β∗∉  (44) holds for all t τ≥ ). 
Finally, let us prove (44) for [ ]1, ,t dcτ τ∈ +   ( ), 2 .J jτ β∗∈  We can assume that 0β >  is so small that  

( )( ), ,jg xτ τ β∗ >  if ( )( ), 0,jg xτ τ∗ >  .jJτ ∈  So consider the case where ( )( ), 0jg xτ τ∗ = , .jJτ ∈  

Then the right derivative ( )( ) ( )( ) ( ) ( )( )d , d , , 0j j j
x tt

g t x t t g x f g x
τ

τ τ τ τ τ+ ∗ ∗ ∗ ∗

=
  = + ≥   { }( ).j j

bτ ∉  First 

consider the subcase where 1i∗ =  and 1sτ ∗=  (only one is τ∗ = ). By (39), 

( ) ( )( ) ( )( )1 1ˆ , , 2,j
xg c f x u fτ τ τ τ α∗ ∗ ∗ − ≥ 

  ( ), .c B c γ∗∈  Combining the two last weak inequalities we get 

( ) ( )( ) ( )( )1 1ˆ , , , 2.j j
x tc g f x u g xτ τ τ τ τ α∗ ∗ ∗ + ≥ 

  Then ( )( ) 1d , , , d 2 2,j

t
g t x t dc P t c

τ
α α+ ∗

=

  ≥ ≥ 
  so 

( )( ), , , 0jg t x t dc P∗ ≥  for [ ]1, ,t dcτ τ∈ +   ( ), ,c B c γ∗∈  for d  small ( ( ]60, ,d d∈ 6 5d d≤ ). 

Consider next the subcase where P∗  contains several pairs ( ), ,iuτ ∗  1, , ,i i∗=   ,iu U∗ ∈  1 i
s sτ ∗
∗ ∗= = = , 

1.i∗ >  Using (43), it is easily seen that 

( ) ( )( ) ( )( ) ( )( ) ( )( )1
ˆd d , , , , , , , .ij j j

x i i tis
s g s x s dc P g x c f x u g x

τ
τ τ τ τ τ τ

∗
+ ∗ ∗ ∗ ∗ ∗

==

  = +  ∑  When ),j ja bτ ∈   and 

( )( ), 0,jg xτ τ∗ =  we have that ( )( ) ( ) ( ) ( )( )ˆd , d ] , 0.j j j
x tg t x t t g f g t xτ τ τ τ τ+ ∗ ∗ ∗

=
  = + ≥   Now, 

( ) ( )( ) ( ){ }1
ˆ , , 2ij

x i iig c f x u fτ τ τ τ α
∗

∗ ∗ ∗
=

 − ≥  ∑  by (39), so 

( ) ( )( ) ( )( ) ( ) ( )( )1 1
ˆ ˆ2 , , , d d , , , .ij j j

x i i ti s
c g c f x u g x s g s x s dc P

τ
α τ τ τ τ τ

∗
∗ ∗ ∗ + ∗

= =

   ≤ + =    ∑  Hence we again get 

( )( ), , , 0jg t x t dc P∗ ≥  for [ ]1, ,t dcτ τ∈ +   ( ), ,c B c γ∗∈  for d  small ( ( ]60, ,d d∈  6 5d d≤ ). 

Thus, when ,c P∗ ∗  satisfies (38), then 

( ) ( ] ( )( )6for , , 0, , , , , 0 for all ,j jc B c d d g t x t dc P t J tγ τ∗ ∗∈ ∈ ≥ ∈ ≥                   (51) 

3.2. Local Controllability at Infinity 

Observation 1. Define ( ) ( )1 1: , , , ,n nx x x xπ ′′= →   and :Q = { : 0n
iq q′′∈ =   for [ ], 1,1ii n q′≤ ∈ −  for 
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all 1, , ,i n n′ ′′= +   with 0iq ≤  if ( )i ix x∗ ∞ = }. Note that by Lemma B in Appendix, for all c  and P ,  
( ), ,q c Pπ ∗ ∞  and ( ), ,x c Pπ ∞  exist. Let nK ′′⊂   be the convex set 

( ) ( ){ }, , : , ., ,q q c P q Q q c P Qτπ ∗ ∗ ′+ ∞ ∈ ∈

   (for Qτ′  see (38)). If inty K∈ , then for some positive δ , some 

,n
iy ′′∈  1, , 1,i n′′= +  ( ) { }1 1, int co , , ,nB y y yδ ′′+⊂   where each iy  equals ( ), , ,i i

iq q c Pπ ∗+ ∞  

,iq Q∈   ( ) ( )( )1 1, , , , , ,i i i i
i i i i i

im m m m
c E P s u s u Dτ∈ = ∈  ( )., , ,i

iq c P Qτ
∗ ′∈  1 1 1, ,n n ny y y y′′ ′′ ′′+ +− −  linearly inde-

pendent. Let { }1
1 1: : 1, 0 .n

n i iiλ λ λ′′+
′′+ =

Λ = = >∑  Then ( ) ( ){ }1, , , : ,i
i i i nB y q q c Pδ λ π λ∗

′′+
 ⊂ + ∞ ∈Λ ∑

 
( ), ,i

i i iy q q c Pλ π∗ ∗ = + ∞ ∑  for some vector 1.nλ∗
′′+∈Λ  In fact, for each ( ),z B y δ∈  there is a unique 

( ) 1nzλ ′′+∈Λ  such that ( ) ,i iz z yλ= ∑  ( )zλ  evidently depends linearly on z, note that ( )z zλ→  extends 

linearly to all 1n′′+ . Let ( ), ,i i
ij j jP s u=  and let P∗  consist of all ( ), ,i i

j js u  1, , ,ij m=   1, , 1,i n′′= +  for  

the moment we allow the pairs in P∗  to be doubly indexed, (and the time points not to be ordered). Then  

( ) ( ) ( ) ( ) ( )( )1., , .,1, ., , ,
imi i

i i i j iji jz q c P z c q P q c z Pλ λ∗ ∗ ∗ ∗
=

= =∑ ∑∑  where ( ) ( ),
i

i j i jc z z cλ=  (as we have double  

indices on P∗ , we have double indices on the components of ( )c z ). Note that ( ), 0,i jc z >   

( ),1 1.
im

i ji j c z
=

<∑ ∑  Of course, we can re-index the pairs in P∗  (and so also the entities ( )ijc z ) by using a  

single index, with the time points in the pairs in increasing order. Let m∗  be the number of pairs ( ), .i j  We 
use P∗  also as the name of the vector of reindexed pairs, and ( ) m

c z E ∗∈  for the vector consisting of all enti-
ties ( ) ,ijc z  reindexed in the same manner as the pairs in P∗ . Then for ( ), ,z B y δ∈   

( ) ( )( ), , ,i
iiz z q q c z Pλ π ∗ ∗= + ∞∑  ( )( )., , ,q c z P Qτ

∗ ∗ ′∈  ( ) ( )( ),z z c zλ  linear. 

The following result should surprise nobody, a proof however is given in Appendix. 
Lemma 1. Assume that for ( ), ,z B y δ∈  ( ) ( )( ), , ,i

iiz z q q c z Pλ π ∗ ∗= + ∞∑  ( ) ( )( ),z z c zλ  linear, 

( ) 1,nzλ ′′+∈Λ  ( ) m
c z E ∗∈ . Then there exist some first order term ( )O d  (i.e. ( )0lim 0d O d↓ = ) and some 

0ρ >  such that for each ( ]0,d ρ∈  for some = ,d
m

c c E ∗∈  some { }1 1co , , ,d nq q q ′′+∈ 

 
( ) ( ), ,d ddq x dc P x dyπ π∗ ∗+ ∞ − ∞ = , ( ) ( ) ,dc c y O d− ≤  ( ) ( ) ( ).d i

iq d y q O dλ− ≤∑   

3.3. Separation Arguments That Yield the Multipliers 

By optimality, for all 0,δ ∗ >  ( ): ,0, ,0 int .z Kδ∗ ∗= ∉  To see this, assume, by contradiction the opposite,  

that for some 0,δ ∗ >  ( ): ,0, ,0 int .z Kδ∗ ∗= ∈  Then by Observation 1 and Lemma 1, for 0d >  and small,  
for some ,dq Q∈   ,d

m
c E ∗∈  ( ) ( ), ,d ddz x dq x dc Pπ π∗ ∗ ∗+ ∞ = + ∞  and ( )., ,dx dc P∗  satisfies the unilateral 

time constraint (3), see (51) (because ( )( )., ,q c y P Qτ
∗ ∗ ′∈  and ( ) ( )dc c y O d− ≤ ). The last equality gives 

that ( ), ,dx dc P∗∞  satisfies the terminal constraint (4) for d  small, and that 

( ) ( ) ( ) ( ), , .dax d ax daz ax ax dc Pδ∗ ∗ ∗ ∗ ∗ ∗∞ < + ∞ = + ∞ = ∞  This contradicts the optimality of ( ).x∗ . Thus the 

sets int K  and ( ){ }: ,0, ,0 : 0nL δ δ′′∗ ∗
∗ = ∈ >   are disjoint (this is trivial if int K = ∅ ). Thus these sets 

can be separated8: there exists a nonzero vector ,np ′∗ ∈  such that 0 .p K p L∗ ∗
∗≤ ≤  As ,Q K⊂  this in-

equality gives that 

{ } ( )0 for 1, 1, , , 0 if ,i i i ip i n n p x x i n∗ ∗ ∗′ ′′ ′≥ ∈ + = ∞ > >                       (52) 

 

 

8If int K ≠ ∅  and int K L∗ = ∅ , then K and L∗  can be separated. If int K =∅ , then for some nonzero p∗ , 0p K∗ = , and 
p∗  can be chosen such that 0p L∗ ∗ ≥ . 
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Define :L = { ( ) [ )( ). , , jh L τ ∗
∞∈ ∞  : for all j, for some positive α , β , ( )jh t α>  when  

( ), ,t J j tβ τ∗∈ ≥ }. Recall that ( )( ) ( ), , ,sup j
xt g t x t q t c P∗ ∗ < ∞  for all , ,c P  see (25), and write 

( )1, , jg g g ∗=  . Note that ( )( ) ( ) ( )( ) ( ){ }: ., . ., , , , , : ., , ,xL g x q c P p q c P q c P Qτπ∗ ∗ ∗ ∗ ∗′ ′= ∞ ∈  (for Qτ′ , see (38)) 

has to be disjoint from the convex body ( )0,L× ∞  in [ )( ), , ,jL τ ∗
∞ ∞ ×   otherwise the inequality 0p K∗ ≤  

is contradicted. By separation, for some continuous linear functional ( )1: , , jψ ψ ψ ∗=   on [ )( ), , jL τ ∗
∞ ∞   

and some number ,λ  ( ), 0λ ψ ≠  

( )( ) ( ) ( ) ( )., . ., , , , .xg x q c P p q c P h hψ λ π ψ λ∗ ∗ ∗ ∗ ′+ ∞ ≤ +                     (53) 

for all ( )( ) ( ). , 0, ,h h L′ ∈ × ∞  all ( )., , .q c P Qτ
∗ ′∈  Evidently, by this inequality, 0λ ≥  and ψ  are nonnega-

tive on L , with 
[ ) ( )( ), ,

1 0j J jτ β
ψ ∗∞

=


 for all 0.β >  Each jψ  can be represented by a bounded  

finitely additive nonnegative set function jµ  vanishing on sets of Lebesgue measure zero. Evidently, jµ  va- 
nishes on [ ) ( ), ,J jτ β∗∞   for all 0,β >  in particular jµ  vanishes on [ ), , .j ja bτ  ∞    The inequality 

(53) gives that, for ( ),0 n n np pλ ′ ′∗ −
∞ = ∈ ×  ), for all pairs ( ), ,s u  ,u U∈  ,s τ=  (τ  still fixed in J ′ ) and 

for all pairs ( ), ,s u  ,s τ>  us J∈  and u U ′∈  

( ) ( ) [ ) ( )( ) ( ) ( ) ( )
,

, , , d 0j
x js

j
p C s v s g t x t C t s v s tµ∗
∞ ∞

∞ + ≤∑∫               (54) 

where ( ) ( ) ( )( ) ( ): , ,uv s v s f s x s u f s∗ ∗= = −  (To obtain (54), in (53) let ( ) ( ) ( )., , .,.q c P C s v s∗ = ). Moreover, 

(54) also holds for τ , for ( ) ( )( ) ( )( )1 , , ,i
i iiv f x u fτ τ ττ λ τ τ τ∗ ∗

=
= −∑  for any given , .i iu U E

τ

τ τλ∈ ∈   

Let us now choose a sequence n Jτ ′∈  converging to zero when n →∞  such that (54) holds in the manner  
described for nτ τ=  for certain multipliers ,np p∞ ∞=  ( )1 , , .n n n

j
µ µ µ µ ∗= =   In particular (54) holds for  

ns τ=  for any given ( ) ( ).nv vτ τ=  Let us fix such a sequence ( ) ,nv τ  assuming it to be bounded. We can 

assume that [ )( )0, 1n n
jjp µ∞ + ∞ =∑  (we extend nµ  to [ )0,∞  by letting [ )( )0, 0nµ τ = ). Using the weak* 

topology on { } ,n

n
µ  there exists a cluster point ( )0, ,p v µ∞  of the sequence ( )( ), ,n n

np v τ µ∞  satisfying 

( ) ( )( ) [ )( )52 , 0, , 0 for all 0, 0, 1j jJ j pµ µ β β µ∗
∞≥ = > + ∞ =∑                  (55) 

(for some subsequence ,kn  [ )( )( ) [ )( )( ), 0, , 0,knnp pµ µ∞ ∞∞ → ∞ ). (by the cluster point property, so the last  

equality holds). The cluster point µ  is a bounded nonnegative finitely additive set function that vanishes on 
Lebesgue null sets. It is furthermore easily seen that (54) holds for p∞  and µ , for u U ′∈ , us J∈  and for  

0s = , both for ( )0v  equal to the cluster point 0v 9 as well as for ( ) ( )0 lim ,n nv v τ=   provided this limit ex-

ists, for any ( ) ( )( ) ( )( )1 , , ,t n nni
n i n n i niv f x u fτ ττ λ τ τ τ∗ ∗

=
= −∑



   for any given ,n
iu Uτ ∈  .n

niE
τ

τλ ∈


 

 

 

9For simplicity, assume that ( ) 0nv vτ → . Then, for any 0ε > , for all n large enough, ( ) ( ) [ ] ( ) [ ]0, ,, 1 ,0 1
n nn n T TC t v C t vτ ττ τ ε′ ′− ≤  

for all for [ ],nt Tτ ′∈ , so, by (25); for ( ) ( )( ) ( ) ( ): , ,n x n nt g t x t C t vτ τ∗Ψ = , ( )( ) ( ) 0: , ,0xg t x t C t v∗Ψ = , for any 0ε ′ > ; for all n 

large enough, ( ) [ ) [ ), ,1 1
n nn t τ τ ε∞ ∞

′Ψ −Ψ ≤  for all [ ),nt τ∈ ∞ . As 1nµ ≤ , ( ) ( )( ) ( )
[ )

( ) ( )
,

d essup
n

n

n
n t nt t t t tττ

µ ≥∞
Ψ −Ψ ≤ Ψ −Ψ∫ , so

( ) ( )
[ )

( ) ( )
[ )

( ) ( )( ) ( )
[ )

( ) ( )
[ )

( ) ( )
[ ), 0, , , 0,

d d d d d
n n n

n n n
n n nt t t t t t t t t t t

τ τ τ
µ µ µ µ µ

∞

∞ ∞ ∞ ∞ ∞
Ψ − Ψ = Ψ −Ψ + Ψ − Ψ∫ ∫ ∫ ∫ ∫ , which converges to zero at 

least for a subsequence of nµ . 
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Now ( ) [ ] ( )
0,

ˆ : dj
js

s tµ µ= ∫  is nondecreasing and bounded. Let 0J  be the continuity points in ( )0,∞  of 

[ ] ( )
0,

d ,
s

s tµ→ ∫  ( )1: , , .
j

µ µ µ ∗=   For any u U ′∈  and for any 0 ,s J J ′′∈   a sequence n us J∈  exists, such 

that ,ns s→  and ( ) ( )u u
nv s v s→  (see the very beginning of this proof), and because (54) holds for 

( )( ), ,u
n ns v s  it is easily seen by taking limits that (54) holds for u  and 0s J J ′′∈ 

10. 

Finally, let us extract an additional property. If ( )( ), 0jg t x t∗ >  for all t in some interval (0, jε   and 

0,ja =  then, for some 0,nδ >  ( )( ),j
ng t x t δ∗ ≥  for ,n jt τ ε ∈    when ,n jτ ε<  which by (55) implies 

( ) ( )0 , 0,n n
j n j j jµ τ ε µ ε   = =     and hence ( )0, 0j jµ ε  =  . Thus 

( ) ( )0 0, 0j jj G µ ς ∉ + ⇒ =                                 (56) 

for (say) ( ) ( )( ) ( ){ }1 2 sup : , 0 for 0, 0j
j t g s x s s tς ∗= > ∈ > 11

. 

3.4. Further Information on the Multipliers in Special Cases 
Let us prove the results concerning the multipliers in the three last sentences in Theorem 2 in the case where 
( )ax ∞  is maximized. 
Define 

( ) ( ) [ ) ( )( ) ( ) ( )
,

, , , dj
x js

j
p s p C s g t x t C t s tµ∗

∞ ∞
= ∞ +∑∫                      (57) 

Now, assume (9) and (10) (α), with ( ) { }0 .G j+ =  We may assume of the sequence nτ  used above that 

( )( ) ( ) ( )( ), , 0j j
x n n n t n ng x f g xτ τ τ τ τ∗ ∗ ∗+ ≤  for the single ( )0j G∈ +  (there exists a sequence 0,nt ↓  such 

that ( )( ), 0j
n ng t x t∗ = ). Here (29) was used. Let ( )( ): 0, 0 ,i iv f x uλ∗ ∗= ∑   satisfy the inequality in (9), define 

( ) ( )( ): , , ,i iv t f t x t uλ ∗
∗ = ∑   and assume that ( ) ( ) ( ).v t v t f t∗

∗= −  Then, by (30), for some 0,κ >  for nτ  

close to 0, ( )( ) ( ) ( )( ), , ,j
x n n n t n ng x v g xτ τ τ τ τ κ∗ ∗

∗ + ≥  which combined with the previous inequality gives 

( )( ) ( ), .j
x n n ng x vτ τ τ κ∗ ≥  So ( ) 0ˆ 0 ,j

xg v κ≥  0v  any given cluster point of ( )nv τ . We can assume that (54)  

holds for this cluster point 0v , for 0.s =  
Evidently, ( ) ( ) 0ˆ ,0 2j

xg t C t v κ≥  for all t close to 0. Now, if 0p∞ =  and [ )( ), 0sµ ∞ =  for all 0,s >  

then for any 0,s >  ( ) [ ) ( ) ( ) ( )
0,

ˆ0 ,0 d .j
x js

p g t C t tµ= ∫  From ( ) 00 0p v ≤  we get, for all s  close to zero, that 

[ ) ( ) ( ) ( ) [ ) ( )00, 0,
ˆ0 ,0 d 2 d ,j

x j js s
g t C t v tµ κ µ≥ ≥∫ ∫  which gives [ )( )0, 0j sµ =  for s  close to zero, and so 

 

 

10If U is replaced by ( )U t  as in Remark 3, we asume that { }k
i k

s b∉ . The perturbations ( ), ,u t dc P  will belong to ( )U t , 

because in the proof we now require the iu ’s to belong to ( )iU s


 and then ( )iu U t∈


 for t in [ ],i i is s dc+  , for d small. Then 

(54) holds for a.e. s for ( )u U s∈


 (⇒ ( )nu U s∈


 for n) and also for 0s = , for any given cluster point 0v  of any given 

bounded sequence ( ) ( )( ) ( )( ), ,n n
n i n n i ni

v f x u fτ ττ λ τ τ τ∗ ∗= −∑  where ( )n
i nu Uτ τ∈  , n Jτ ′∈ , n

niE
τ

τλ ∈  In addition, (54) holds for 

( )( ), 0s v  for all limits ( )0v  of all such sequences ( )nv τ  that are convergent. In particular, (54) holds for a given cluster 

point 0v  of a given sequence ( )nv τ , where ( ) ( )( ) ( )( )1
, ,i

i ii
v t f t x t u f tλ∗ ∗ ∗

=
= −∑ , iu  given points in ( )0U



, iEλ
∗

∈ . 
11In case ( )0G + =∅ , it can be assumed that (0, jτ ς ∈  , for all j, and, as said before, we then assume that for all P, 

i is u uτ= ⇒ = , u  some arbitrarily given element in U ′  (in ( )0U U ′


  in case U is replaced by ( )U t , 

( ) ( )0 nu U u U τ∈ ⇒ ∈
 

 for n large). 
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( ), 0,p µ∞ =  a contradiction. Hence, [ )( )( )0, lim , 0.sp sµ∞ ↓ ∞ ≠  

When ( )0G + ≠ ∅  and 0 is a right Lebesgue point of ( )f t∗  (i.e. (10) (β) holds), we can choose the se-

quence 0.nτ =  Evidently, by (29), ( )( ) ( ) ( )( )0, 0 0 0, 0 0j j
x tg x f g x∗ ∗ ∗+ =  when ( )0 ,j G∈ +  so again  

( ) 0ˆ 0 0,j
xg v >  ( )0 0 ,v v f∗ ∗= −  and we get the same conclusion regarding [ ]( )0,j sµ  (with 

[ )( )( )0, lim , 0sp sµ∞ ↓ ∞ ≠  again) and in this case, (as well as in the case that ( ) ( )0, ,t x f f→  is differentiable,  

i.e. (10) (γ), see Appendix), we don’t need the assumption that ( )0G +  contains a single element12. In fact,  
when (8) holds, in Theorem 2, we can assume ( ) [ ]( )00 : lim 0, 0.j js sµ µ↓= =  

Define ( ) [ )( )0inf , .j s j sµ µ≥∞ = ∞  Note that, by (23), [ )( ), 0j Tµ ′′ ∞ =  for T ′′  large enough if .j G∞
∗∈  

Assume that a c C∗ ∞∈  and positive numbers T̂  and γ∗  exist such that 

( )( ) ( ) ˆ, , , : \ , whenj
xg t x t C t s c j G G G T s tγ∗ ∗ ∗ ∞

∗ ∞ ∗≥ ∈ = ≤ ≤                   (58) 

 (see the end of Theorem 2). For ˆs T≥  
( ) ( ) [ ) ( )( ) ( ) ( )

( ) [ ) ( )
,

,

, , , d

, d

j
x js

jj G s

p s c p C s c g t x t C t s c t

p C s c t

µ

γ µ

∗ ∗ ∗ ∗
∞ ∞

∗
∗∞ ∗ ∈ ∞

= ∞ +

≥ ∞ +

∑∫
∑ ∫

 

Assume for the moment that ( )liminf 0.s p s→∞ =  Choose a sequence ns →∞  such that ( ) 0.np s →  

Letting ns s= →∞  in the preceding inequality, and using ( ), nC s Iπ π∞ →  (see Appendix, Lemma A), we 

get ( ) ( )0 ,j jj G j Gp c γ µ γ µ∗ ∗
∗

∞ ∗ ∗∈ ∈
≥ + ∞ ≥ ∞∑ ∑  so ( ) 0.jµ ∞ =∑  

Can ( ) [ ]( )( )liminf , lim 0, 0s s jj Gp s sµ∗→∞ →∞ ∈
=∑ ? No, we have shown that then ( ) 0jj G µ∗∈

∞ =∑ , and 

then ( )0 liminf ,s p s p→∞ ∞= =  so ( ), 0,p µ∞ =  a contradiction. So when (58) holds 

( ) [ ]( )liminf , lim 0, 0s s j
j G

p s sµ
∗

→∞ →∞
∈

 
≠  

 
∑                           (59) 

Finally, assume that both (58) and (8) are satisfied. By contradiction assume now that 

( ) [ ]( )( )liminf , lim 1 , 0.s s jj Gp s s sµ∗→∞ →∞ ∈
=∑  Then ( ) 0jj G µ∗∈

∞ =∑  (⇒ ( )lims p s p→∞ ∞=  and 

[ ]( ) [ )( )ˆ ˆlim 1 , 1 ,s j jj G j Gs s sµ µ∗ ∗→∞ ∈ ∈
= ∞∑ ∑ , so [ )( )( ), lim 1 , 0,s jj Gp sµ∗∞ →∞ ∈

∞ =∑  a contradiction. So 

(58) and (8) imply 

( ) [ ]( )liminf , lim 1 , 0s s j
j G

p s s sµ
∗

→∞ →∞
∈

 
=  

 
∑                    (60) 

Proof of Theorem 1. 
We still keep the assumption that ( )ax ∞  is maximized. Using lemmas in Appendix, note that (25)-(28) are 

implied by the basic smoothness assumptions, the growth conditions (11)-(13), (7), (14) (i.e. jg  depends only  
on ix , 1i n≤ ), and (15) implying that ( )( ),jz g t x t z∗→ +  is differentiable at 0, uniformly in t ((27) follows 
from Lemma E in Appendix). Moreover, also (29), (30) evidently follow. So all the above results also hold in 
the situation of Theorem 1. Using the definition (57) the maximum condition (54) can be written 

( ) ( )( ) ( )( )For a.e. , , , 0 for alls p s f s x s u f s u U∗ ∗− ≤ ∈                  (61) 

Now, 

 

 

12If (8) holds only for a subset G′  of ( )0G +  then it is easily seen that the collection , jp µ∞ , ( )0 \j G G′∈ + , 

[ )( )0lim ,js sµ
↓

∞ , ( )0j G G′∈ +   is nonzero (at least one entity is nonzero). 
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[ ) ( )( ) ( ) ( ) [ ) ( )( ) ( ) ( ) [ ) ( )( ) ( ) ( )
, , ,

, , d , , d , , d .j j j
x j x j x js s T T

g t x t C t s t g t x t C t s t g t x t C t s tµ µ µ∗ ∗ ∗

∞ ∞
= +∑ ∑ ∑∫ ∫ ∫  Using 

( ) ( )lim , , ,t C t s C sπ π→∞ = ∞  (5) and (14), 
[ ) ( )( ) ( ) ( ) ( ) ( ) ( )

,
, , d ,j j

x j x jT
g t x t C t s t g C sµ µ∗

∞
→ ∞ ∞ ∞∑ ∑∫  when 

.T →∞  Then, by (57), also 
[ ) ( )( ) ( ) ( )

,
lim , , dj

T x js T
g t x t C t s tµ∗

→∞ ∑∫  exists, and 

( ) ( ) [ ) ( )( ) ( ) ( ) ( ) ( ) ( )
,

, lim , , d , .j j
T x j x js T

p s p C s g t x t C t s t g C sµ µ∗
∞ →∞= ∞ + + ∞ ∞ ∞∑ ∑∫  Hence, 

( ) ( ) [ ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )
,

, : , , , d ,j j
x j x js T

p s T p C T s g t x t C t s t g C T s p sµ µ∗
∞= + + ∞ ∞ →∑ ∑∫  when .T →∞  

Let ( ) [ ]( )lim 0, .j js ss sν µ′↓
′=  Let J∗  be the continuity points of all [ ]( )0, .js sµ→  Write for the mo-

ment 

( ) ( ) [ ) ( )( ) ( ) ( ) ( ) ( )( ) ( )
,

ˆ , , , , d ,j j
x j x js T

p s T p C T s g t x t C t s t g C T sν µ∗
∞= + + ∞ ∞∑ ∑∫  

and ( ) ( )ˆ ˆlim , .Tp s p s T→∞=  Then13, for , ,s T J∗∈  ( ) ( )ˆ , , ,p s T p s T=  and then 

( ) ( ) ( ) ( ),ˆ ˆlim , lim , ,T T T Jp s p s T p s T p s
∗→∞ →∞ ∈= = =  .s J∗∈  With ( ) [ )( ): : inf ,j

j s j sγ µ µ= ∞ = ∞  ( jγ  oc-

curring in the definition of p̂∞ ) it is well-known that ( )ˆ ,p s T  satisfies (16)14. Evidently, (61) yields 

( ) ( )( ) ( )( )ˆFor a.e. , , , 0 for alls p s f s x s u f s u U∗ ∗− ≤ ∈                     (62) 

In Theorem 1, we have written ( ),p s T  and ( )p s  instead of ( )ˆ ,p s T  and ( )p̂ s . 
Note that (6) implies that (58) holds, as G G∞ ∞

∗= , ( ) \G G G∞
∞ ∗∞ = . Thus, (60) holds, which means that  

[ ]( )( )ˆ , lim 1 , 0s jp p s sµ∞ ∞ →∞+ ≠∑  in the situation of Theorem 1, because then ( )p ∞  exists and equals 

ˆp p∞ ∞+ . 
Proof of Remark 2. We give a proof for the case where ( )ax∗ ∞  is maximized. Note that 
( ) ( ) ( )( ) ( ), ,p s f s x s u s p s v∗ ∗ ≥  for ( )( )co , ,v f s x s U∗∈  for ,s J∗∈  where J∗  is a set of Lebesgue points of 

( ) ( ) ( )( ). : ., . , .f f x u∗ ∗ ∗=  of full measure. The inequality holds for all 0s >  in case of left continuity of f ∗ . 

Proof of a) 
Let ( )ˆ: ,j j

t tj gγΓ = ∞∑  ( ): j
j G γ
∈ ∞

′Γ = ∑  and recall ( ) ( )ˆ ˆ .j j
xj Gp gγ∞ ∈ ∞

= ∞∑  Assume 0.p∞ =  Assume by 

contradiction that 0.′Γ >  Then, for all s J∗∈  large enough  

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

d d ,

ˆ ˆ , ,

ˆ ˆ ˆ , ,

ˆ , , , ,

ˆ ˆ ˆ , ,

ˆ

j j
j G

j j j j
t xj G j G

j j j j
t t t xj G j G

j j j j
t t t xj G j G

s g s x s

g s g s f s x s u s

g s g s p f s x s u s

p p s f s x s u s p s f s x s u s

g s g s p f s x s u s

p

γ

γ γ

γ γ

γ γ

∗
∈ ∞

∗ ∗
∈ ∞ ∈ ∞

∗ ∗
∞∈ ∞ ∈ ∞

∗ ∗ ∗ ∗
∞

∗ ∗
∞∈ ∞ ∈ ∞

∞

= +

   = Γ + −Γ + −   

+ − +  

   ≥ Γ + −Γ + −   

+ −

∑
∑ ∑

∑ ∑

∑ ∑
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

, ,

ˆ ˆ ˆ , ,

ˆ ˆ ˆ, ,

ˆ ˆ ˆ , ,

s

j j j j
t t t xj G j G

j j
x s sj G

j j j j
t t xj G j G

p s f s x s u s p s v

g s g s p f s x s u s

p p s f s x s u s p s g v p v

g s g s p f s x s u s

γ γ

γ

γ γ

∗ ∗

∗ ∗
∞∈ ∞ ∈ ∞

∗ ∗
∞ ∞∈ ∞

∗ ∗
∞∈ ∞ ∈ ∞

+  

   = Γ + −Γ + −   
 + − + − ∞ +    

   ≥ −Γ + −   

∑ ∑

∑

∑ ∑

 

 

 

13Observation A in Appendix may be consulted at this point. 
14Compare e.g. Section 9.5 in [16]. 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ, ,

0

j j j
s t x sj Gp p s f s x s u s p s p v g g vγ∗ ∗

∞ ∞ ∈ ∞
+ − + − + ∞ + ∞      

>

∑  

(the last term is ,ε′≥ Γ  all square brackets 0→  when s →∞ ). Then 

( ) ( )( ) ( ) ( )( ), , 0,j j j j
j G j Gg x g s x sγ γ∗ ∗
∈ ∞ ∈ ∞

∞ ∞ > ≥∑ ∑  which is a contradiction because ( )( ), 0jg x∗∞ ∞ =  for 

( ).j G∈ ∞  So ′Γ  cannot be 0>  when 0p∞ = . Hence 
( ) ( )( )0,

, d , 0j
jp tν∞ ∞

′Γ ≠∑ ∫  implies 

( ) ( )( )0,
, d 0.j

jp tν∞ ∞
≠∑ ∫  

Proof of b) Assume by contradiction that 0.p∞ =  
If ( ) ,j G∈ ∞  then for some arbitrary large ,js J∗∈  we must have 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )d d , , , , , 0.j j j
j j t j j x j j j j js g s x s g s x s g s x s f s x s u s∗ ∗ ∗ ∗ ∗= + ≤  For 1,j∗ >  for all j, for 

large js  the left hand side is ( ) ( ) ( ) ( )( )ˆ ˆ , , ,j j
t xg g f x u∗ ∗≈ ∞ + ∞ ∞ ∞ ∞  i.e. it does not change much if js  is 

replaced by 1s . Hence, for ( )j G∈ ∞  (whether 1j∗ >  or =1), for large 1s , for ε  as in a), 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )1 1 1 1 1 1 1 1 1d d , , , , , 4j j j
t xs g s x s g s x s g s x s f s x s u s ε∗ ∗ ∗ ∗ ∗= + ≤  

Using the vectors sv  in a), for 1s  large we then have ( ) ( ) ( )( )( )1 1 1 1ˆ , , 3 4.j
x sg s v f s x s u s ε∗ ∗− ≥  Because 

( ), ,C t s Iπ π≈  when ,t s≥  s large, we finally get ( ) ( ) ( ) ( )( )( )ˆ , , , 2j
x sg s C t s v f s x s u s ε∗ ∗− ≥  when 1s s=  

is large. When s is large ( )j G∉ ∞  means ( ) ,j G t∉  .t s≥  Using 0jγ =  and (22) (which even holds for 

( ) ( ) ,sv s v f s∗= −  ( )( )co , ,sv f s x s U∗∈ ), for s J∗∈  large, we get 

( ) ( ) ( ) ( ) ( ) [ ) ( ) ( ) ( ) ( ) ( ) [ ) ( ) ( )
, ,

ˆ ˆ0 , d , d 2 d .j j j j j
x xj j G j Gs s

g t C t s v s t g t C t s v s t tν ν ε ν
∈ ∞ ∈ ∞∞ ∞

≥ = ≥∑ ∑ ∑∫ ∫  Hence, 

both for ( )j G∈ ∞  and for ( ) ,j G∉ ∞  
[ ) ( )

,
d 0j

s
tν

∞
=∫  for some (large) s.  

Next, let 
[ )

( )
,

inf : d 0 for all .j

s

s s t jν∗
∞

  = = < ∞ 
  

∫  By contradiction, assume 0.s∗ >  Let 

( ) ( )( ) ( )( ): : , , co , , ,k
s kkv s v f s x s u f s x s Uλ
∗

∗ ∗
∗ ∗ ∗ ∗ ∗ ∗= = ∈∑  where sv

∗
 has the property that 

( ) ( ) ( )ˆ ˆ : 0j j
t xg s g s v s ε∗ ∗ ∗ ∗ ′+ = >  for ( ) ,j G s∗∈  see b). By continuity, for any s s∗<  and close to ,s∗  

( ) ( ) ( ) ( )ˆ ˆ 3 4 for .j j
t xg s g s v s j G sε∗ ∗′+ ≥ ∈                        (63) 

There exist ,js J∗∈  js s∗<  and arbitrarily close to ,s∗  such that for ( ) ,j G s∗∈  
( )( ) ( ) ( ) ( )ˆ ˆd , d 0j j j

j j t j x j jg s x s s g s g s f s∗ ∗= + ≤ . If 1,j∗ >  for all j, the left hand side is 

( ) ( ) ( )ˆ ˆ ,j j
t xg s g s f s∗

∗ ∗ ∗≈ +  so for 1s  close to ,s∗  ( )( ) ( ) ( ) ( )1 1 1 1 1ˆ ˆd , d 4j j j
t xg s x s s g s g s f s ε∗ ∗ ′= + ≤  for all 

( )j G s∗∈  whether 1j∗ >  or 1.j∗ =  Combining this inequality with (63), we get for 1 ,s s J∗= ∈  s close to 

s∗  that ( ) ( ) ( ) ( )( )ˆ ˆ 2j j
t xg s g s v s f s ε∗

∗ ′+ − ≥  for ( )j G s∗∈ 15. From this, we finally get, by Lipschitz conti-

nuity of ( ),t C t s→  on [ ]0, s∗ , uniformly in s, that there exists a ,s s s∗
∗= <  s J∗

∗∈  and close to ,s∗  such 

that ( )( ) ( ) ( ) ( )( ), , 4j
xg s x s C t s v s f s ε∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ′− ≥  when , ,t s s∗
∗ ∈    and s∗  can be chosen so close to s∗  

 

 

15As an alternative to the left continuity assumption on ( ).f ∗  in Remark 2 (for 1j∗ > ), we may assume that, if ( )0 , 0p p∞ =  
in the necessary conditions, then these conditions imply left continuity of ( ).f ∗  on ( )0,∞ . 
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that ( ) 0jg t >  when , ,t s s∗
∗ ∈    ( ).j G s∗∉  The last inequality and (22) then yields 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
, ,

ˆ0 , d 4 d ,j j j
xj j G ss s s s

g t C t s v s f s tν ε ν∗ ∗∗∗ ∗

∗ ∗ ∗ ∗
   ∈
   

′≥ − ≥∑ ∑∫ ∫  which gives ( )
,

d 0j
s s

tν∗
∗ 

 
=∫  

both for ( )j G s∗∈  and for ( )j G s∗∉  and so ) ( )
,

d 0j
s

tν∗ ∞
=∫  for all j. Evidently we cannot have 0,s∗ >  

so 0.s∗ =  Thus 
( ) ( )
0,

0 d 0,jp tν∞ ∞
= ⇒ =∑ ∫  contradicting 

( ) ( )( )0,
, d 0.jp tν∞ ∞

≠∑ ∫  Hence 0.p∞ ≠  

Proof of Remark 4. We construct an auxiliary problem: assume for given functions ( ). , 1, , ,kw k k∗=   that 
we want to maximize ( )ax ∞  subject to 

( ) [ ), , 1 , 0,k k k
k k

x f t x z u z w t t
  = − + ∈ ∞  

  
∑ ∑                      (64) 

( ) ,kw t U∈  ( ) ( ). . 1,kw u∗

∞
− ≤  ( ).kw  measurable. Here ,kz  1, , ,k k∗=   are auxiliary states, governed by 

[ ) ( )0,11 ,k kz tα=  [ ]0,1 ,kα ∈  ( )0 0,z =  where kα  are auxiliary controls. Write 

( ) [ ]1, , 0,1 .k

k
α α α

∗

∗= ∈  For 0,ε >  define ( )ˆ :A t = { ( ) [ ), : 0,1 ,t u t ε∈  ( )0,1 ,u U B ε∈   

( )( ), ,jg t x t u ε∗ >  if , ,j jt a b ∈    j j∗> }, ( ) ( ) ( ){ }ˆ: : ,U t u t u A tε = ∈


, and let ( ) ( ){ } ( ): .U t u t U tε ε
∗=



  

Below, ε  is so small that ( )0 .Uε ≠ ∅


 Given any measurable control functions ( ) ( ). , ,u tα   ( ) [ ]0,1 ,ktα
∗

∈  

( ) ( ) ,u t U tε∈  let ( ) ( ) ( ). , . ,ux tα

 ( ) ( ). .kzα  be the solutions of (64) and k kz α=  corresponding to ( ). ,u  ( ).α . 

For any ,δ  there exists a (0,1 kδ ∗ ′∈   such that if ( ){ }( )meas : 0t tα δ ′≠ ≤  and 

( ) ( ){ }( )meas : ,t u t u t δ∗ ′≠ ≤  then ( ) ( ) ( ) ( ). , .ux t x tαπ π δ∗− ≤


 for all t, by Lemmas B and C in Appendix, 

hence, by continuity of ( ) ( ), , ,jx u g t x u→  at ( ) ( )( ), , ,t x t u t∗ ∗  uniformly in t, for some (0,1 ,kδ ∗ ∗ ∈   
( ) ( ) ( ) ( ) ( ) ( )( ). , ., , 1 0,uj

k k kkg t x t z u t z w tα − + ≥∑ ∑


  ,j j∗>  for ( ) ( ){ }: , ,j jt t u t u t a b∗  ∈ ≠  


  when 

( ){ }( )meas : 0t tα δ ∗≠ ≤  and ( ) ( ){ }( )meas : ,t u t u t δ∗ ∗≠ ≤  (δ ′  and δ ∗  perhaps dependent on ε ). In the 

auxiliary problem the constraints are the terminal constraints (4), ( ){ }( )meas : 0 ,t tα δ ∗≠ ≤   

( ) ( ){ }( ): ,t u t u t δ∗ ∗≠ ≤  ( ) ( ) ( )( ). , ., 0ujg t x tα ≥


 for all ,j jt a b ∈    for ,j j∗≤  
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ). , . . ., , 1 0uj

k k kkg t x t z t u t z t w tα α α∗− + ≥∑ ∑


 for all ,j jt a b ∈    for ,j j∗>  ( ) ( ).u t U tε∈  

Hence, if ( ) ( )( ). , .u α  is admissible in the auxiliary problem, we have seen that 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ). .: 1 k k iku t z t u t z t w tα α= − +∑ ∑

  is admissible in the original problem when 

( ) ( ){ }( )meas : ,t u t u t δ∗ ∗≠ ≤  ( ){ }( )meas : 0 .t tα δ ∗≠ ≤  We assume that δ ∗  is 2kδ ∗≤   (for δ  see the 

beginning of Remark 4, then ( ) ( ) ( ) ( )( ). 2k iz t w t u tα δ∗− ≤∑   and then, for ( ). 0,α∗ ≡  the property related to 

( )X tδ  in Remark 3 is satisfied in the auxiliary problem for 2kδ δ ∗=  ). So, in the auxiliary problem, 

( ) ( ). . ,u u∗ ∗≡  ( ). 0α∗ ≡  are optimal in the set of controls { ( ) ( )( ) ( ) [ ], : 0,1 ,ku t t tα α
∗

∈   

( ){ }( )meas : 0 ,t tα δ ∗≠ ≤  ( ) ( ){ }( )meas : ,t u t u t δ∗ ∗≠ ≤  ( ) ( )u t U tε∈ }. The arguments in the proof of 

Theorem 2 apply also in the present situation, with one modification: For ,j j∗>  the inequality 0jg ≥  in 
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,i i is s dc∗ ∗ + 
  for ( ), , ,x x t dc P∗=  ( ), ,k kz z t dc P∗=  automatically holds for (0, .d δ ∗ ∈   Hence the argu-

ments in the section between (50) and (51) are not needed16 (and do not work) for .j j∗>  
The necessary conditions in Theorem 2 are now applied to this auxiliary system (they apply even when ad-

missible controls are restricted as above, see the inequalities involving ,δ ∗  and even for U  replaced by 

[ ] ( )0,1 ,k U tε

∗

×  see the end of Remark 317. In the auxiliary system, the linearized system is 0,zq =  

( ) ( )ˆ ,x z x
u xq f t w t q f q∗ ∗= +  where ( )ŵ t  is the transposed of 

( ) ( )( ) ( ) ( ) ( ) ( )( )1 1ˆ ˆ, , : . . , , . . .k kw r w r w u w u∗ ∗ ∗ ∗= − −   The resolvent of the linearized system becomes 

( ) ( ) ( ) ( ) ( ) ( )
0

ˆ, , , d
, ,

t
us

I
B t s C t r f r w r r

B t s C t s
∗ 

= 
 

∫                       (65) 

where ( ) ( ) ( ) ( ) ( ) ( )ˆd d , , ,u xt B t s f t w t f t B t s∗ ∗= +  ( ), 0.B s s =  From Lemma A in Appendix, we get that 

( ) ( ) ( ) ( ) 1ˆ ˆ, d , , e d ,
t tt

i is s
B t s Q w s s B t s Q w s s i nω−≤ ≤ ≤∫ ∫                      (66) 

for some constant Q, independent of t and s t≤ , where iB  is the i’th row of B and 

( ) ( ){ }11 2 min ,a b n nω κ= − −  (to apply Lemma A, note that for ( )11, , ,ny x x=   ( )1 1, , ,n nz x x+=   in an 

obvious notation, ,y y y y z
y zq f q f qγ ∗ ∗= + +  ,z z y z z

y zq f q f qψ ∗ ∗= + +  where ˆ ,y
uf wγ ∗=  ˆ ,z

uf wψ ∗=  

e ,y at
uf A∗ −≤  ez t

uf C κ∗ ≤ ). Note that (22), or actually (54), applied to the auxiliary system, holds for 0s =  

for the limit point ( ) ( ),0 lim ,n nvα τ=   ( ) ( )( ) ( )( ) ( )( )( ) ( ), 1 1 , , , 0n n n nv n f x u f u Uτ α τ τ τ∗ ∗= + − ∈    given, 

α  any given element in [ ]0,1 k∗  (see remarks subsequent to (55)). From this we get, for 0s =  and 

( )0, ,0, ,0, ,0 ,kα α=    [ ]0,1kα ∈  and ( ) ( )ˆ. .kw w=  that 

( ) ( ) ( ) [ ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0, 0

1
ˆ ˆ0 , d , d d

j tj j
k u x u u j

j
p C r f r w r r g t C t r f r w r r g t w t tα µ

∗∗
∞ ∗ ∗

∞ ∞
=

   ≥ ∞ + +     
∑∫ ∫ ∫   (67) 

From now on assume 1kα =  in (67). Moreover, for 0,α =  ( ) ,u U sε∈


 from (54) applied to the auxiliary 
system, we get that (54) holds as written. Finally, ( ), ,p Aµ∞ ∈  A  defined below. 

Let A  consist of all pairs ( ),p µ∞  such that p∞  satisfies (52) and ( )1: , ,
j

µ µ µ ∗∗=   satisfies 0,jµ ≥  

( )( ), 0j J jµ β∗ =  for all 0,β >  and (56) for ,j j∗≤  with [ )( )0, 1.jp µ∞ + ∞ =∑  Let ,wA Aε ⊂  

( ). ,w w W ∗= ∈  0,ε >  consist of all pairs ( ),p Aµ∞ ∈  such that (67) holds for the given w  and (54) are sa-

tisfied for all ( ) ,u U sε∈


 for a.e. s, in particular for 0,s >  ( ) , ,uu U s U s Jε ′∈ ∈


  and 0,s =  0v  any given 

cluster point of any given sequence ( )nv τ , each ( )nv τ  corresponding to some collection n
iuτ  from ( )nUε τ . 

Let Γ  consist of all finite set { }1 1, , , , , ,
k k

w w ε ε∗ ∗′Γ =    ,kw W ∗∈  0.kε >  We have just proved that for 

each ′Γ , : k
kwk

A Aε
′Γ =


 is nonempty, so by compactness A ′Γ′Γ ∈Γ

 is nonempty (the weak* topology is ap-

plied on the µ’s ). Let ( ): ,a p Aµ∗ ∗
∞= ∈  be any given element in the latter intersection. Then, for a∗ , both  

 

 

16Thus we don’t need (and often don’t have!) differentiability of ( ) ( ) ( )( ), , 1j
k k kk k

t g t x z u t z tω∗→ − +∑ ∑  for j j∗> . 

17The growth conditions related to ( )11 1, , , , ,k nz z x x
∗

   are of the same type as those related to 11, , nx x  in problem (1)-(4). 

Note that the perturbations iu  now belong to ( )U tε



. 



A. Seierstad 
 

 
121 

(67) holds for all ( ). ,w W ∗∈  and (54) is satisfied for ( )u U s∈  for a.e. s. (To obtain this last property, pre-
ferably the set J ∗  of point s for which (54) holds should be independent of the ( ),p µ∞ ’s in each A ′Γ , one 
can use that (54) now holds for a∗ , for ( )u U s U ′∈   for 0s > , us J∈  and hence by earlier limit argu-
ments (54) holds for a∗ , for all ( )u U t∈ , for a.e. s). We also have that (54) is satisfied by a∗  for 0s =  for 
any given cluster point 0v  for any given sequence ( )nv τ , each ( )nv τ  corresponding to some  

{ } ( )
,

n
i i n

u U tτ
ε⊂  for some 0ε > . 

The proof of [ )( )( )0 ˆ, lim , , 0,sp sµ µ∞ ↓ ∞ ≠  is the same as the proof for the analogous condition in the case 

,j j∗ ∗∗=  noting that ( )00, ,i iv f x uλ∗ ∗ ∗= ∑  for some ( )0iu U∗ ∈  means for some 0,ε >  

( ) ( )( ) ( ) ( )( ), , co , ,i iv t f t x t u f t x t U tελ∗ ∗ ∗ ∗
∗ = ∈∑  for t near 0 (so [ )( )( )0 ˆ, lim , , 0,sp sµ µ∞ ↓ ∞ =

 
( ) ( )0 0 0jj G µ

∈ +
>∑  again leads to a contradiction in the same way as before)18. Similarly, 

( ) [ )( )( )ˆliminf , lim 0, , 0s sp s sµ µ→∞ →∞ ≠  has essentially the same proof as before. To show 

[ )( )0, , j jLµ
∗∗ ∗−

∞∈ ∞   in case ( ) ( ) ( ), ,
ˆ 1 0

j j

j
u a b J j

g t w t
β

δ ∗  
 − ≥ 



  holds, we now assume 1,k∗ =  and we re-

place ( ) ( )ˆ. .kw w=  by wφ  in the definition of ( ), ,B t s  where [ )( )0, , ,Lφ ∞∈ ∞   0.φ ≥  Then from (66), 
we get 

( ) ( ) 1
0

,0 d for some constant ,iB t K s s K i nφ
∞

′ ′≤ ≤∫                       (68) 

Using the inequality 

( ) [ ) ( ) ( ) ( ) ( ) ( )
0,

1
ˆ ˆ0 ,0 ,0 d

j
j j
x u j

j
p B g t B t g t w t tµ

∗∗

∞ ∞
=

   ≥ ∞ + +  
  

∑∫                    (69) 

(i.e. (67)), we get 

( ) [ ) ( ) ( ) ( )

[ ) ( ) ( ) ( ) ( ) [ ) ( ) ( )

0,
1

0, 0,

ˆ,0 ,0 d

ˆ d d

j
i j

i x j
i n j

j
u j j

j j j j

p B g t B t t

g t w t t t t t

µ

φ µ δϕ µ

∗∗

∗ ∗

∞ ∞
′′≤ =

∞ ∞
> >

− ∞ −

≥ ≥

∑ ∑∫

∑ ∑∫ ∫

                     (70) 

Note that ( ) ( ) ( ) ( )1ˆ ˆ,0 ,0 .i
j j
x ii n x

g t B t g t B t
≤

= ∑  So, from (68), (70) and [ )( )0, 1jµ ∞ ≤∑ , ,i
i p n∞ ≤∑  it 

follows that ( ) ( ) ( ) [ ) ( ) ( )1
,0 0 0,

ˆd sup d d .j
t j x jj jnK t t j n g t K t t t tφ φ δφ µ∗

∞ ∞∗∗
> ∞

 ′ ′+ ≥  ∑∫ ∫ ∫  Then 

[ )( ) [ ) ( ) ( )
10, , , 1 0,

sup d ,jL t tψ ψ ψ µ
∞∈ ∞ ≤ ∞

< ∞∫  j j∗>  (note the 1L -norm on ψ ). But then jµ , ,j j∗>  can be  

represented by nonnegative functions jµ  in [ )( )0, , ,L∞ ∞   in fact in [ )( ) [ )( )10, , 0, , ,L L∞ ∞ ∞   be-
cause jµ  is bounded. 

Let us finally show that [ )( )( )0 ˆ, lim , 0 0sp sµ µ∞ ↓ ∞ = ⇒ =  when ( ).w  exists. By (66), for ˆ ,w w=   

( ) ( ) ( )d , d . e ,t
iB t s t Q t s w ω−

∞
≤ −   Q  independent of t  and [ ]0, ,s t∈  1.i n≤  So, for ,t T>  

( )( ) ( ) ( ) ( ) ( )2. e , , d
tT

i i uT
Q w B t T C t r f r w r rωω − ∗

∞
≥ = ∫  , 1.i n≤  By this inequality, there exists a T ′  such 

that, for ,j j∗>  ( ) ( ) ( ) ( ) ( ) ( )1 ˆ ˆ, d 2i

tj j
i u ui n x T

g t C t r f r w r r g t w t δ∗
≤ ′

+ ≥∑ ∫    for ,t T ′≥  ( ), , .j jt a b J j β∗ ∈    

Next, for some ξ , for [ ]0, ,t T ′∈  ,j j∗>  0,ρ >  ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ, e d e e 2
tj r j t t

x u ug t C t r f r w r r g t w tξ ξ ξ
ρ

δ∗ + ≥∫    

 

 

18We can again let ( )0 0jµ = , j j∗≤  also in the present case, (67) does not change for this change of ju . 
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for t T ′≤ . To see this, for k chosen such that ( )ˆ ,xk g t≥  ( ) ( ) ( )1
1 max , , ,i ui n

n C t r f r w r∗
≤

  for [ ]0, ,t T ′∈  

note that 4 4
0

e d e e 2
t r t tk r kξ ξ ξξ δ≤ =∫  when 42 .kξ δ=  By (67) and the two inequalities involving ,δ  for 

( )
[ ) ( ) [ ) ( )( ), ,e 1 1t T

T Tw w t t Wξ
ρ

′− ∗
′ ′ ∞= + ∈ , and for [ )( )( )0 ˆ, lim , 0,sp sµ∞ ↓ ∞ =  for any 0ρ >  

( ) ( ) ( ) [ ) ( ) ( ) ( ) ( ) ( )

[ ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

,

,

ˆ0 , d , d d

ˆ ˆ, d d

e 2 d

tj
u x u jj j

tj j
x u u jj j j j

T j
j j

p C r f r w r r g t C t r f r w r r t

g t C t r f r w r r g t w t t

r r

ρ ρ ρ

ρ ρ

ξ
ρ

µ

µ

δ µ

∗

∗ ∗

∗

∞ ∗ ∗
∞ ≤ ∞

∗
> >∞

∞ ′−
>

= − ∞ −

 ≥ +  

≥

∑∫ ∫ ∫

∑ ∑∫ ∫

∑ ∫

 

But then 0,jµ =  ,j j∗>  because ρ  was arbitrary. A contradiction of [ )( )( )0 ˆ, lim , , 0sp sµ µ∞ → ∞ ≠  has 

arisen, so [ )( )( )0 ˆ, lim , 0.sp sµ∞ ↓ ∞ ≠
 

4. Conclusion 
The paper establishes necessary conditions for optimality in a smooth infinite horizon optimal control problem 
with unilateral state constraints and terminal constraints at the infinite horizon. The necessary conditions include 
a complete set of transversality conditions at infinity. The specific growth conditions placed upon the system in 
this paper can easily be modified, but strong growth conditions are in any case needed for the full set of neces-
sary conditions to hold. 
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Appendix 
Below, for any matrix ,A  1sup xA Ax≤= . 

Lemma A. Let ( ) ( )1 11 1, , , , , ,n n ny x x z x x+= =   ( ), ,x y z=  1 ,n n<  let 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
: ,

y y
y z
z z

y z

tF t F t
F t G t

tF t F t
γ
ψ

   
= =   
    

  

where, in ( )F t , the matrices in the first row are respectively 1 1n n×  and ( )1 1n n n× −  and in the second row 

( )1 1n n n− ×  and ( ) ( )1 1n n n n− × − , and, in ( )G t , ( )tγ  is 1 1n ×  and ( )tψ  is ( )1 1,n n− ×  all entries be-

ing measurable functions of [ )0, ,t∈ ∞  γ  and ψ  locally integrable. Assume that for some positive numbers 

, , , , , ,A B C a b κ∗ ∗ ∗  ( ) e ,y at
yF t A∗ −≤  ( ) e ,y bt

zF t B∗ −≤  ( ) e ,z t
yF t C κ∗≤  ( ) ,z

zF t κ≤  .bκ <  Write  

( ) ( )( ) ( ) 1 1
, :y z n n nq t q t q t −= ∈ ×   for the solution ( )q t  on [ ),τ ∞ , 0τ ≥ , of ( ) ( )q F t q G t= +  for 

( ) nq τ ∈  given. Define ( ) { }1 2 min , .a bω κ= −  Then for some positive number Q, only dependent on  

, , , , , ,A B C a b κ∗ ∗ ∗  ( ) ( ) ( ) ( )d e d ,
t tyq t Q q κρ
τ τ

τ γ ρ ρ ψ ρ ρ− ≤ ⋅ + +  ∫ ∫
 

( ) ( ) ( ) ( ) ( )e d e d .
t ttzq t Q qκ ω κρ
τ τ

τ γ ρ ρ ψ ρ ρ+ − ≤ ⋅ + +  ∫ ∫  Hence 

( ) ( ) ( ) ( ) ( )e d e d .
t ty tq t A B Q qω κρ
τ τ

τ γ ρ ρ ψ ρ ρ∗ ∗ − − ≤ + + +  ∫ ∫  

Lemma B. Let ( ) [ ), , : 0, n ny mf t y z
∗

∗ ∗∞ × × →    and ( ) [ ), , : 0, nz m mf t y z
∗ ∗

∗∞ × × →    be mea-

surable in t, and with ( ), ,yy f t y z→ , ( ), , ,yz f t y z→  ( ), ,zy f t y z→  and ( ), ,zz f t y z→  Lipschitz 

continuous with Lipschitz constants e atA∗ − , e btB∗ − , e tC κ∗  and κ , respectively, .bκ <  Write ( ), ,x y z=   

( ) { }1 2 min , .a bω κ= −  There exists a positive number Γ  such that the following properties hold: let  

( ) ( ) ( )( ),x t y t z t=  and ( ) ( ) ( )( ),x t y t z t∗ ∗ ∗=  be two solution on [ )0,∞  of 

( ) ( ) ( )( ), , , , ,y zx f t x f t x f t x= =  for ( )0x , respectively ( )0x∗  given, assumed to exist. Then for all t, 

( ) ( ) ( ) ( )0 0y t y t x x∗∗− ≤ Γ −  and ( ) ( ) ( ) ( ) ( )0 0 e tz t z t x x κ ω+∗
∗− ≤ Γ − , so 

( ) ( ) ( ) ( ) ( )e 0 0 ,ty t y t A B x xω∗ ∗ − ∗
∗

 − ≤ + Γ −    which implies that ( )y ∞  exists if ( )y∗ ∞  exists.  

Note that ( ).x  and ( ).x∗  do exist whenever ( )( ), 0f t x  and ( )( ), 0f t x∗  are integrable. 
The proofs of the lemmas A and B are of a standard type and omitted in order to save space. 
Let 0T >  be given and let [ ]0, .TJ T=  Let ( ) ( ) ( ){ }, : meas : , , for at least one .f f t f t x f t x xσ ∗ ∗= ≠  

Lemma C. Let F  be a family of functions ( ), : ,n n
Tf t x J × →   such that all ( ),f t x  are Lipschitz  

continuous in x  with a common Lipschitz rank ( ) ,tβ  β  integrable, and with ( ),t f t x→  measurable. Let  
( ).x∗  be a solution of ,x f ∗=  ( )0x∗  and f F∗ ∈  given (assumed to exist). Assume that all  

( )( ) ( )( ), , ,f t x t f t x t∗ ∗ ∗−  f F∈  are bounded by a common constant α . Then a constant ∗Γ  exists such  

that for any ,f F∗ ∈  for any given 0x∗ , a solution of ,x f∗ ∗=  ( ) 00x x∗ ∗=  exists, and  

( ) ( ) ( ) ( ) ( )0 0 ,x t x t x x f fσ∗ ∗ ∗ ∗
∗ ∗ ∗

 − ≤ Γ − +   for all Tt J∈ . 

Proof of Lemma C. Note that ( )( ) ( )( ) ( )0
, , d 2 , ,

t
f s x s f s x s s f fασ∗ ∗ ∗ ∗
∗ ∗− ≤∫  so by Gronwall’s inequality, 

( ) ( ) ( ) ( ) ( ) ( )0 d0 0 2 , e .
t s sx t x t x x f f βασ∗ ∗ ∗

∗ ∗ ∗
∫ − ≤ − +   
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Lemma D. Let F  be a family of functions ( ), : ,n n
Tf t x J × →   all Lipschitz continuous in x with a  

common Lipschitz rank ( )tβ , β  integrable, and with ( ),t f t x→  measurable. Let f ∗  be a given function 
in F  and let ( ).x∗  be a solution of x f ∗= , ( )0x∗  given (assumed to exist). We assume that all  

( )( ) ( )( ), , ,f t x t f t x t∗ ∗ ∗−  ,f F∈  are bounded by a common constant α . We also assume that  

( ),x f t x∗→  is differentiable at ( )( ),t x t∗  for a.e. t. For ( )0, ,nf q F∈ ×  let ( ) ( )0,. .f qq q=  be a solution 

of ( )( ) ( )( ) ( )( ), , , ,xq f t x t q f t x t f t x t∗ ∗ ∗ ∗ ∗= + −  ( ) 00 ,q q=  0q  given. Then, for some 0,K ∗ >  for all t, 

( )0, ,f qq t K d∗≤  when ( ), ,f f dσ ∗ ≤  0 .q d≤  Moreover, for some K∗  and some second order term 

( ) ,o d∗  for all t, all ( )0 ,fx  all ( )0 0, ,q B d∈  all f such that ( ), ,f f dσ ∗ ≤
 

( ) ( ) ( ) ( ) ( ) ( )0,
00 0 ,f qf fx t x t q t x x q K o d∗ ∗

∗ ∗− − ≤ − − +  where ( ).fx  is the solution of ,x f=  ( )0fx  
given (it does exist). 

Proof of Lemma D. The proof of ( )0,f qq t K d∗≤  follows from Lemma C. Let ( ) ( ) ( )0,f qz t q t x t∗= +  

and let f f ∗=  on ,nM ×  ( )meas .M d≤  We have that 

( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )0 0, ,, , , 2 2 ,f q f q
xf t z t f t x t f t x t q t t q t t K dβ β∗ ∗ ∗ ∗ ∗ ∗− − ≤ ≤  and, by differentiability of 

x f→  at ( )( ),t x t∗  we have that ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )0 0, ,, , , f q f q
x t tf t z t f t x t f t x t q t o q t o dK∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗− − ≤ ≤  

for some second order increasing term ( ) ( )2tr o r t rβ→ ≤ , so for  

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )0 0, ,: , , , , , ,f q f q
xt f t z t x q f t z t f t x t f t x t q t f t x t f t x tγ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= − − = − − − +   

( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

0

0

0 0

,

,

, ,

1 , , ,

1 1 , , ,

1 2 1 2 : , 4

f q
M x

f q
M x

f q f q
M t M t

t f t z t f t x t f t x t q t

f t z t f t x t f t x t q t

t q t o q t t K d o dK t d t K d

γ

β β γ β

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗

 ≤ − − 

 + − − − 

≤ + ≤ + = ≤

 

for a.e. t. Dividing by d, we get 

( ) ( ) ( ), 4t d t d d t Kγ γ β ∗
∗≤ ≤  

By Lebesgue’s dominated convergence theorem, ( ) ( ) ( ) ( )
0

, : 1 , d , 0
t

t d d s d s T dγ γ γ∗ ∗
∗= ≤ ↓∫  when 0d ↓ . 

As 

( )( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )

0,, ,

, ,

f qf

f f

f t x t f t x t q t

f t x t f t z t t t x t z t tγ β γ

∗ ∗− −

= − + ≤ − +



 

then 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

,
0

,
0

0 0 ,

d

f qf f

t f qf

x t x t q t x x q d t d

s x s x t q t s

γ

β

∗ ∗ ∗

∗

− − ≤ − − +

+ − −∫
 

and then by Gronwall’s inequality, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 d, 0 0 0 e ,
t s sf qf fx t x t q t x x q o t dβ∗ ∗ ∫− − ≤ − − +   

where ( ), ,o t d  a second order term in d, equals ( ) ( ) ( ) ( ) ( ) ( )0d d

0
, , e d , e .

t T
s

t r r r rd t d s d s s d T dβ βγ γ β γ∗ ∗ ∗∫ ∫ + ≤  ∫  

Lemma E. In the situation of Lemma B, let ( ),x f t x→  be differentiable at ( )( ), ,t x t∗  where 
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( ) ( ) ( )( ). . , .x y z∗
∗ ∗=  is a given solution on [ )0 ,t ∞  of ( ), ,x f t x=  ( )0x t∗  given, assumed to exist. For each 

( ]0, ,d d∗∈  let ( ) ( ) ( )( ). . , .d d dx y z=  be a solution on [ )0 , ,t ∞  0 0,t ≥  of ( ), ,x f t x=  ( )0
dx t  given (it 

does exist), and let ( ).q  be a solution of ( )( ), ,xq f t x t q∗=  ( )0q t  given. Assume that, for some K, 

( ) ( ) ( ) ( )0 0 0
dx t x t dq t o d∗

∗− − ≤  for all ( ) ( )0 0, ,q t B K∈  ( ).o∗  a second order term in d. Then for some 

second order term ( )o d , ( ) ( ) ( ) ( )
0

d .d y
t

y t y t dq t t o d
∞

∗− − ≤∫     

Proof of Lemma E. By Lemma D, for some term ( ),o t d  being of the second order in d, 

( ) ( ) ( ) ( ), ,dx t x t dq t o t d∗− − ≤  when ( ) ( ) ( )0 0 0
dx t x t dq t∗− −  is of the second order. For some 0,d ′ >  

( ) ( ) ( ) ( )0 0 0 1dx t x t dq t d d K∗− ≤ + ≤ +  for ( ]0, .d d ′∈  Hence, by Lemma B, for some constants ,∗Γ  ,Q∗  

we have that ( ) ( ) ,dy t y t d ∗
∗− ≤ Γ  ( ) ( ) ( )e ,tdz t z t d κ ω+∗

∗− ≤ Γ  ( ) ,yq t Q∗≤  ( ) ( )e ,tzq t Q κ ω+∗≤  so 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, , e e

e e e e

y d y y at d bt d

at y bt z t t

f t x t f t x t dq t d A y t y t d B z t z t d

A dq t d B dq t d A B A B Qω ω

∗ ∗ − ∗ −
∗ ∗

∗ − ∗ − ∗ ∗ ∗ − ∗ ∗ ∗ −

− − ≤ − + −

+ + ≤ + Γ + +



 

By Lebesgue’s dominated convergence theorem the conclusion in the lemma follows if we can prove that for  
each t, ( ) ( )( ) ( )( ) ( )1 , , 0y d y yd f t x t f t x t dq t∗− − →  when 0.d →  To obtain the latter fact, let 

( ) ( ) ( ) ,dz t x t dq t∗= +  and note that 

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )( ){ }
( ) ( ) ( ){ }

1 , ,

1 , , , ,

1 , e ,

y d y y

y d y d y d y y
x

d d y
t

y t
t

d f t x t f t x t dq t

d f t x t f t z t f t z t f t x t f dq t

A B x t z t o dq t

d o t d o dQ κ

∗

∗

∗ ∗

∗

− −

≤ − + − −

≤ + − +

≤ +



 

where the second order term ( ) ( ) ( )( ) ( )( ), , ,supy y y y
t xx ro r f t x x f t x t f t x t x∗ ∗ ∗

′ ≤ ′ ′= + − −  
Proof of Lemma 1. 
Consider the map ( ) ( ) ( )( ) ( )( ): , , , ,z w z x x c z P q c z P dyπ π π∗ ∗ ∗ ∗→ = ∞ − ∞ + ∞ +  for ( ), ,z B dy dδ∈  d 

any number in ( ]0,1 . Let { }max 1,iT s∗= +  and note that, by Lemma C, ( )( ), ,x T c z P∗  and 

( )( ), ,q T c z P∗ ∗  are continuous in ( ), .z B dy dδ∈  Then, by Lemma B, ( )( ), ,x c z Pπ ∗∞  and 

( )( ), ,q c z Pπ ∗ ∗∞  are continuous in ( ), .z B dy dδ∈  Let C  be a Lipschitz rank of ( )c z  and ( )zλ . For 

,yκ δ∗ = +  let the second order term ( )o d∗  satisfy 

( ) ( ) ( ) ( ), , , , ,x x c P q c P o dπ π π∗ ∗ ∗ ∗∞ − ∞ + ∞ ≤  when ,
m

c E ∗∈  ,c Cdκ∗≤  

for the existence of ( )o d∗  see Lemmas D and E. Recall that ( ) ( ), , , ,q c P q c Pπ π∗ ∗∗∞ = ∞  and that 

( ) ( ) ( ), , , ,q c P q c P o dπ π∗∗ ∗∗∞ − ∞ ≤  when c C dκ∗≤  for some second order term ( ).o∗∗ , see an argument 

preceding (44) and Lemma A. Hence, for ( ) ( ) ( )o d o d o d∗ ∗∗= + , 

( ) ( ) ( ) ( ), , , ,x x c P q c P o dπ π π∗ ∗ ∗ ∗∞ − ∞ + ∞ ≤  when ,
m

c E ∗∈  .c Cdκ∗≤  

Note that for ( ), ,z B dy dδ∈  we have ( ) ( )( )cl , ,w z B dy o d∈  as ( )c z C z Cdκ∗≤ ≤ , and for d small 

( 0 d ρ< ≤  for some 0ρ > ), ( )( ) ( )cl , , .B dy o d B dy dδ⊂  Fix such a 0d > . Now, ( )w z  is continuous in 

( )( )cl ,B dy o d  and has a fixed point dz  here, by Brouwer’s fixed point theorem. As ( )d dw z z=  and 
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( ) ( )( ), , ,d d i d
iiz z q q c z Pλ π ∗ ∗= + ∞∑  ( ) ( ) ( )( )( )0 , , ,d d

i iix z q x c z P dyπ λ π∗ ∗= ∞ − + ∞ +∑
 

( ) ( ) ( ) ,d dc z c dy C z dy Co d− ≤ − ≤  ( ) ( ) ( ).dz dy Co dλ λ− ≤  Then let ( ) ,d d i
iiq z d qλ= ∑  

( )d dc c z d=  to obtain Lemma 1. 

Observation A. On the space of continuous real-valued functions on [ )0,∞  with compact support, fur-

nished with the sup-norm, jµ  can be represented by a nondecreasing bounded function jµ  such that 

[ ) ( ) ( ) [ ) ( ) ( )
0, 0,

d dj
jt t t tφ µ φ µ

∞ ∞
=∫ ∫  for all bounded continuous φ  with compact support. In fact, we can let 

( ) [ ]( ){ }inf 0, : ,j
js s s sµ µ ′ ′= >  ( )0 0jµ = , ( jµ  right continuous for 0s > ). Let J∗  be the continuity  

points in ( )0,∞  of 
[ ]0,

d .js
s µ→ ∫  Then [ ]( ) ( ) [ ] ( ) [ ]( ) [ ]( )0,

0, : d : 0, 0,j j j
j js

s s t s sµ µ µ µ µ ′≤ = = ≤∫  for any 

,s s′ >  hence for ,s J∗∈  [ ]( ) [ ]( )0, 0,j
j s sµ µ=  and 

[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )< < , < ,sup 0, sup 0, sup 0, 0, 0, ,j j j
s s s s s J s s s J j js s s s sµ µ µ µ µ

∗ ∗′′ ′′ ′′ ′′ ′′∈ ∈′′ ′′ ′′= = = =  so jµ  is also 

left continuous at s. For piecewise constant functions φ  with bounded support, jumping only at points in ,J∗  

evidently 
[ ) ( ) ( ) [ ) ( ) ( )
0, 0,

d d .j
jt t t tφ µ φ µ

∞ ∞
=∫ ∫  By approximating continuous function (or even piecewise conti-

nuous functions jumping only at points in J∗ ) by such piecewise constant functions, one see that the same 
equality holds for continuous functions (or such piecewise continuous functions) φ  with bounded support. 

Note that if nφ φ→  uniformly ( ,nφ φ  continuous, with a common bounded support), and ,ns s J∗→ ∈  

then 
[ ) ( ) ( ) [ ) ( ) ( )

, ,
d d

n
n j js s

t t t tφ µ φ µ
∞ ∞

→∫ ∫ : Assuming for simplicity (say) ns s↓ , this follows from  

[ ) ( ) ( ) [ ) ( ) ( ) [ ) ( ) ( ) [ ) ( ) ( ) [ ) ( ) ( ) [ ) ( ) ( )

[ )( ) [ )( )
, , , , , ,

d d d d d d

0, , .
n n n n

n j j n j j j js s s s s s

n j j n

t t t t t t t t t t t t

s s

φ µ φ µ φ µ φ µ φ µ φ µ

φ φ µ φ µ

∞ ∞ ∞ ∞ ∞ ∞

∞∞

− = − + −

≤ − ∞ +

∫ ∫ ∫ ∫ ∫ ∫  

Let 0,ε >  ε  arbitrary. For ,T T ∗>  T ∗  large, [ )( ) ( )0 , ,j jTµ µ ε≤ ∞ − ∞ ≤  hence, for any ,S T T ∗> >  
[ )( ), 2 .j T Sµ ε≤  Thus for ,T J∗∈  ,T T ∗>  

[ )( ) [ )( ) [ )( ) [ )( ) [ ),
2 sup , sup , sup , : , : d .j j j

S j S J j S T
T S T S T S Tε µ µ µ µ µ

∗∈ ∞
≥ = = = ∞ = ∫  Hence, 

[ )( ), 0,j Tµ ∞ →  when .T →∞  If φ  is bounded and continuous, but with unbounded support, evidently, by 

the last inequality, 
[ ] ( ) ( ) [ ] ( ) ( ) ( ) ( )

, , , 1
d d d 2 ,j j js S s T T S

t t t t tφ µ φ µ φ µ φ ε
∞ ∞+

− ≤ ≤∫ ∫ ∫  so 
[ ],

lim dT js T
φ µ→∞ ∫  exists. 

As also [ )( ), 2j T Sµ ε≤  ( [ )( ) [ )( ), , ,j
jT S T Sµ µ ′ ′≤ ,T T T S S∗ ′ ′< < < ), exactly the same argument works 

for 
[ ],

lim d ,j
T s T

φ µ→∞ ∫  the latter limit written 
[ ),

d .j
s
φ µ

∞∫  

Proof of (10) (γ) ⇒ ( ) [ )( )( )0 0, lim , 0.s jj Gp sµ∞ → ∈ +
∞ ≠∑  

Assume again that ( )ax ∞  is maximized and postulate the conditions in Theorem 2 (allow even for the con-
ditions in Remark 3), in particular postulate (10) (γ). For simplicity, assume 0ja =  for ,j j′≤  2ja ≥  for 

,j j′>  2.k =  We want to replace each condition 0,jg ≥  j j′≤  by two conditions, 0jg ≥  for 2,t ≤  
0jg ≥  for 2.t ≥  It can be done by requiring that 0,jg ≥  j j′≤  holds for 2t ≤  and, by adding new con-

straints 0j jg ∗+ ≥  required to hold on [ )2,∞ , where j j jg g∗+ =  for j j′≤ . We now first assume both that 
jg , j j′≤  is independent of t, and that f  is independent of t for [ ]0,2t∈ . Assume that there exist iv U∈ , 
1, , ,i i∗=   0,iλ >  1iλ =∑  (see (9)) such that 

( )
( ) ( )0 00

7 : min 0, 0, , 0j
x i ij G i

g x f x vβ λ∗

∈ +
= >∑                              (71) 
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Then, for some ( ]0, 0,1 ,δ ε> ∈  both 

( ) ( )( ) ( )0 0, 0 for 0,2jj G g x t t ε∗∉ + ⇒ > ∈                        (72) 

and, for 0 ,s t ε≤ ≤ ≤  

( ) ( )
( ) ( ) ( )

00 , ,
min 0, , 0, , 6 .j

x i ij G x B x i
g x C t s f x v

δ
λ β ∗

∈ + ∈
≥∑                         (73) 

Let M  have the property that ( )max 0, ,i if x v M≤  and ( )( )0, ,f x u t M∗ ≤  for ( )0 , .x B x δ∈  Let 

( )O γ  be a first order term (i.e. ( ) 0O γ ↓  when 0γ ↓ ), such that 
( ) ( ) ( ) ( ) ( )0, 0, , 0, 0, ,j j

x i x iO g x f x v g x f x vγ ′ ′≥ −  when ( )0, ,x x B x γ′∈   for all j j′≤ , i. As we did in con-

nection with (43), let 0 1 2a =  and define inductively ( )2
1 1j j ja a a− −= −  ( )0ja ↓ . Let )1,j j jA a a −=  . 

Choose a partition ), ,i i i
j j jM a b=   1, , ,i i∗=   of jA  such that ( ) ( )measi i

j j i jb a Aλ− = . Define 

( ) ( ), 1 .i
j

ii j M
u t v t= ∑  It is easily seen that for ( )20, ,1t∈  

( )( ) ( ) 2
0

0, , d 0, , 8
t

i i
i

f x u t t t f x v t Mλ− ≤∑∫                        (74) 

for any ( )0 , .x B x δ∈  To see this, note that for jt a=  the left hand side vanishes, while for ( )1,j jt a a −∈  

( )( )1 1 11 2 ,j j jt a a a− − −⇒ ≥ − ≥  the left hand side is smaller that 

( ) ( ) 2 2
1 12 2 2 8 .j j j jt a M a a M a M t M− −− ≤ − = ≤  Let .j j j∗′′ ′= +  Define ( )( ) ( )0: max , , ,t s xg t x t C t s∗

≥ ≥Γ =  

( )0: sup , ,t sM C t sπ≥ ≥′′ =  ( )0: max 0, .j
j xg xΘ =  Let ( ]0, 2Mα δ∈  be any given number, 2,α ε≤  

( )2 ,M Mα β∗ ′′≤ Γ +  such that ( )O Mα β∗≤  and ( ) 22 8M t M tβ ∗′′Θ + Γ + ≤  when [ ]0,t α∈ . 

Let ( ]0, 2 ,τ ε∈  2 .Mτ δ<  Moreover, let ( ) ( ) ( ) ( )( )0, , d ,
t

x t x f x r u r r
τ

τ∗= + ∫  ( ], 2 .t τ∈  Then 

( ) ( ) ˆx t x Mτ γ∗− ≤  when [ ]ˆ0, ,t τ γ− ∈  { }ˆ min 1 2, 2 ,Mγ δ≤  as ( ) ( )0 , 2x B xτ δ∗ ∈ . So 

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )ˆ0, 0, , 0, 0, ,j j
x xg x t f x t u t g x f x u t O Mτ τ γ∗ ∗− ≤  when ˆ.t τ γ− ≤  

Consider the following auxiliary control problem on [ )1 ,α τ− − + ∞ . Define ( ) ( ) ,u t u t α τ= + −  

[ ], .t α τ τ∈ − +  Let ( )( ) [ ) ( ) ( ) ( ) [ ) ( ) ( ) [ ) ( ), ,1 1 ,0, , 1 1 0, , 1 , , 1 ,f yf x u t t y f x u t f t x u tα τ τ τ τ τα− + + + ∞= + − +

  and in-

troduce the two state equations ,x f=   ( ) ( )1 ,x xα τ τ∗− − + =  [ )1 ,1y w α τ α τ− − + − += , ( )1 0,y α τ− − + =  ( )y ∞  

free, and let u U∈  and 0w ≥  be the controls. We require ( ), 0jg t x ≥  on [ ], 2τ  for j j′≤  and  
( ), 0jg t x ≥  on [ )2,∞  for ,j j′>  and ( ) 0,y t ξ≤ >  ξ  described below. The end conditions on ( )x ∞  

are as before. Then 0y w≡ ≡  and ( ) ( ). .u u∗=  (on [ ),τ ∞ ) are optimal in this problem, see below. Applying 
Theorem 2 to this problem, with p  and yp  as costates corresponding to x  and y , gives 0,jµ ≥   

[ )( )1 , 0,jµ α τ τ− − + =  [ ) ( )( ), , 0j J jµ τ β∗∞ =  for all 0,β >  [ )( ), 2 0jµ τ =  for ,j j′>  
( )( )2, 0,jµ ∞ =  ,j j′≤  and the maximum condition (22), i.e. (a.e.) 

( ) ( )( ) ( )( ), , 0,p s f s x s u f s∗ ∗− ≤  ,s τ≥  ( ) 0,yp s w ≤  [ ]1 ,s α τ α τ∈ − − + − + , 

where 

( ) ( ) [ ) ( ) ( ) ( )
,

ˆ, , d ,j
x jj s

p s p C s g t C t s tµ∞ ∞
= ∞ +∑ ∫  

( ) ( ) ( ) ( )( ) [ ] ( ) ( ) ( ) [ ) ( ), ,10, , 1 1yp t p t f x u t t p t f t tα τ τ τ ττ α∗ ∗
− + += − +  , 
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( ) ( )1 0.y yp p τ∞ = + =  In particular, because [ ] ( )( ),inf 0, 0j
t g x tτ τ ε

∗
∈ + >  when ( )0 ,j G∉ +  ,j j′≤  see 

(72), then 

( ) [ ]( )0 , 0.jj G µ τ τ ε∉ + ⇒ + =                         (75) 

Assume by contradiction both that [ )( ),jj j jµ α τ γα γ∗ ′≤ +
+ ∞ ≤ ≤∑  and that ,p γα∞ ≤  where 

[ )( ) ( ) [ )( )0: , , ,j jj j j j Gγ µ τ α τ µ τ α τ∗ ′≤ + ∈ +
= + = +∑ ∑  which by necessity means that 0.γ >  Then, fo r 

( ) ( ) [ ) ( )( ) ( ) ( )0 ,
: 0, , d ,j

x jj G s
s g x r C r s r

α τ
κ µ∗

∈ + +
= ∑ ∫  

( ) [ ) ( )( ) ( ) ( )
,

: , , dj
x jjs

s g r x r C r s rκ µ∗ ∗

∞
= ∑∫ , 

( ) ( ) ( ),p s p C s sκ∗
∞= ∞ +  for ,s τ α≥ +  ( ) ( ) ( ) ( ),p s p C s sκ κ τ α∗

∞= ∞ + + +  for [ ), ,s τ α τ∈ +  
( ) ( )p s p τ=  for ,s τ<  which gives ( )sκ αγ∗ ≤ Γ  and ( ) ( )p s Mαγ ′′≤ Γ +  for ,s α τ≥ +  and 

( ) ( ) ( )2p s M Mγ αγ γ′′ ′′≤ Γ + Γ + ≤ Γ +  for [ ],s τ τ α∈ + . Also, ( ) ( )( )0, , 6 ,i ii f x vκ τ α λ τ αβ γ∗ ∗≥∑  by 

(73). As ( ) ( )1 0y yp pτ + = ∞ = , using (74), we have, for [ ]2 ,t α τ α τ∈ − + − + , 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( )

1

1

2

1 0, , d 0, , d

0, , d 0, ,

, 0, , 0, ,

0, , d 0, d

2 8

y y

i ii

i i i ii i

p t p p f x u t t p t f x t u t t

p f x u t t f x v

p C f x v f x v
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contradicting ( ) 0,yp s w ≤  for ( )2 ,s α τ α τ∈ − + +  (as 0w ≡  is optimal). 
The optimality of ( ) ( )0, . , .w x u∗ ∗≡  follows from the following argument: Let ( ) ( ) ( ) ( ). , . , . , .x y u w  be an 

arbitrary admissible quadruple in the auxiliary problem. Let ( ).y y α τ= − +  If 0,y >  let ( ) =yx t  
( ) ( )( ) ,yx t x t yτ τ= + −  ( ) ( )( )yu t u t yτ τ= + −  for [ ), ,t yα τ τ∈ − +  let ( ) ( ) ( )( )1 ,yx t x t yτ τ α= + − −  
( ) ( ) ( )( )1yu t u t yτ τ α= + − −  for [ ),1 ,t yτ α τ∈ − +  and let ( ) ( )yx t x t yα= + , ( ) ( )yu t u t yα= +  for 
1 .t yα τ≥ − +  Next, let ( ) ( ) ,y

yx t x t yα= −  ( ) ( ) ,y
yu t u t yα= −  [ ), .t τ∈ ∞  Then  
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and hence ( ) ( ) ( )( ), , .y y yx t f t x t u t=  Moreover, ( ) ( ).yx xτ τ∗=  
So ( ) ,yx t  0,y >  is a solution in the original system evidently satisfying the end restrictions, and 

( )( ) ( )( )0 , ,j j
yg t x t g t x t≤ =  for 2,t ≥  .j j′>  Because ( )( )0, 0,jg x t ≥  [ ], 2t τ∈  for ,j j′≤  

( )( )0, 0,j yg x t ≥  [ ], 2 ,t yτ α∈ −  and then ( )( ), 0j
yg t x t ≥  for  [ ], 2 ,t yτ α∈ +  ,j j′≤  F inal ly,  on 

[ ],yτ α τ−  ( )( )0, 0,j yg x t ≥  j j′≤  as we shall see in a moment, so ( )( )0, 0j
yg x t ≥  for [ ), ,t yτ α τ∈ +  

hence ( )( ), 0j
yg t x t ≥  for all [ ], 2 ,t τ∈  .j j′≤  For 0,y =  let ( ) ( ) ( ) ,y

yx t x t x t= =  in which case ( ).yx  
is automatically an original solution. 

From (74) and ( ) ( )( ) ( ) ( ) ( )( )ˆ ˆ0, , d 0, , d ,
t t y y

y
y f x u s s f x u t t

α τ α τ

α τ α τ
τ τ

− + + − + +∗ ∗

− + − +
=∫ ∫  for ( ]0, ,t α∈  we get 
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Using ( ) ( ) ,yx y xα τ τ∗− + =  when [ ]0, ,t α∈  for ,j j′≤  
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Then, by (72), (73), (76), for all ( ]0,1 ,y∈  all [ ]0, ,t α∈  all ( ) ,j G τ∈  

( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( )

( )

2

0, 0,

0, 0, , d

0, 0, , 8

6 0.

j y j

t y j y
xy

j
x i ii

g x y ty g x

tyO M g x f x u r r

tyO M tyg x f x v y t M

ty

α τ

α τ

α τ τ

α τ τ

α τ λ τ

β β β

∗

− + + ∗ ∗

− +

∗ ∗

∗ ∗ ∗

− + + −

≥ − +

≥ − + − Θ

≥ − − ≥

∫
∑

 

As ( )( )0, 0,jg x τ∗ ≥  then ( )( )( )0, 0j yg x t yα τ− + + ≥  for [ ]0, ,t α∈  ( ).j G τ∈  Moreover, for 

( ) ( )( )min 0, 0,j
j G g xτξ τ∗ ∗
∉= >  for some positive ξ  small enough, ( )( )( )0, 0j yg x t yα τ− + + ≥  when 

,y ξ≤  [ ]0, .t α∈  (For 0y =  there is nothing to prove.) 

Now, ( ) ( )yx t x tπ π=  for 2,t ≥  so ( ) ( )( ). , .y yx u  belongs to the set of admissible pairs in the original 

problem. We have ( ) ( ) ( ) ,yax ax ax∗∞ = ∞ ≤ ∞  hence ( ). 0,w ≡  ( ).u∗  are optimal in the auxiliary problem19. 

Let now ( ]0, 2 ,nτ τ ε= ∈  2 ,n Mτ δ<  where 0,nτ ↓  and let np∞  and n
jµ  be corresponding multip-

liers, satisfying the normalization [ )( ), 1.n n
j njp µ τ∞ + ∞ =∑  We put [ )( )0, 0.n

j nµ τ =  Now, ( ),n np µ∞  has a 

cluster point ( ),p µ∞  satisfying (22), (55), and (56). Assume now that  [ )( )( ), , 0p µ α∞ ∞ = . Then there exist 

some n  such that 4 1 4,np α∞ ≤ ≤  [ )( ), 4 1 4,n
j njµ τ α α+ ∞ ≤ ≤∑  and hence 

[ )( ) ( ) [ )( )0, , 1 2.n n
j n n j n nj j Gγ µ τ τ α µ τ τ α

∈ +
= + = + ≥∑ ∑  Hence, 4 ,α αγ≤  which leads to a contradiction, as 

was shown above. Thus, [ )( )( ), , 0p µ α∞ ∞ ≠ . 

We can extend this result to problems that are nonautonomous on [ ]0,2 , by using t as a new state variable, 

say z, governed by 1,z =  with x governed by ( ) ( ) [ ) ( ) ( ) [ ) ( )0,2 2,, , , , , 1 , , 1 ,x f t x z u f z x u t f t x u t∞= = +


  pro-

vided that ( ), ,f t x u  is jointly differentiable in ( ),t x  at ( )( ),t x t∗  for all t, and that ( ),jg t x  is differentiable 

in ( ),t x  at ( )( ),t x t∗  uniformly in [ ]0,2 ,t∈  with a derivative at this point bounded uniformly in [ ]0,2 .t∈  
 

 

 

19In case we have constraints ( ), , 0jg t x u ≥ , j j∗> , (in which case ( ) ( )( ), , 0jg t x t u t ≥ , 0t ≥  is required), then for τ  and 

α  small, for [ ),s yτ τ α∈ + , ( ) ( )( ) ( )( ) ( )0, , min , , min , , 0j j j
y y i y i i ig t x s u s g t x s v g t x v≥ > , as ( )0iv U∈ . 
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