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Abstract 
In this paper, a new filled function with only one parameter is proposed. The main advantages of 
the new filled function are that it not only can be analyzed easily, but also can be approximated 
uniformly by a continuously differentiable function. Thus, a minimizer of the proposed filled func-
tion can be obtained easily by using a local optimization algorithm. The obtained minimizer is 
taken as the initial point to minimize the objective function and a better minimizer will be found. 
By repeating the above processes, we will find a global minimizer at last. The results of numerical 
experiments show that the new proposed filled function method is effective. 
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1. Introduction 
Global optimization methods have wide applications in many fields, such as engineering, finance, management, 
decision science and so on. The task of global optimization is to find a solution with the smallest or largest ob-
jective function value. In this paper, we mainly discuss the method to find the global minimizer of the objective 
function. For some problems with only one minimizer, there are many local optimization methods available, for 
instance, the steepest decent method, the Newton method, the trust region method and so on. However, many 
problems include multiple local minimizers, and most of the existing methods will not be applicable to these 
problems. 

The difficulty for global optimization is to escape from the current local minimizer to a better one. One of the 
most efficient methods to deal with this issue is the filled function method which was proposed by Ge [1] [2]. 
The generic framework of the filled function method can be described as follows: 
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1) An arbitrary point is taken as an initial point to minimize the objective function by using a local optimi- 
zation method, and a minimizer of the objective function is obtained. 

2) Based on the current minimizer of the objective function, a filled function is designed and a point near the 
current minimizer is used as an initial point to further minimize the filled function. As a result, a minimizer of 
the filled function will be found. This minimizer falls into a better region (called basin) of the original objective 
function. 

3) The minimizer of the filled function obtained in 2 is taken as an initial point to minimize the objective 
function and a better minimizer of the objective function will be found. 

4) By repeating steps 2 and 3, the number of the local minimizers will be gradually reduced, and a global 
minimizer will be found at last.  

Although the filled function method is an efficient global optimization method and different filled functions 
have been proposed, there are some drawbacks for the existing filled functions, such as more than one para- 
meters to be controlled, being sensitive to the parameters and ill-condition. For example, the filled functions 
proposed in [1] [2] contain exponent term or logarithm term which will cause ill-condition problem; the filled 
functions proposed in [3] [4] are non-smooth functions to which the usual classical local optimization methods 
can not be used; the filled functions proposed in [1] [5] [6] have more than one parameter which is difficult to 
adjust. To overcome these shortcomings, a new filled function with only one parameter is presented. Although it 
is not a smooth function, it can be approximated uniformly by a continuously differentiable function. Thus its 
minimizer can be easily obtained. Based on this new filled function, a new filled function method is proposed. 

The remainder of this paper is organized as follows. Related concepts of the filled function method are given 
in Section 2. In Section 3, a new filled function is proposed and its properties are analyzed. Furthermore, an ap- 
proximate function of the proposed filled function is given. Finally, the method for avoiding numerical difficulty 
is presented. In Section 4, a new filled function method is proposed and the numerical experiments on several 
test problems are made. Finally, some concluding remarks are drawn in Section 5. 

2. The Related Concepts 
Consider the following global optimization problem with a box constraint:  

( ) ( )min
x

P f x
∈Ω

 

where ( )f x  is a twice continuously differentiable function on nR  and [ ]
1

,
n

n
i i

i
l u R

=

Ω = ⊂∏ . Generally, we  

assume that ( )f x  has only a finite number of minimizers and the set of the minimizers is denoted as  

{ }1,2, ,iLm x i I∗= =   in Ω  ( I  is the number of minimizers of ( )f x ). 

Some useful concepts and notations are introduced as follows: 
1x∗ : A local minimizer of ( )f x  on Ω  found so far; 

1S : Set ( ) ( ) { }{ }1 1 1, \S x f x f x x x∗ ∗= ≥ ∈Ω ; 

2S : Set ( ) ( ){ }2 1intS x f x f x∗= ∈ Ω < ; 
m : A constant satisfying 

{ } ( ) ( )
( ) ( )

, 1,2, , ,
min

i j
i j

i j I f x f x
m f x f x

∗ ∗

∗ ∗

∈ ≠
= −



; 

M : A constant satisfying 
,

max
x y

M x y
∈Ω

= − . 

Assumption. All of the local minimizers of ( )f x  fall into the interior of Ω . 
Definition 1 The basin [7] of ( )f x  at an isolated minimizer 1x∗  is a connected domain ( )1B x∗  which  

contains 1x∗ , and in which the steepest descent sequences of ( )f x  starting from any point in ( )1B x∗  con-  

verge to 1x∗ , while the minimization sequences of ( )f x  starting from any point outside of ( )1B x∗  doesn’t 
converge to 1x∗ . Correspondingly, if 1x ∗  is an isolated maximizer of ( )f x , the basin of ( )f x−  at 1x ∗  is 
defined as the hill of ( )f x  at 1x ∗ .  

It is obvious that if ( )1x B x∗∈ , then ( ) ( )1f x f x∗> . If there is another minimizer 2x∗  of ( )f x  and  
( )2f x∗ <  or ( )2f x∗≥ , then the basin ( )2B x∗  of ( )f x  at 2x∗  is said to be lower (or higher) than ( )1B x∗  of  
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( )f x  at 1x∗ . 
The first concept of the filled function was introduced by Ge [1] [2]. Since the concept of the filled function 

was introduced, different filled functions are given (e.g., [8] [9]). A new concept of the filled function was 
presented which is easier to understand in [8]. It can be described as follows: 

The first concept of the filled function was introduced in [1].  
Definition 2 A function ( )FF x  is said to be a filled function of ( )f x  at 1x∗ , if it satisfies the following 

properties:   
1) 1x∗  is a strict local maximizer of ( )FF x  over Ω ; 
2) ( )FF x  has no stationary point in the set { }1 1\S x∗ ; 

3) if the set 2S  is not empty, then there exists a point 2x S′∈  such that x′  is a local minimizer of ( )FF x .  
Based on definition 2, we present a new filled function with only one parameter in Section 3. 

3. A New Filled Function and Its Properties 
Assume that a local minimizer 1x∗  of ( )f x  has been found so far. Consider the following function for pro- 
blem (P):  

( ) ( ) ( ){ }( ) 2

1 1 1, , max ,0FF x x A A f x f x x x∗ ∗ ∗= − + − × −                      (1) 

where A  is a parameter. 
The following theorems will show that the formula (1) is a filled function which satisfies definition 2.  
Theorem 1 Suppose 1x∗  is a local minimizer of ( )f x  and ( )1, ,FF x x A∗  is defined by (1), then 1x∗  is a  

strict local maximizer of ( )1, ,FF x x A∗  for all 0A > .  

Proof. Since 1x∗  is a local minimizer of ( )f x , there exists a neighborhood ( )1 , intN x δ∗ ⊂ Ω  of 1x∗ , 
0δ >  such that ( ) ( )1f x f x∗≥  for all ( )1 ,x N x δ∗∈ . For all ( )1 ,x N x δ∗∈ , 1x x∗≠ , one has  

( ) ( )2

1 1 1 1, , 0 , ,FF x x A A x x FF x x A∗ ∗ ∗ ∗= − × − < =                        (2) 

Thus, 1x∗  is a strict local maximizer of ( )1, ,FF x x A∗ . □ 

Theorem 2 Suppose 1x∗  is a local minimizer of ( )f x , x  is a point in set 1S , then x  is not a stationary  
point of ( )1, ,FF x x A∗  for all 0A > .  

Proof. Due to 1x S∈ , one has ( ) ( )1f x f x∗≥  and 1x x∗≠ , so  

( ) ( ) ( )2

1 1 1 1, , ,    , , 2 0FF x x A A x x FF x x A A x x∗ ∗ ∗ ∗= − × − ∇ = − × − ≠  

Namely x  is not a stationary point of ( )1, ,FF x x A∗ . □ 

Theorem 3 Suppose 1x∗  is a local minimizer of ( )f x  but not a global minimizer of ( )f x , which means 
2S  is not empty, then there exists a point 2x S′∈  such that x′  is a local minimizer of ( )1, ,FF x x A∗  when 

0 A m< < .  
Proof. Since 1x∗  is a local minimizer of ( )f x , and 1x∗  is not a global minimizer of ( )f x , there exists  

another local minimizer 2x∗  of ( )f x  such that ( ) ( )2 1f x f x∗ ∗< . 

By the definition of m  and continuity of ( )f x , there exists a point x  in rectangular area 1 2,x x∗ ∗   , such 
that  

( ) ( )1f x f x A∗ − =                                        (3) 

So  

( ) ( )1 1 1, , , , 0FF x x A FF x x A∗ ∗ ∗= =                                  (4) 

By 1x∗  is a local minimizer of ( )f x , there exists a point ( )1 1 2,x B x x x∗ ∗ ∗ ∈ ∩    such that  
( )1, , 0FF x x A∗ < , 
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Then, there exists a point { } { }{ }1 2 1 2 1 2, min , max , intn
ii i i i

x x x x R x x x x x∗ ∗ ∗ ∗ ∗ ∗ ′∈ = ∈ ≤ ≤ ⊂ Ω   which is a  

minimizer of ( )1, ,FF x x A∗ . 
Furthermore, by the Theorem 2, one has ( ) ( )1f x f x∗′ < . Consequently, Theorem 3 is true. □ 
From Theorem 1, 2 and 3, we know that if there is a better local minimizer 2x∗  of ( )f x  than 1x∗ , then 

there exists a point x′  which is minimizer of ( )1, ,FF x x A∗ . It falls into a lower basin. These mean that if one 
minimizes ( )f x  with initial point x′ , a better minimizer of ( )f x  will be found. 

We can find that if 1x∗  is not a global minimizer of the objective function, then ( )1, ,FF x x A∗  is non-diff- 
erentiable at some point in Ω . Gradient-based algorithms for local optimization cannot be used to obtain the 
minimizer of ( )1, ,FF x x A∗ . A smoothing technique [10] to approximate ( )1, ,FF x x A∗  is employed here as 
follows. 

Let  

( ) ( ) ( )( )( )( ) 2

1 1
1 ln 1 exppFF x A p f x f x x x
p

∗ ∗ 
= − + + × − × − 
 

                     (5) 

where p  is a positive parameter. It is obvious that ( )pFF x  is a differentiable. Further, because  

( ) ( ) ( ) ( )( )( )( ) ( ) ( ){ }

( ) ( ){ }( )( ) ( ) ( ){ }

2

1 1 1 1

2

1 1 1

2

1

1, , ln 1 exp max 0,

1                                    ln 2exp max 0, max 0,

ln2                                    

pFF x FF x x A p f x f x f x f x x x
p

p f x f x f x f x x x
p

x x
p

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

 
− = + × − − − × − 

 
 

≤ − − − × − 
 

= −

 

and  

( ) ( ) ( ) ( )( )( )( ) ( ) ( ){ }

( ) ( ){ }( )( ) ( ) ( ){ }

2

1 1 1 1

2

1 1 1

1, , ln 1 exp max 0,

1                                    ln exp max 0, max 0,

                                    0

pFF x FF x x A p f x f x f x f x x x
p

p f x f x f x f x x x
p

∗ ∗ ∗ ∗

∗ ∗ ∗

 
− = + × − − − × − 

 
 

≥ − − − × − 
 

=

 

we have that the inequality  

( ) ( ) 2 2
1 1

ln2 ln20 , ,pFF x FF x x A x x M
p p

∗ ∗≤ − ≤ − ≤                         (6) 

holds. From above discussion, we can see that ( )pFF x  uniformly converges to ( )1, ,FF x x A∗  as p  tends  

to infinity. Therefore, by selecting a sufficiently large p , the minimization of ( )1, ,FF x x A∗  can be replaced 
by 

( )min px
FF x

∈Ω
                                          (7) 

In order to obtain a more precise minimizer of ( )1, ,FF x x A∗  by solving ( )pFF x , p  in ( )pFF x  should 
be large enough. However, if the value of p is too large, it will cause the overflow of the function values 

( )pFF x . To prevent the occurrence of this situation, a shrinkage factor r is introduced to ( )pFF x  as follows. 
First of all, it is necessary to estimate ( ) ( )max min

xx
U f x f x

∈Ω∈Ω
= −  and give a fixed and sufficiently large p   

(e.g., take it as 3 210p M= ) which guarantees that the ( )pFF x  accurately approximates to ( )1, ,FF x x A∗ .  

Then, in order to prevent the difficulty of numerical computation, a large 
10
pUr =  can be taken. Finally,  

( )pFF x  can be rewritten as  
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( )
( ) ( ) 21

1ln 1 expp

f x f xrFF x A p x x
p r

∗
∗

   −   = − + + × × −
   

   

                  (8) 

By doing so, the existing shortcomings can be overcome. 

4. A New Filled Function Algorithm and Numerical Experiments 
4.1. A New Filled Function Algorithm 
Based on the theorems and discussions in the previous section, a new filled function algorithm for finding a 
global minimizer of ( )f x  will be proposed, and then some explanations on the algorithm will be given. The 
details are as follows. 
  Step 1 (Initialization). Choose the initial values ( )0A A=  (e.g., 0 1A = ), a shrinkage factor 0 1ρ< <  (e.g., 

0.1ρ = ), a lower bound of A (denote it as Lba), sufficiently large p and r . Some directions ,  1, 2, , 2id i n=    
are also given in advance, where ( )T0, , 1 , ,0 ,  1, 2, ,i id i n= ∗ =    and i i nd d −= − , 1, , 2i n n= +  , n  is  
the dimension of the optimization problems. Set : 1k = .  

Step 2 Minimize ( )f x  starting from an initial point kx ∈Ω  and obtain a minimizer kx∗  of ( )f x .  
Step 3 Construct  

( )
( ) ( ) 21

1ln 1 expp

f x f xrFF x A p x x
p r

∗
∗

   −   = − + + × × −
   

   

 

Set 1i = .  
Step 4 If 2i n≤ , then set k ix x dδ∗= +  and go to Step 5; otherwise, go to Step 6.  
Step 5 Use x  as an initial point for minimization of ( )pFF x , if the minimization sequences of ( )pFF x  

go out of Ω , set 1i i= +  and go back to Step 4; Otherwise, a minimizer x′  of ( )pFF x  will be found in 
Ω  and set kx x′= , 0A A= , 1k k= +  and go back to Step 2.  

Step 6 If A Lba≤ , the algorithm stops and kx∗  is taken as the global minimizer of ( )f x ; Otherwise, 
decrease A  by setting :A Aρ= × , go to Step 3;  

Before we go to the experiments, we have to give some explanations on the above filled function algorithm.   
1) In minimization of ( )f x  and ( )pFF x , we need to select a local optimization method first. In the pro- 

posed algorithm, the trust region method is employed. 
2) In Step 4, the smaller δ  is needed to select accurately, in our algorithm, the δ  is selected to guarantee  

( )pFF x∇  is greater than a threshold (e.g., take the threshold as 310− ). 

3) Step 5 means that if a local minimizer x′  of ( )pFF x  is found in Ω  and with ( ) ( )kf x f x∗′ < , then a  

better local minimizer of ( )f x  will be obtained by using x′  as the initial point to minimize ( )f x .  

4.2. Numerical Experiment 
In this section, the proposed algorithm is tested on some benchmark problems taken from some literatures. 

Problem 1. (Two-dimensional function)   

( ) ( ) ( )2 2
2 2 1 2 1

1 2

min 1 2 sin 4π 0.5sin 2π ,

. . 0 10,     10 0

f x x c x x x x

s t x x

= − + − + −      
≤ ≤ − ≤ ≤

 

where 0.2,  0.5,  0.05c = . The global minimum solution satisfies ( ) 0f x∗ =  for all c . 
Problem 2. (Three-hump back camel function)   

( ) 2 4 6 2
1 1 1 1 2 2

1 2

1min 2 1.05 ,
6

. . 3 3,    3 3

f x x x x x x x

s t x x

= − + − +

− ≤ ≤ − ≤ ≤
 

The global minimum solution is ( )T0,0x∗ =  and ( ) 0f x∗ = . 
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Problem 3. (Six-hump back camel function)   

( ) 2 4 6 2 4
1 1 1 1 2 2 2

1 2

1min 4 2.1 4 4 ,
3

. . 3 3,    3 3

f x x x x x x x x

s t x x

= − + − − +

− ≤ ≤ − ≤ ≤
 

The global minimum solution is ( )T0.0898, 0.7127x∗ = − −  or ( )T0.0898,0.7127x∗ = , and  
( ) 1.0316f x∗ = − . 
Problem 4. (Treccani function)   

( ) 4 3 2 2
1 1 1 2

1 2

min 4 4 ,
. . 3 3,    3 3

f x x x x x
s t x x

= + + +
− ≤ ≤ − ≤ ≤

 

The global minimum solution are ( )T0,0x∗ =  and ( )T2,0x∗ = −  and ( ) 0f x∗ = . 
Problem 5. (Goldstein and Price function function)   

( ) ( ) ( )
1 2

min ,
. . 3 3,    3 3

f x g x h x
s t x x

=
− ≤ ≤ − ≤ ≤

 

where ( ) ( ) ( )2 2 2
1 2 1 1 2 1 2 21 1 19 14 3 14 6 3g x x x x x x x x x= + + + − + − + + , and  

( ) ( ) ( )2 2 2
1 2 1 1 2 1 2 230 2 3 18 32 12 48 36 27h x x x x x x x x x= + − − + + − + . The global minimum solution is  

( )T0, 1x∗ = −  and ( ) 3f x∗ = . 
Problem 6. (Two-dimensional Shubert function)   

( ) ( ) ( )
5 5

1 2
1 1

1 2

min cos 1 cos 1 ,

. . 0 10,    0 10
i i

f x i i x i i i x i

s t x x
= =

   = + + + +          
≤ ≤ ≤ ≤

∑ ∑  

This function has 760 minimizers in total. The global minimum value is ( ) 186.7309f x∗ = − . 
Problem 7. (Hartman function)   

( ) ( )
4 2

1 1
min exp

. . 0 1,    1, ,

n

i ij j ij
i j

j

f x c a x p

s t x i n
= =

 
= − − 

 
≤ ≤ =

∑ ∑



 

where ic  is the i th element of vector C , ija  and ijp  are the elements at the i th row and the j th column 
of matrices nA  and nP , respectively.  

( )1.0,1.2,3.0,3.2C =  

for 3n = ,  

3 3

3 10 30 0.3689 0.1170 0.2673
0.1 10 35 0.4699 0.4387 0.7470

,    
3 10 30 0.1091 0.8732 0.5547

0.1 10 35 0.03815 0.5743 0.8828

A P

   
   
   = =
   
   
   

 

The known global minimizer is ( )T0.1148,0.5557,0.8526  so far. 
For 6n = ,  

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 
 
 
 
 
 
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0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 
 
 
 
 
 

 

The known global minimizer is ( )T0.2016,0.1501,0.4769,0.2753,0.3117,0.6573  so far. 
Enerally, in order to illustrate the performance of the filled function method, it is necessary to record the total 

number of function evaluations of ( )f x  and ( )pFF x  until the algorithm terminates. The numerical results of 
the proposed algorithm are summarized in Table 1 for the above 7 problems. 

Additionally, the proposed algorithm is compared with the algorithm presented in [11]. A series of minimizers 
obtained by the above two algorithms are recorded in Tables 2-14 for all testing problems. 

Some symbols used in the following tables are given firstly. 
0x : The initial point which satisfies 0x ∈Ω . 

x∗ : An approximate global minimizer obtained by the proposed algorithm. 
Iter : The total number of function evaluations of ( )f x  and ( )pFF x  until the algorithm terminates. 
The initial value of A  is taken as 1 for all problems. 
k : The iteration number in finding the k  th local minimizer of the objective function; 

kx∗ : The k  th local minimizer; 
kf
∗ : The function value of kx∗  

FABO : The algorithm proposed in this paper; 
 

Table 1. Numerical results of all testing problems.                                                                       

Problem 0x  p r Lba x∗

 Iter  
1, 0.2c =  ( )T6, 2−  

510  
710  

610−

 ( )T1.5909, 0.2703−  1616 

1, 0.5c =  ( )T0,0  
510  

710  
610−

 ( )T0.9999, 0.0001−  923 

1, 0.05c =  ( )T10, 10−  
510  

710  
610−

 ( )T1,0  1542 

2 ( )T2, 1− −  
510  

610  
610−

 ( )T0, 0.4441e 15− −  53 

2 ( )T2,1  
510  

610  
610−

 ( )T0, 0.4441e 15− −  92 

3 ( )T2,1−  
510  

610  
610−

 ( )T0.0898,0.7127  512 

3 ( )T2, 1−  
510  

610  
610−

 ( )T0.0898, 0.7127− −  1097 

3 ( )T2, 1− −  
510  

610  
610−

 ( )T0.0898, 0.7126− −  4858 

4 ( )T1,0−  
510  

710  
610−

 ( )T47866e 6, 8.0700e 5− − −  2208 

5 ( )T1,0−  
510  810  

610−

 ( )T0.0000, 1.0000−  184 

6 ( )T1,1  
510  

710  
610−

 ( )T5.4829,4.8581  3839 

7, 3n =  ( )T0.5,0.5,0.5  
610  

610  
610−

 ( )T0.1146,0.5556,0.8525  444 

7, 6n =  ( )T0.5, ,0.5  
610  

610  
610−

 ( )T0.2017,0.1500,0.4769,0.2753,0.3117,0.6573  301 

 
Table 2. Computational results for problem 1 with = 0.2c .                                                               

 FABO   FABZ   
k  kx∗

 kf
∗

 kx∗

 kf
∗

 
1 ( )T5.7221, 1.8806−  2.5070 ( )T5.7221, 1.8806−  2.5070 

2 ( )T3.7387, 1.2649−  0.6165 ( )T4.7387, 1.7417−  1.6212 

3 ( )T0.5704, 0.0680−  0.1933 ( )T4.7096, 1.3985−  1.3566 

4 ( )T1.5909, 0.2703−  5.6599e−009 ( )T3.7387, 1.2649−  0.61647 

5   ( )T2.7380, 0.78836−  0.088673 

6   ( )T1.8784, 0.34585−  0 
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Table 3. Computational results for problem 1 with 0.5c = .                                                              

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 
1 ( )T0.0420, 0.0948−  0.5175 ( )T0.042023, 0.094772−  0.51745 

2 ( )T0.9999, 0.0000−  1.4998e−032 ( )T0.99991, 1.2524e 4− −  2.2389e−7 

3   ( )T1.0000, 2.2205e 14− −  0 

 
Table 4. Computational results for problem 1 with 0.05c = .                                                               

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 
1 ( )T8.7299, 3.2965−  9.0733 ( )T8.7299, 3.2965−  9.0733 

2 ( )T7.7280, 2.8347−  6.5031 ( )T7.7280, 2.8347−  6.5031 

3 ( )T4.7129, 1.4891−  1.5351 ( )T6.7248, 2.3724−  4.3943 

4 ( )T1.8513, 0.4021−  8.4724e−010 ( )T5.7198, 1.9162−  2.7434 

5   ( )T4.7129, 1.4891−  1.5351 

6   ( )T3.7305, 1.2306−  0.61844 

7   ( )T2.7300, 0.79341−  0.10216 

8   ( )T1.8513, 0.40209−  0 

 
Table 5. Computational results for problem 2 with initial point ( )T2, 1− − .                                                     

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 
1 ( )T1.7475, 0.8737− −  0.2986 ( )T1.7476, 0.87378− −  0.29864 

2 ( )T0, 0.4441e 15− −  1.9722e−031 ( )T0,0  0 

 
Table 6. Computational results for problem 2 with initial point ( )T2,1 .                                                      

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 

1 ( )T1.7475,0.8737  0.2986 ( )T1.7476,0.87378  0.29864 

2 ( )T0, 0.4441e 15− −  1.9722e−031 ( )T0,0  0 

 
Table 7. Computational results for problem 3 with initial point ( )T2,1− .                                                     

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 

1 ( )T1.6071,0.5687−  2.1043 ( )T1.6071,0.56865−  2.1043 

2 ( )T0.0898,0.7127  −1.0316 ( )T0.089842,0.71266  −1.0316 

 
FABZ : The algorithm proposed in reference [11]. 
According to the Tables 2-13, we will find that our algorithm is effective, and it is affected by the initial va- 

lue of A  and the selection of Lba . The larger initial value of A , the less local minimizer will be found and  
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Table 8. Computational results for problem 3 with initial point ( )T2, 1− .                                                

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 
1 ( )T1.6071, 0.5687−  2.1043 ( )T1.6071, 0.56865−  2.1043 

2 ( )T0.0898, 0.7127− −  −1.0316 ( )T0.089842, 0.71266− −  −1.0316 

 
Table 9. Computational results for problem 3 with initial point ( )T2, 1− − .                                              

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 
1 ( )T1.7036, 0.79608−  −0.21546 ( )T1.7036, 0.79608−  −0.21546 

2 ( )T0.0898, 0.7127− −  −1.0316 ( )T0.089842, 0.71266− −  −1.0316 

 
Table 10. Computational results for problem 4.                                                                         

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 
1 ( )T1.0000,0−  1.0000 ( )T1.0000,0−  1.0000 

2 ( )T47866e 6, 8.0700e 5− − −  6.6042e−9 ( )T0,0  0 

 
Table 11. Computational results for problem 5.                                                                        

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 
1 ( )T0.6000, 0.4000− −  30.0000 ( )T0.60000, 0.40000− −  30.000 

2 ( )T0.0000, 1.0000−  3.0000 ( )T0, 1.0000−  3.0000 

 
Table 12. Computational results for problem 6.                                                                          

 FABO   FABZ   

k  kx∗

 kf
∗

 kx∗

 kf
∗

 
1 ( )T1.0865,1.0865  2.0119e−7 ( )T1.0865,1.0865  2.8841e−17 

2 ( )T1.3200,4.8581  −37.681 ( )T1.3200,1.8703e 12−  −13.052 

3 ( )T4.2760,4.8581  −79.411 ( )T1.3200,4.8581  −37.681 

4 ( )T5.4892,4.8581  −186.739 ( )T3.2800,4.8581  −46.511 

5   ( )T4.2760,4.8581  −79.411 

6   ( )T5.4892,4.8581  −186.73 

 
Table 13. Computational results for problem 7.                                                                     

 FABO   

k  kx∗

 kf
∗

 
1 ( )T0.3687,0.1176,0.2676  −1.0008 

2 ( )T0.1146,0.5556,0.8525  −3.8628 
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Table 14. Computational results for problem 7 with 6n = .                                                                 

 FABO   

k  kx∗

 kf
∗

 

1 ( )T0.2017,0.1500,0.4769,0.2753,0.3117,0.6573  −3.3224 

 
also the lower computation cost will be; meanwhile, if the function value of the current local minimizer is closed 
to that of the global minimizer, then the sufficiently small Lba  is necessary, while a relatively large initial 
value of A  will cause increasing of number of iterations. Therefore, the initial value of A  and Lba  are 
needed to be selected accurately. The selection of Lba  ensure the accuracy of the global minimizer, so that the 
sufficiently small Lba  and appropriate small initial A  should be selected or ρ  contained in the algorithm is 
taken as small as possible. 

5. Concluding Remarks 
The filled function method is a kind of efficient approaches for the global optimization. The existing filled func- 
tions have some drawbacks, for example, some are non-differentiable functions, some contain more than one 
adjust parameter and some contain ill-condition terms and so on. These drawbacks may result in failure or diff- 
iculty of the algorithm in searching global optimal solution. In order to overcome these shortcomings, a new 
filled function with only one parameter is proposed in this paper. Although the proposed filled function is non- 
differentiable at some points, it can be approximated uniformly by a continuous differentiable function. The 
inherent shortcomings of the approximate function can be eliminated by simple treatment. The effectiveness of 
the new filled function method is demonstrated by numerical experiments on some testing optimization pro- 
blems. 
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