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Abstract 
A major challenge of any optimization problem is to find the global optimum solution. In a mul-
ti-dimensional solution space which is highly non-linear, often the optimization algorithm gets 
trapped around some local optima. Optimal Identification of unknown groundwater pollution 
sources poses similar challenges. Optimization based methodology is often applied to identify the 
unknown source characteristics such as location and flux release history over time, in a polluted 
aquifer. Optimization based models for identification of these characteristics of unknown ground- 
water pollution sources rely on comparing the simulated effects of candidate solutions to the ob-
served effects in terms of pollutant concentration at specified sparse spatiotemporal locations. 
The optimization model minimizes the difference between the observed pollutant concentration 
measurements and simulated pollutant concentration measurements. This essentially constitutes 
the objective function of the optimization model. However, the mathematical formulation of the 
objective function can significantly affect the accuracy of the results by altering the response con-
tour of the solution space. In this study, two separate mathematical formulations of the objective 
function are compared for accuracy, by incorporating different scenarios of unknown groundwa-
ter pollution source identification problem. Simulated Annealing (SA) is used as the solution algo-
rithm for the optimization model. Different mathematical formulations of the objective function 
for minimizing the difference between the observed and simulated pollutant concentration mea-
surements show different levels of accuracy in source identification results. These evaluation re-
sults demonstrate the impact of objective function formulation on the optimal identification, and 
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provide a basis for choosing an appropriate mathematical formulation for unknown pollution 
source identification in contaminated aquifers. 
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1. Introduction 
Unknown groundwater pollution sources are characterised in terms of their location and source flux release his-
tory over time. In scenarios where the potential source locations are known with some degree of certainty, linked 
simulation-optimization approach is used for recreating the flux release history. In this approach, simulated 
aquifer response is compared to actual observed aquifer response due to a given pollutant source flux release 
pattern. The responses are compared in terms of the pollutant concentration measurements, taken from specified 
sparse monitoring locations at discrete time intervals over a monitoring time horizon. The objective functions 
for this comparison essentially minimizes the difference between the simulated and the observed response of the 
aquifer using the optimization model. Different mathematical formulations can be used to achieve this objective. 
However, different mathematical formulations show different levels of accuracy in source identification results. 
In this study, two different mathematical formulations of the same objective and their effect on the performance 
of the source identification models are presented. 

The identification of unknown pollution sources is non-linear [1], ill-posed inverse problem [2]. Optimization 
based approach for solving groundwater pollution source identification problem has been proposed by several 
researchers. Some of the initial contributions in identification of unknown groundwater pollution sources pro-
posed the use of linear optimization model based on linear response matrix approach [3] and statistical pattern 
recognition [4]. 

Heuristic optimization techniques such as Genetic Algorithm (GA) and Simulated Annealing are efficient in 
solving such complex, non-linear, inverse problems having non-unique solutions. Estimates of the unknown 
model parameters and source characteristics [5]; minimizing the square of the normalised residual error using 
embedded nonlinear optimization technique for source identification [1], [6] and [7]; Genetic Algorithm (GA) 
based optimization approach minimizing the square of the residual error [8]-[10]. Artificial Neural Network 
(ANN) approach [11]-[13]; constrained robust least square approach [14] and [15]; classical optimization based 
approach [16]-[18]; Simulated Annealing (SA) as optimization for source identification [19] [20]. A review of 
different optimization techniques for solving source identification problem is presented in [21] and [22]. 

Objective functions for solving unknown groundwater pollution source identification are complex multiva-
riate optimization problems. Such formulations are highly non-linear containing several local and global optima. 
In identification of unknown pollution sources, the stress so far has been on applying different, more robust and 
advanced optimization algorithms for accurate identification. In the quest for search of a global optimum solu-
tion, this study takes a look at the objective function formulations, and how different formulations of the same 
objective can affect the accuracy of the solution using the same optimization algorithm. This is demonstrated by 
comparing two different sets of objective function formulation for identification of unknown pollutant sources 
using SA as the optimization algorithm. 

All source identification methods rely on the observed concentration measurements, taken from a few sparse 
observation locations at discrete time steps over a monitoring time horizon. Forward simulation of the flow and 
transport process is run using candidate values of the unknown source flux release pattern to predict the pollu-
tant concentration at observation locations. The observed pollutant concentration measurements are compared to 
that of simulated pollutant concentration measurements for optimal source identification. A close match between 
the observed and the simulated concentration essentially means near accurate simulation of the actual pollution 
scenario. Thus, the main objective of optimization based methodology for identification of unknown pollution 
sources is to minimize the difference between the observed pollutant concentration measurements and simulated 
pollutant concentration measurements over all the observation locations, taken at discrete time steps over a mon-
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itoring time horizon. The defined mathematical function representing this general objective is the objective 
function. Different researchers have used different mathematical formulation for writing the objective function. 
However, not all mathematical formulations for the same objective function yield the same result.  

The main aim of this study is to compare two different mathematical formulations for the general objective of 
minimizing the difference between the simulated and the observed concentration measurements in a linked si-
mulation-optimization model. The flow and contaminant transport simulation models are utilized for simulating 
the aquifer responses to different candidate solutions of the source identification model. The two mathematical 
formulations of the objective function i.e. minimizing the absolute difference between the observed and simu-
lated pollutant concentration measurements and minimizing the square of the normalised difference between the 
observed and simulated pollutant concentration measurements are evaluated for their accuracy of the identifica-
tion result and efficiency of the model. The source flux release history is considered as the only explicit un-
known decision variable in this study. 

2. Methodology 
The proposed methodology uses a linked simulation-optimization for source identification where the source flux 
release history is the only explicit unknown variable in the optimization model. Two separate mathematical 
formulations of the form 1) ( ) ( )( )2

F Min A B A δ= − +∑  and 2) ( )F Min Abs A B= −∑  are used as objec-
tive function to solve the optimal source identification model. SA is used for solving the optimization problem 
with an objective of minimizing the difference between the simulated and measured pollutant concentrations 
measurements at the observed locations. The unknown source fluxes release history is obtained as direct solu-
tions of the source identification model.  

2.1. Linked Simulation-Optimization Model 
Optimal source identification requires accurate identification of the release history of unknown pollution sources. 
This requires the use of simulation models to simulate the response of the groundwater system to any specified 
pollution source scenario. This is achieved by using a linked simulation-optimization approach. Linked simula-
tion optimization model simulates the physical process of flow and solute transport within the optimization 
model. The flow and solute transport simulation models are treated as important binding constraint for the opti-
mization model. Therefore any feasible solution of the optimization model needs to satisfy the flow and the 
transport simulation model. The advantage of this approach is that, it is possible to link any complex numerical 
model to the optimization model when using this approach. In this optimal source flux identification model, the 
flow and transport simulation models are linked to the optimization model using the SA algorithm for solution. 

2.1.1. Groundwater Flow Simulation Model 
A three dimensional numerical model MODFLOW [23] is used to simulate the groundwater flow in the polluted 
aquifer. MODFLOW is a computer program that numerically solves the three-dimensional groundwater flow 
equation for a porous medium by using a finite-difference method. The partial differential equation for ground-
water flow [24] is given by Equation (1): 

xx yy zz s
h h h hK K K W S

x x y y z z t
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + ± =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

                          (1) 

where 
Kxx, Kyy and Kzz represent the values of hydraulic conductivity along the x, y and z axes (L∙T−1); 
h is the potentiometric head (L); 
W is the volumetric flux per unit volume representing sources and/or sinks (T−1); 
Ss is the specific storage of the porous material (L−1); 
t is time (T); 
x, y and z are the cartesian co-ordinates (L). 

2.1.2. Solute Transport Model in Groundwater System 
A three dimensional modular pollutant transport model MT3DMS [25] is used to simulate the solute transport in 
the polluted aquifer system. The transport model (MT3DMS) utilizes the flow field generated by the flow model 
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(MODFLOW) to compute the pollutant plume. The partial differential equation describing three-dimensional 
transport of pollutants in groundwater [26] is given by Equation (2). 

( )
1

N
s

ij i s k
ki j i

qC CD v C C R
t x x x θ =

 ∂ ∂ ∂ ∂
= − + +  ∂ ∂ ∂ ∂ 

∑                            (2) 

where 
C is the concentration of pollutants dissolved in groundwater (M∙L−3); 
t is time (T); 
xi is the distance along the respective Cartesian coordinate axis (L); 
Dij is the hydrodynamic dispersion coefficient tensor (L2∙T−1); 
vi is the seepage or linear pore water velocity (L∙T−1); it it is related to the specific discharge or Darcy flux 

through the relationship, vi = qi/θ; 
qs is volumetric flux of water per unit volume of aquifer representing fluid sources (positive) and sinks (nega-

tive) (T−1) ; 
Cs is the concentration of the sources or sinks (M∙L−3); 
θ is the porosity of the porous medium (dimension less); 

1

N

k
k

R
=
∑  is chemical reaction term for each of the N species considered (ML−3∙T−1). 

2.1.3. Optimization Model 
SA is used as an optimization algorithm to solve the optimization problem. Simulated annealing is a meta-heu- 
ristic search algorithm capable of escaping from local optima. Its use of hill-climbing moves to escape local op-
tima makes SA efficient in solving non-convex optimization problems. Its ease of implementation of complex 
objective functions, and likely convergence to a global optimal solution enhances its suitability for solving 
ill-posed inverse problems, as is the case with unknown groundwater pollution source characterization. SA, first 
introduced by [27], is an extension of the Metropolis Algorithm [28]. The basic concept of SA is derived from 
thermodynamics. Each step of SA algorithm replaces the current solution by a random nearby solution, chosen 
with a probability that depends on the difference between the corresponding function values and algorithm con-
trol parameters (initial temperature, temperature reduction factor etc.). In this study, SIMANN a FORTRAN 
public domain code for SA developed by [29] is utilized for the solution algorithm. 

2.1.4. Source Flux Identification Model  
In source identification problem where the starting time of the activity of the sources is known, temporal pollu-
tant source fluxes from all the potential sources, represented by the term s sq C  in the transport Equation (2) are 
the only explicit decision variable. Source flux identification using linked simulation-optimization is solved by 
minimizing the difference between the simulated pollutant concentration measurements and the observed pollu-
tant concentration measurements in space and time. The solution strategy is to generate candidate values of these 
unknown variables within the optimizations algorithm, use these values for forward simulations of flow and 
transport models, compute the difference between simulated and observed pollutant concentrations and finally 
obtain an optimal solution that minimizes the difference between observed and simulated values. In the optimal 
source flux identification model two separate mathematical formulations of objective function is used given by 
Equations (3) and (4), respectively.  

2

1 1
Min

t tN NOB
iob iob

t
t iob iob

cest cobs
F

cobs δ= =

 −
=  

+ 
∑ ∑                                  (3) 

( )
1 1

Min
N NOB

t t
iob iob

t iob
F Abs cest cobs

= =

= −∑ ∑                                 (4) 

Subject to  

( ), ,t
iob s scest f q C t=                                       (5) 



O. Prakash, B. Datta   

 
30 

( ), ,s sf q C t  represents the simulated concentration obtained from the transport simulation model at an ob-
servation location at time t and for a specific source flux s sq C . This constraint essentially represents the linking 
of the optimization algorithm with the numerical groundwater flow and transport simulation model through the 
decision variables. 
where  

t
iobcobs  = observed concentration measurement at observation location iob at time t(M∙L−3); 

t
iobcest  = corresponding estimated concentration at observation location iob at time t(M∙L−3); 

NOB = total number of monitoring locations; 
N = is the total number of monitoring time steps at location iob; 
δ = is a constant specified e.g. any number between 1 to 1000; 
Abs = is the absolute difference. 
The first objective function formulation shown by Equation (3) calculates the difference between the simu-

lated pollutant concentration and observed pollutant concentration in the numerator. This difference is divided 
by the observed pollutant concentration plus a specified constant value δ. The objective of adding a small con-
stant term is to avoid any indeterminate case when the value of observed pollutant concentration is zero. How-
ever, the value of the constant δ can significantly impact the outcome of the optimization and hence should be 
chosen judiciously. The whole term is squared so that the negative and the positive errors do not cancel out each 
other. The second objective function formulation (Equation (4)) defines the simple difference between the si-
mulated pollutant concentration and observed pollutant concentration. The absolute difference is considered for 
minimization to avoid cancelling of the negative and the positive errors. These two objective functions are cho-
sen to demonstrate the effect of different objective function formulations for the same general objective of opti-
mization. 

3. Performance Evaluation of Developed Methodology 
To evaluate the performance of the two different objective function formulations for accurate identification of 
the pollution source fluxes using linked simulation-optimization, a hypothetical homogeneous, isotropic, and 
saturated aquifer is utilized as an illustrative example as shown in Figure 1. Cells marked with red star represent 
the grid locations containing a potential pollutant source S(i) where I represents the source number. Cells 
marked with green circle are the grid locations containing a monitoring well. Groundwater flow and solute 
transport model is simulated with hydro-geological parameters as given in Table 1. The synthetic concentration 
measurement data used for the specified polluted aquifer facilitates evaluation of the methodology without hav-
ing to account for the unknown reliability of any field data. 

 
Table 1. Hydro-geological parameters for study area.                                                  

Parameter Unit Value 

Maximum length of study area 
Maximum width of study area 

Saturated thickness, b 
Grid spacing in x-direction, Δx 
Grid spacing in y-direction, Δy 
Grid spacing in z-direction, Δz 

Hydraulic conductivity, K 

Effective porosity, θ 
Longitudinal Dispersivity, αL 
Transverse Dispersivity, αT 

Horizontal Anisotropy 
Initial contaminant concentration 

Diffusion Coefficient 
Contaminant Flux 

m 
m 
m 
m 
m 
m 

m/d 
 

m/d 
m/d 

 
g/l 

 
g/s 

2100 
1950 
30 
50 
50 
30 
20 
0.3 
20 
10 
1 
0 
0 

0 - 100 
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Figure 1. Plan view of the study area.                                                            

3.1. Determining Ideal Value of Constant “δ” in the First Objective Function Formulation 
The accuracy of the source flux identification result is sensitive to the formulation of the objective function. 
Hence the effect of δ is analysed for the first objective function formulation. To determine an suitable value of δ 
to be used in the formulation of objective function, different values of the constant δ are utilized 1, 10, 100 and 
1000, respectively. The source flux identification model is solved using first objective function formulation 
(Equation (3)). The value of δ is varied every time to find the most suitable value of δ out of 1, 10, 100 and 
1000.The polluted aquifer study area is assumed to have 4 potential pollutant source locations, of which source 
three S3 is a dummy (not actual) source. The activity duration of the sources is divided into three equal stress 
periods of 500days each and the pollutant flux from each of the sources is assumed to be constant over a given 
stress period. The pollutant flux from each of the sources is represented as S(i)(j), where i represents the source 
number and j represents the stress period number. A total of twelve source fluxes S11, S12, S13, S21, S22, S23, 
S31, S32, S33, S41, S42 and S43 are considered as explicit unknown variables in the source flux identification 
model. 

3.2. Comparing the Objective Function Formulation 
Once a suitable value of δ is determined, nine different scenarios of source flux identification is solved using the 
determined ideal value of δ in the first objective function formulation (Equation (3)). These scenarios vary in 
terms of the observation well locations for which concentration measurements are used for identification of un-
known source fluxes. The same scenarios are then solved using the second objective function formulation (Equ-
ation (4)) to compare the accuracy of source flux identification using the two formulations. All scenarios used 
for comparing the accuracy of source flux identification using the two formulations comprise of three actual 
sources and no dummy source is present. This was to reduce the running time of the optimization model for re-
peated performance evaluation runs. The activity duration of the sources is divided into three equal stress pe-
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riods of 500days each and the pollutant flux from each of the sources is assumed to be constant over a stress pe-
riod. The pollutant flux from each of the sources is represented as S(i)(j), where i represents the source number 
and j represents the stress period number. A total of nine source fluxes S11, S12, S13, S21, S22, S23, S31, S32, 
and S33are considered as explicit unknown variables in the source flux identification model. 

In all nine scenarios a total of four temporal pollutant concentration measurements from each of the six ob-
servation wells are utilized. In all the scenarios the observation well location varies and is randomly chosen from 
the 33 potential monitoring well locations shown in Figure 1. Groundwater flow is assumed to be steady state. 
For evaluation purpose, the observed aquifer responses at the observation locations are simulated by solving 
MODFLOW (Equation (1)) and MT3DMS (Equation (2)) in GMS 7.0, along with appropriate groundwater 
aquifer initial and boundary conditions. The resulting concentrations are then perturbed to represent the effect of 
random measurement errors. These perturbed concentration values are obtained by incorporating random mea-
surement errors with maximum deviation of 10 percent as shown in Equation (6). 

( )1Pert t t
iob iobcobs cobs err= +                                    (6) 

err per randµ= ×                                        (7) 

where 
Pert t

iobcobs  is the perturbed numerically simulated concentration value; 
t
iobcobs  is the numerically simulated concentration value; 

err  is the error term; 
perµ  is the maximum deviation expressed as a percentage; 

rand  is a random fraction between −1 and +1 generated using Latin hypercube distribution. 
In all the scenarios, source fluxes are estimated by first assuming error free data, and then estimated using er-

roneous concentration measurements with random error. 

4. Results and Discussion 
The solution results of pollution source flux identification for determining the most ideal value of δ is presented 
in Figures 2-5. The source flux identification model is solved using first objective function formulation (Equa-
tion (3)). Each of the unknown source flux variables (S11, S12, S13, S21, S22, S23, S31, S32, S33, S41, S42 
and S43) is marked on the x axis having 6 corresponding bars. The first bar is the actual value of the source flux. 
The second bar represents the estimated flux value using the second objective function formulation (Equation 
(4)).The third bar to the sixth bar represent the estimated source flux value when using constant value δ in Equa-
tion (3) as 1, 10, 100, and 1000, respectively in the first objective function formulation. The source flux identi-
fication model solved using error free concentration measurement data is shown in Figure 2. The error of esti-
mation of the source flux values is given by the absolute difference between the actual source flux value and the 
estimated source flux values shown in Figure 3. 

 

 
Figure 2. Source flux identification result for different values of δ using error free 
concentration measurements.                                                 
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Figure 3. Source flux estimation error for different values of δ using error free concentration 
measurements.                                                                  

 
The source flux identification model solved using concentration measurement data with random error is 

shown in Figure 4. The error of estimation of the source flux values while using erroneous concentration mea-
surements is shown in Figure 5. 

It is evident from these results that the most suitable value of δ amongst 1, 10, 100 and 1000 to be used in the 
first objective function formulation (Equation (3)) is 1. The estimated source flux values for δ = 1 gives the least 
error in the estimation of the source fluxes both for error free data and erroneous data. Even the dummy source 
S3 is well identified when using δ = 1in case of error free data. While using erroneous concentration measure-
ments with random error, the source flux identification results show large errors of estimation as compared to 
those obtained utilizing error free data. The estimated source flux value for source flux S11 show large error of 
estimation for all the values of δ. This general trend in case of S11 may be attributed to the observed concentra-
tion measurements data used in the identification model. Not all observation well locations are optimally located 
for source flux identification. Concentration measurements from these non-optimally located observation wells 
may not be efficient in accurate source flux identification [30]. Also the perturbed error term which were ran-
domly distributed across all observed concentration measurements may non-uniformly impact some observa-
tions more than the others. This can easily result in an incorrect estimation of the source fluxes. The same ex-
planation is also plausible in case of S32 while using the value of δ = 1. Otherwise these may be regarded as an 
exception. 

Comparing the source flux identification results for the first objective function formulation (Equation (3)) 
while using the value of δ as 1and the second objective function formulation (Equation (4)) do not show large 
difference in the accuracy of the estimated flux values. This is true both in case of error free and erroneous con-
centration measurements. In order to get a clear idea as to which of the two formulation work better in case of 
source flux identification, 9 different scenarios of source flux identification are solved. Source fluxes are esti-
mated for all the nine scenarios using both the objective function formulations. The value of the constant δ is 
kept as 1 in all the cases. These identification results for all the nine scenarios using error free concentration 
measurement data and erroneous concentration measurement data is shown in Figures 6-14. Each of the un-
known source flux variables (S11, S12, S13, S21, S22, S23, S31, S32 and S33) is marked on the x axis having 
five corresponding bars. The first bar is the actual value. The second and third bar represents the estimated val-
ues using error free concentration measurements, respectively. The fourth and the fifth bar represent the esti-
mated values using erroneous concentration measurements.   

It is evident from these solution results that the source flux identification are more accurate while using the 
first objective function formulation (Equation (3)). However, there is one or two odd instances where few of the 
source fluxes are better identified by using the second objective function formulation (Equation (4)). The solu-
tion results for source flux estimates using erroneous concentration measurements data show large errors of es-
timation in comparison to error free measurement data. These deviations between the actual and the estimated  
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Figure 4. Source flux identification result for different values of δ using erroneous concentration measure-
ments.                                                                                     

 

 
Figure 5. Source flux estimation error for different values of δ using erroneous concentration measurements.   

 

 
Figure 6. Source flux identification results for Scenario 1.                                            
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Figure 7. Source flux identification results for Scenario 2.                               

 

 
Figure 8. Source flux identification results for Scenario 3.                                  

 

 
Figure 9. Source flux identification results for Scenario 4.                                  

 

 
Figure 10. Source flux identification results for Scenario 5.                                 
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Figure 11. Source flux identification results for Scenario 6.                             

 

 
Figure 12. Source flux identification results for Scenario 7.                            

 

 
Figure 13. Source flux identification results for Scenario 8.                            

 

 
Figure 14. Source flux identification results for Scenario 9.                              
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value of the source fluxes show the effect of errors in concentration measurement data, which accounts for ran-
dom measurement errors in a real world scenario.  

It is interesting to note that though both the objective function formulations are practically of the same general 
nature, i.e. to minimize the difference between the simulated response of the aquifer and the actual response of 
the aquifer, there is contrasting difference in the accuracy achieved by both the formulations while using iden-
tical optimization algorithm for solution. Although this difference may not be so pronounced when using error 
free concentration measurements, it is more apparent when erroneous measurements are utilized. This can be 
explained by analysing the two objective formulations. If we imagine the solution response space representing 
the objective function values for corresponding decision variable values as a rough plane, such that roughness of 
the surface creates multiple local optima, the objective is to find the global optimum amongst these local optima. 
The second objective formulation which uses the absolute difference between the observed and the estimated 
pollutant concentration value do not alter the roughness of the search space at all. However, when the difference 
between the observed and the simulated pollutant concentration is divided by the observed pollutant concentra-
tion measurement, the difference gets normalised. This gives proportional weight age to pollutant concentration 
measurements for all the observation locations at all times. As a result there is greater distinction between dif-
ferent local optima and it is easier for the optimization algorithm to get out of any local optima. The biggest 
challenge of any optimization algorithm is to get out of local optima and find a global optimum. 

In order to illustrate this difference due to different objective function formulation, the objective function so-
lution space is plotted for different objective function formulations over the search domain (Figure 15). Most 
complex optimization problems are multi-multivariate in nature. Since it is not possible to plot N-dimension so-
lution space hence, the solution space is plotted for a two dimensional problem. Four different formulations are  
considered to see the variation in the solution space contour 1) ( ) ( )( )2

F Min A B A δ= − +∑ ; 2)  

( )F Min Abs A B= −∑ ; 3) ( ) ( )F Min Abs A B A δ= − +∑  and 4) ( )2F Min A B= −∑ . Figure 15 shows a  
three dimensional plot of the solution space plotted in the decision variable space. The plots starting from the top 
left, in the clockwise direction shows the solution space surface for objective function formulations (1) to (4), 
respectively. 

 

 
Figure 15. Surface plot of solution space for different objective function formulations (1) to (4).                          
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It can be seen in these surface plots that the roughness in the solution space surfaces are not same in all the 
case. It can be seen that in case of objective function formulation (1), the peaks and the trough in the solution 
surface profile are more distinct as compared to the others. Since it is difficult to compare these surface plots, 
the contours for the same are plotted as shown in Figure 16. These plots starting from the top left, in the clock-
wise direction shows the solution space contours for objective function formulations (1) to (4), respectively. 
These contours show the spatial density of the peaks as well as the contrast between the low values and high 
values in the objective function solution space. In case of objective function formulation (1), it appears that the 
contours are able to identify the peaks and the troughs with a greater contrast as compared to formulation (2). 
This can result quicker move of the search algorithm from one peak/trough to the other. Therefore the objective 
function used in this study which is which is similar to formulation (1), is advantageous. In case of objective 
function 3 and 4, the entire space is dominated by a low value range or a high value range with comparatively 
greater uniformity. In case of objective function formulation (4), the peaks get more prominent but at the cost of 
the troughs which get diminished in comparison to the peak values. Vice versa occurs in the objective function 
formulation (3). Since the global optimum solution lies in one of these peaks/troughs, it is important to ensure 
that the search algorithm looks for the optimum solution in these peaks/troughs and still can easily come out of 
the local optimal ones. A solution space having distinct peaks and the troughs can facilitate the search algorithm 
to investigate these peaks/troughs, and easily come out of local optima. 

 

 
Figure 16. Contour plot of solution space for different objective function formulations (1) to (4).                           
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Figure 17 shows the contour plot of the objective function solution space for the two formulations (1) and (2) 
plotted against the difference between the estimated value and the observed value. It can be seen that for a unit 
change in the difference between the estimated value and the observed value the change in the objective function 
value is steep in the second formulation. The first formulation provides for a large area around the optimum so-
lution. Steep gradient may be useful if using the classical gradient search methods, but such a scenario may re-
sult in missing the optimum solution in a heuristicrandom search using SA. However, a larger exposed surface 
around the global optimum solution can improves the chance of finding the optimum using a heuristic random 
search algorithm like SA. Therefore there is a better accuracy in source identification using the first objective 
function formulation as compared to the second objective function formulation. 

One more reason for having the constant δ incorporated in the objective function is to avoid any indeterminate 
objective function value when observed value is zero. The value of the constant δ should be of the same order as 
the observed values so that the normalization does not get skewed due to very large value of the constant δ. Very 
small values of the constant δ may again lead to indeterminate values when the observed value becomes zero. 

5. Summary and Conclusions 
From the performance evaluation results it is clear, that different mathematical formulations of the same general 
objective result in different degree of accuracy in the source flux identification. The objective function, in which 
the square of the normalised difference is minimized, performs better than the absolute difference in estimating 
the source flux values. However, while normalising the difference between the observed and the simulated con-
centration measurements, the value of the constant δ added to the observed concentration measurement should 
be of the same order as observed concentration values. Though the advantage of using such normalization may 
not be apparent when using error free data, it becomes clear when the observed values are perturbed with ran-
dom error term. Normalization gives proportional weight age to observed concentration measurements from all 
the observation points, which otherwise gets over shadowed due to the presence of few large values of observed 
concentration measurements in the defined objective function. Normalization also smooths the effect of the 
random errors in the observed values. This seems to result in more accurate source flux identification.  

Although it is important to use a robust optimization algorithm for finding the global optimum, the role of the 
objective function formulation cannot be overlooked. This study presents a perspective of the optimization 
problem in which the role of the mathematical formulation of the objective function is encapsulated in terms of 
the roughness features in a multi-dimensional, complex non-linear multi-variate objective function solution 
space. These features may determine the ability to identify a global optimum. This study presents comparison of 
two mathematical formulations, though other formulations can be tested for suitability. A proper mathematical 
formulation in conjunction with a robust optimization algorithm can facilitate the search for a global optimal 
solution. This study throws some light on the choice of proper objective function for obtaining a global optimal 
solution. 

 

 
Figure 17. Contour plot of solution spacevs. Difference between observed and simulated values for objective 
function formulations (1) and (2).                                                                    
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