

Pressure Transient Analysis of an Intersecting Rollover Faulted Crest Boundary in Niger Delta Oil Field

K. K. Ihekoronye, I. P. Nwosu

Petroleum Engineering, Federal University of Technology Owerri, Owerri, Nigeria Email: kelechiking4@gmail.com, Nwosuip01@yahoo.co.uk

How to cite this paper: Ihekoronye, K.K. and Nwosu, I.P. (2019) Pressure Transient Analysis of an Intersecting Rollover Faulted Crest Boundary in Niger Delta Oil Field. *Open Journal of Yangtze Gas and Oil*, **4**, 125-143.

https://doi.org/10.4236/ojogas.2019.42010

Received: February 8, 2019 Accepted: April 21, 2019 Published: April 24, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Pressure transient analysis has been extensively applied to detect anomalies in a reservoir system. These anomalies may be presented in the form of an intersection of the crestal and the antithetic fault associated with a growth fault. Interpretation of this fault can only be achieved through the use of pressure transient analysis. The objective of the research work is to analyze and test the faulted crest, depth of the anticline structure and examine the near well bore conditions in order to evaluate whether the well productivity is governed by wellbore effects (skin effects + well bore effect) or the reservoir at large. A case study of a well in the Niger delta is considered with a series of build up test carried out in two intervals of both upper and lower gauge readings. In this study, a computer aided design which uses a pressure derivative approach is used in this work to match the pressure derivative of an intersecting fault (angle) model to the field data, and the model assumes the characteristics of the reservoir. Based on the result of the interpreted data, simulation is done by using a non linear regression method (least square). The simulated data interpreted are achieved through the regression coefficient which provides a quantitative measure of the agreement between field data and the model. In conclusion, the best cases are taken from all the results and a nodal analysis is performed to diagnose the inflow performance of the well through the transient analysis in order to optimize the recovery of the oilfield.

Keywords

Pressure Transient Analysis, Fault, Nodal Analysis, Wellbore Effect

1. Introduction

Many hydrocarbon bearing formations in the Niger Delta are faulted, as re-

ported by [1], which contain rollover structure and intersected crest. However, [2] presents an analytical method to correct extrapolated static well pressures for a well in various drainage boundaries. [3] presents the concept of wellbore skin effect (factor). [4] in their work, it presents a work on pressure build up methods which agrees with the work by [5] which contains a log-log type curve for the wellbore-storage problem that starts the second era of well test analysis. [6] starts the first era of modern well test analysis: straight line methods. Semilog graphs of shut-in pressure vs. the logarithm of shut in time, to shut in time generates a straight line with reciprocal slope that is related to effective permeability Some faults are known to be sealing while others are non-sealing to the migration of hydrocarbon. Interpretation of this fault can only be achieved through the use of pressure transient analysis. [7] uses numerical well testing analysis to provide solution to non unique problems in heterogeneous reservoirs. In this study, a computer design that uses pressure derivative approach is used in this work to determine intersecting faults. Nodal analysis is also performed to determine the inflow performance of the well by help of transient analysis in order to optimize the recovery of the field. The objectives of the research work are as follows:

1) Test the faulted crest and depth of the anticline structure between the KRAKAMA east wells and the CAWTHORNE channel field.

2) Examine the near well bore conditions in order to evaluate whether the well productivity is governed by wellbore effects (skin + storage) or the reservoir at large.

3) Evaluate the well condition and reservoir characterization.

4) Provide an understanding of reservoir environment and the control which the geological architect exerts on fluid flow regimes and patterns.

5) Obtain the reservoir parameters for reservoir description such as reservoir conductivity (KH), productivity index (PI), flow efficiency, damaged ratio, skin factor (S), average reservoir pressure.

6) Monitor changes in average reservoir pressure so that we can refine our forecast of future reservoir performance.

7) Give a comprehensive interpretation of the acquired data for efficient reservoir development and management decisions.

2. Geology of the Reservoir

The geology of the formation is shown in **Figure 1** and **Table 1** shows the reservoir and production data used for research analysis. The Well X28T is a vertical exploration well that was drilled in 1978 as Well Y-East-4. The X field well is drilled as an open hole to 10,445 ft and intermediate logging runs and indicates 67 ft net oil sand (NOS) and 20 ft net gas sand (NGS) in 5 intervals between 7433 and 10,392 ft. The open hole is plugged back and is sidetracked at 10,370 ft to TD at 11,560 ft. During initial completion, it is found that the 95/8' casing is damaged. It takes several re-entries before the casing is repaired.

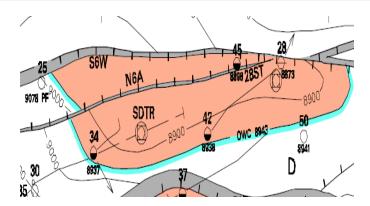


Figure 1. The Geology cross section map of Well 28T and it's boundaries.

 Table 1. The reservoir and production data.

Reservoir and Fluid data		
Bubble point pressure	3883 psig	
GOR	1032 scf/stb	
Oil FVF	1.46 rb/stb	
Reservoir temperature	172°f	
Reservoir pressure	4000 psia	
Oil SG	0.8429	
Gas SG	0.65	
Net oil sand volume	0	
Porosity	0.24	
Connate water saturation	0.35	
Average net thickness	130 ft	
Wellbore radius	0.3 ft	
Cumulative oil produced	202 stb/day	
Tested oil rate		
Production data	20	
Choke size	20/64 in	
Net oil rate	252.8 bbl/day	
Water cut	43.85	
GLR	0.8	
Wellhead pressure	29.9 BarG	

3. Methodology

3.1. The Methodology Implores in This Work Is Outlined as Follows

1) Reservoir data (well data, production history, pvt)

2) KAPPA (petroleum exploration software which covers the pressure transient analysis).

- 3) Emeraude (production logging interpretation tools)
- 4) Topaze (production analysis tools and used to know the productive depth level)
 - 5) Saphir (well test interpretation package).

The seismic study is carried out in the three wells to determine the level of faults boundary of the reservoir and the productive levels. This is done by using tool such as Topaze production tools.

3.2. Emeraude Model Used for Analysis

Figure 2 below shows the wellbore and skin of the intersected fault boundary of the homogenous reservoir used for research analysis.

n View WEB Window Help Test Design			Wellbore Storage Estimation	<u> </u>
Analytical Numerical			C Closed chamber	
• Standard	Parameter Value	Unit	 Changing liquid level 	
C External	C 0.019610)7 bbl/psi		Standard Oil Test
C Changing Well Model	Ci/Cf 1		Tubing I.D. 2.375 in 💌	
Simulation Pressures	Alpha 1 Skin0 0 dS/dQ 0	[B/D]-1	Help Cancel OK	Well = Storage + Skin Skin Type = Changing _WBS Type = Changing
Well Storage + Skin Reservoir Homogeneous Boundaries Intersecting Faults (angle)	Pi 3029 kh 6.15139 L1 No Flow 1500 L2 No Flow 1500 Angle 90	psia md.ft ft ft •		Reservoir = Homogeneous Boundary = Intersecting Faults (angle) Pi = 3029 psia k.h. = 6.15 mod.ft Skin0 = 0 dS/dQ = 0 [B/D]-1 C = 0.0198 bbi/psi
✓ rate dependent skin └ time dependent skin └ time dependent skin ▷ pseudo time ▷ show p-average ▲ ad other wells ► Set C Gauge	Time Help	Cancel Generate		

Figure 2. The model used for analysis.

3.3. Parameter Estimation

Once the reservoir model is identified, it is necessary to compute the model parameters. The parameters estimated from the specialized flow regimes analysis, interdisciplinary input or both resources, simulation for the transient responses are computed. The initial simulated and the observed response usually differs. Modern analysis however is assisted by the nonlinear regression routines that automatically refine the parameter estimates until the simulation coincides with the observed data for the essential portions of the transient response. **Figure 3** and **Table 2** show the parameter estimate for the confidence interval.

Table 2. The result summary used for the confidence limit correlation interval.

Parameter	Min - Max (Value)
Confidence interval	0.0197 - 0.0198 (0.0197)
Correlation coefficient	0.0391 - 0.157 (0.0783)
Alpha	0.316 - 0.752 (0.438)
Skin	0.0124 - 0.0284 (0.0204)
K	0.0473 - 0.0473 (0.0473)
L_1 (length)	749 - 300 (1500)
L_2 (length)	749 - 300 (1500)
Angle	44.929 - 179.716 (89.858)

Open Journal of Yangtze Gas and Oil

K. K. Ihekoronye, I. P. Nwosu

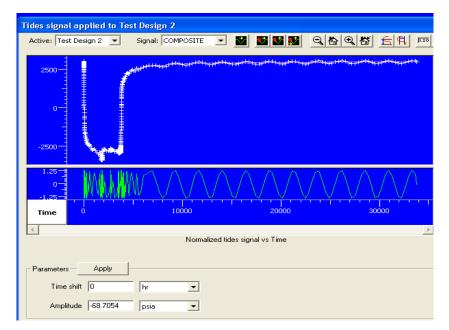
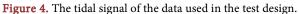




Figure 3. The parameter estimate and its confidence intervals.

3.4. Model QA/QC

The QA/QC control panels include all the facilities linked to well test data acquisition and quality control. The QA/QC section consists of series of plot of different types (pressure gauges, the difference of the plot, the linear derivative of the plot). Tide analyses are also performed on the pressure data to remove the effect of pressure measurement which heavily influences the derivative behavior and errors in the analysis are frequent induced. It is important to remove these effects without removing the true reservoir response before attempting and interpretation. This is done by using a smoothing of 0.1 to reduce the noise derivative as shows in **Figure 4**.

The reservoir fluid properties are matched with PVT correlation in the model to calculate accurate viscosity and total compressibility of the fluid based on the assumed formation compressibility as shown in **Figure 5**.

Formation Volume Factor B	1.466	B/STB	-
Viscosity μ	0.422954	ср	•
Total compressibility ct	1.97961E-5	psi-1	-
Calculate from a PVT Correlation			
	_		
📰 🗆 В 🔽	μ 🔽 ct		
Formation compressibility of	4E-6	psi-1	•

Figure 5. The match of PVT TEST result.

Permanent downhole gauges are used to record the bottom hole pressure and temperature with time. The upper and lower gauges of the downhole tool record the readings at both static and flowing conditions of the well. The static and flowing gradient reading are also recorded to determine slope of the fluid gradient for fluid contact. Comparing the conditions of the test for both upper and lower gauge responses, Kappa-saphir software is used in the diagnosis and further result and interpretation of the analysis are discussed as follows.

4. Results Presentation

Figure 6 shows the rate history of the test ranging from 400, 800 to 3200 is shown in the figure. However, **Figure 7** and **Figure 8** and **Table 3** show the pressure derivative of the upper guage, Horner plot of the test and the result summary of the Horner plot are shown in **Figure 8**.

Figure 9 shows the semilog plot of the upper guage and **Table 4** shows the result summary of the semilog test analysis as shown in the **Figure 9**.

Figures 10-12 show the gradient plot for the upper gauge, pressure derivative of the upper gauge and semilog of the lower gauge, whereas **Table 5** shows the result summary of the semilog test analysis of the study.

Figures 13-15 show the Horner's plot of the lower gauge, pressure derivative of the lower gauge and semilog of the lower gauge used in the analysis. However, **Tables 6-8** show the result summary of different test analyses of the Horner plot as shown in the figures.

Figures 16-18 show the Horner plot of the upper gauge, semilog of the lower gauge and comparison of the gauge result. **Figure 19** shows the confidence limit of the values. While **Table 9** and **Table 10** show the result summary of the upper gauge and semilog of the lower gauge as shown in the figures.

Comparison of the gauge result

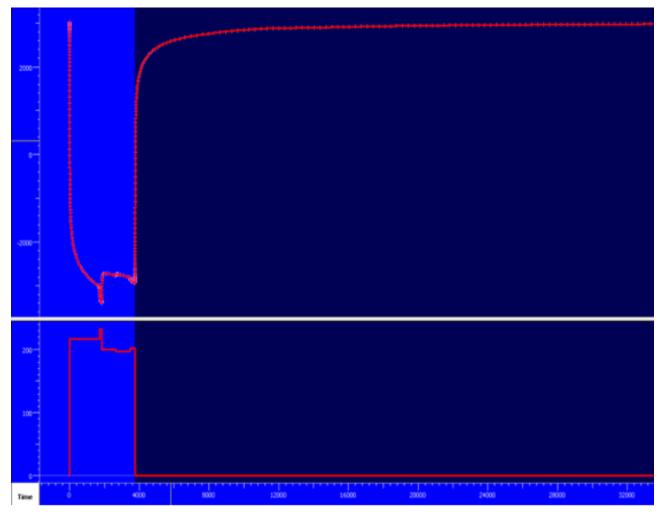
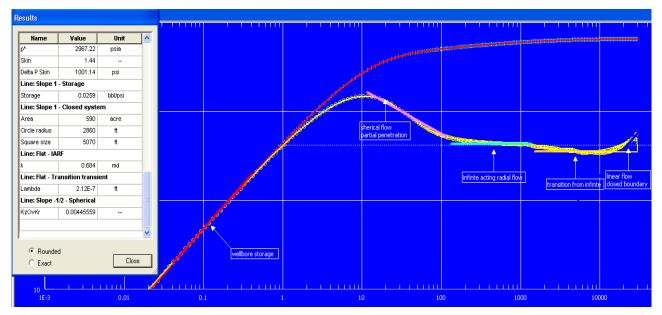
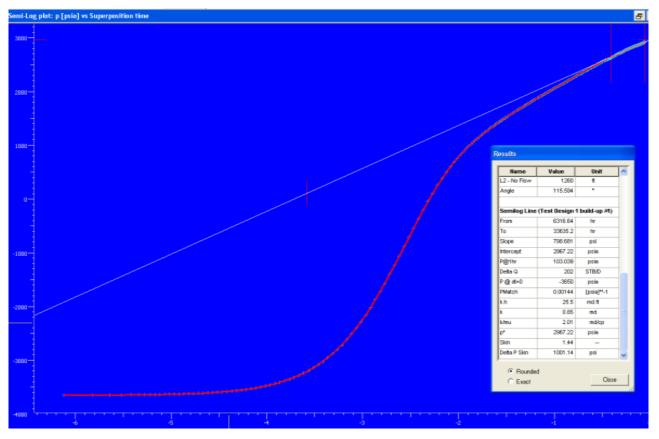
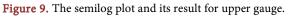
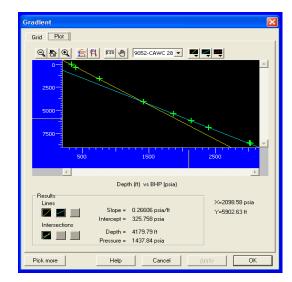



Figure 6. The rate history of the test design (ranging from 400, 800, 1200, 1400... 3200).

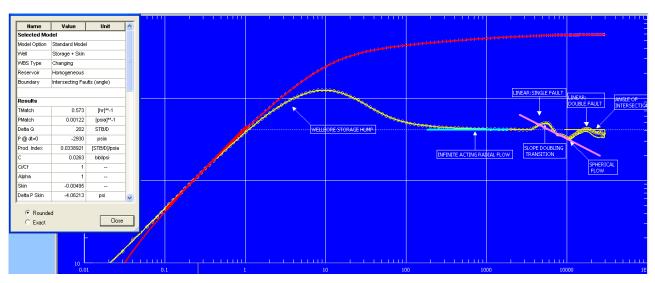



Figure 7. The pressure derivative for upper gauge (showing wellbore storage, spherical flow, infinite acting radial flow, transition flow to linear flow induced boundary).


K. K. Ihekoronye, I. P. Nwosu

Horner pl	ot 2: p [psi] vs la	g(tp-dt)-log((dt)	8
3000	_			
2000-				
2000	Results			
	Hame	Value	Unit	
	First Radial (Te			
	Slope	-279.4	psi	
1000-	Intercept	2905.82	pola	
	Second Radial	(Test Design f	1 build-up #()	
	Slope	-888.771	pei	
	Intercept.	3542.49	psia	
	RESULTS			
	ka .	72.9	ndiff	
	k	2.43	md	
	Skin	17.9	-	
-	Hab. Ratio	3.18	-	
	Theta	113.172	-	
	Intersection X	0.913519	-	
-1000	Distance	734		
-2000	Rounded			
	C Exact	·	Close	
-3000	1 2.663			
-4000 1				1.00

Figure 8. The Horner plot result of the test design.



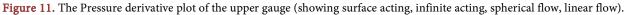
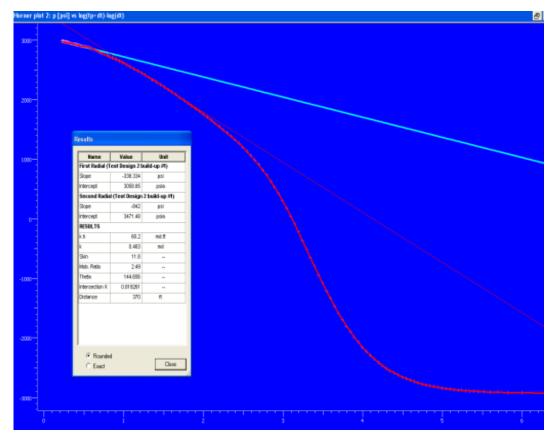


Figure 10. The gradient plot for upper gauge.

 Table 3. The result summary from the Horner plot as shown in Figure 8.


	First radial test design build up
Slope	-293.4 mD
intercept	2906.82 Psia
Se	econd radial test design build up
Slope	280.771 mD
Intercept	3542.49 Psia
K (permeability)	7.29 mD
K (permeability)	2.43 mD
Skin	17.9
Net ratio	3.98
Intersection X	0.9129
Distance	734

To 30290.8 fr	12-NerFley 1581 fl Aregie 731555 * Semileg Line (Test Design 2 build cap #) * From 1528 M Yo 302301 * Signe 965216 pai Mercost 3035.74 pai Pigthr -2507534 pais Pigtor -25314 pais Pigtor -25315 pais Pigtor -25314 pais Pigtor -25315 pais Pigtor -25316 pais Pigtor -25316 pais Pis -25316 -112002 ppis Pismadd -112002 ppis -	Results			
12 - He Rew 1581 fl Argie 78 1505 * Semiling Like (Test Design 2 build ap #0) fr Fron 1333 fr Sola 96 214 pai Misropit 303 .74 pai Misropit 303 .74 pai Pig/tir 557 538 pai Pia 010202 pai Pia 01037 pai Pia 112002 pai	12-NerFley 1581 fl Aregie 731555 * Semileg Line (Test Design 2 build cap #) * From 1528 M Yo 302301 * Signe 965216 pai Mercost 3035.74 pai Pigthr -2507534 pais Pigtor -25314 pais Pigtor -25315 pais Pigtor -25314 pais Pigtor -25315 pais Pigtor -25316 pais Pigtor -25316 pais Pis -25316 -112002 ppis Pismadd -112002 ppis -				-
Argie 78:1938 Semilog Line (fost Design 2 build op //h) From 1333 To 33280.1 Stope 945.214 pild 535.6 150.2 57.350 P(8):d-4 -333 P(8):d-4 -11:202 P(8):d-5 -11:202 P(8):d-5 -11:202 P(8):d-5 -11:202	Argie 78.1936 * Seming Line (Test Design 2 build cap #) Fri Fron 13.280 fri Stope 945.214 pain Mercapt 3021.14 pain Bigtir -35.35 ks pain Pid d- -333 pain Pidezh 0.0012 pisne*+1 Ah 0.596 md Isha -0.037				0
Semilog Line (Test Design 2 build ap #0) from 10 1022001 from Stepe 965218 pdi 105005 10333.14 pin 105005 10505 10505 10505 10505 10505 10505 10505 10505	Semiling Line (Text Design 2 build op 26) from 100 <td></td> <td></td> <td></td> <td></td>				
Fron 1383 fr To 302200 fr Supe 945211 pai Mescad 303.74 pain Mg?thr -357.93% pain Pg.4-4 -2333 pain Pg.4-4 -2333 pain Pg.4-4 -2333 pain Pg.4-4 -2333 pain A 0.056 md hhu 0.022 pain Sia -0.66 md Sia -40137	From 1363 fre 10 31230.0 fre Stope 945211 pdi Wesseld 3301.74 pdia P(g. 4-4) -253.95 pdia P(g. 4-4) -253.95 pdia P(g. 4-4) -253.95 pdia P(g. 4-4) -253.96 pdia P(g. 4-4) -253.95 pdia P(g. 4-4) -253.95 pdia P(g. 4-4) -253.95 pdia P(g. 4-4) -233.95 pdia P(g. 4-4) -233.95 pdia P(g. 4-4) -233.74 pdia Sala -40:57 Della P Sin -11:2702 pdi P Ruaded P	Angle	79.1505	1	
b. 30280. fr Store 945.214 pri Marcost 3021.14 prin Attraction 3021.14 prin Pigtore 3025.25 prin Pigtore 3027.25 prin Stat -40.037	b 30290.0 fr Size 945.216 pid Mercedt 302.74 pid P(0:40 -333 pid Size -11.202 pid	Semilog Line	e (Test Design 2	(haild-up /H)	
Stope 965/211 pol Misropi 3337.14 pola Pightr -367.534 pola Pightr -367.534 pola Pightr -367.534 pola Pightr -333 pola Pightr -333 pola Pightr -01072 grad A 0.168 rid Max 0.203 make p² -333.74 pola Sila -0.168 rid Sila -10.202 pol	Stope 945/216 pdi Mercodi 3337.74 poin Fightr -357.854 poin Fights -323 Stition Fights -323 Stition Fights -033 stition Reach 0.000122 (print) N 0.056 md Mathematic 0.002 mdSpip p ² 333.74 poin Sain -0.056 - Data P Sain -11.200 poin	From	13838	ht	
htsrogt 300/14 poin Right - 357/36 poin Right - 357/36 poin P (g. 4-4 - 2838 point) P (g. 4-4 - 2838	Marcod 301.74 pole Rightin 357.54 pose Pdt - 2,557.54 pole Pdt - 2,55	10.	33290.8	hr	
Hgitr .357 834 point Dets 0 200 STB0 P (2.4-4) .2338 point P (2.4-4) .2338 point Robach 0.0022 georgh*1 kh 0.058 md bhu 0.032 ndkp p² 333.74 point Shin -40137 Dets P Sin -11.2002 point	Pigitrin -357.854 psia Debs Q 202 S18.0 P (g. d-d) -258.0 psia P (g. d-d) -258.0 nd Sia -40.057 Debs P Sin -11.2002 psia	Stope	945.218	psi	
Deta Q 200 STBD F(g.4.0 -333 poin Patech 0.00012 (psint*1) kh 0.156 md bhu 0.156 md bhu 0.158	Dets Q 200 ST8.0 P(g) 4-0 -233 poie PMatch 0.00712 (prat*-1) h 215 md4 ii 0.1968 md pir 333.74 poie Sala -40:57 Dets P San -11.2702 poi	Intercept	3031.74	psia	
P (2) 44-4	P (g. d=d	Fight	-357.534	psia	
Pidiciti 0.00122 (j):ref"-1 kh 215 nd 4 k 0.058 nd blux 0.020 ndkp p² 333.14 pole Sia -40:137 Delsa P Son -11.2702 pdi	Pedicit 0.00122 (jssql*-1) kh 215 nd 1 k 0.058 nd hu 0.032 nskp p' 303 74 poin Sin 4.0137 Deta P San -11.202 pd * Rausded *	Deta Q	202	\$180	
kh 215 nd.1 6 0.568 nd khu 0.333 na pile 9' 333.74 pile 5ka 40737 Defs P Sin -11 2002 pd 2 ^C Rauded	kh 215 nd.1 k 0.968 nd bhu 0.330 ndkp p² 333.74 pole Sian -40:57 - Dels P Sin -11:2702 psi P Rauded -	F@d-0	-2830	psie	
a 0.168 nd http://0.102 ndicp p/ 3021.74 pole San - 10.03 - Deta P San -11.200 pd	a 0.968 nd bihu 0.920 ndi¢p ¢' 3323.174 pole Sia 4.01:37 - Dela P San -11.2702 pd ₩ ♥ Reached	Phildch	0.80522	[psie]**-1	
bihu 0.302 ndt; p ² 3031.74 pole Sia 4.00.37 - Deta P Sin -11 2702 pd F Rauded	bihu 0.302 ndt; p ² 3031.74 pole Sia 4.00.37 - Deta P Sin -11 2702 pd F Rauded	kh	21.5	nd.t	
P 303174 pola Sia 40037 Dela P Sin -11:2702 pol	p* 383 74 psia Sia 40037 Della P Sin -11.2702 pd * Rauded ************************************	8	0.168	ná	
Sla -40137 - Dela P Sun -11 2002 pd -	Sla -40137 - Dela P Sun -11 2002 pd -	kinu	0.392	nákş	
Della P Sin -11 2702 pd 🐷	Della P Sin -11 2702 pd 🖉	p,	3031.74	poie	
9 Rushd	9 Rauled	Skin	-0.0137	-	
		Delta P Skin	-11.2702	pti	
		⊂ Exat			

Figure 12. The Semilog for lower gauge.

Figure 13. The Horner plot for the lower gauge.

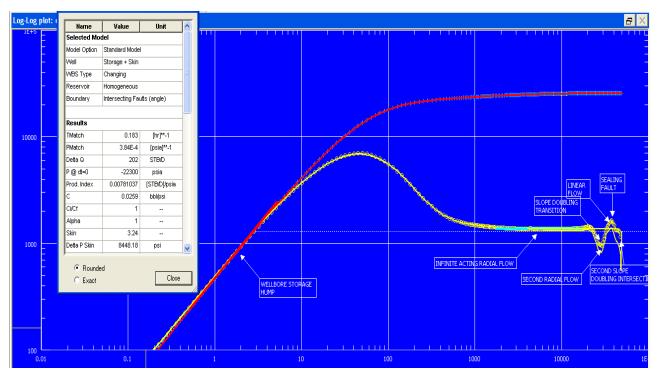


Figure 14. The pressure derivative plot of the lower gauge.

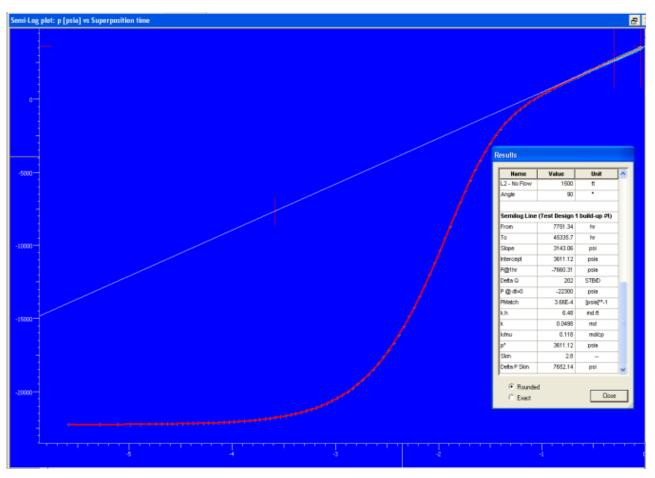


Figure 15. The semilog for upper gauge (SG).

Herner p	lat 2: p [psi] vs log(tp+dt)	-log(dt)		B
	Contraction of the local division of the loc			
	Results			
	Name	Value	Unit	
-5000-	Stope	est Design 1 buik -1059.93	psi	
	intercept	3677.74	poi	
		(Test Design 1 b		
-	Sope	-2751.57	psi	
	Intercept	5823.45	poie	
	RESULTS		-	
-10000-	kh	19.2	md.ft	
	R.	0.148	md	
	Skin	20.1	-	
-	Moli. Ratio	2.6	-	
	Treta	138.675	-	
· ·	Intersection X	0.799502	-	
-15000-	Distance	213	1	
· ·				
	Rounded	ł		
-20000-	C Exect		Clase	
-20000				

Figure 16. The Horner plot of the upper gauge.

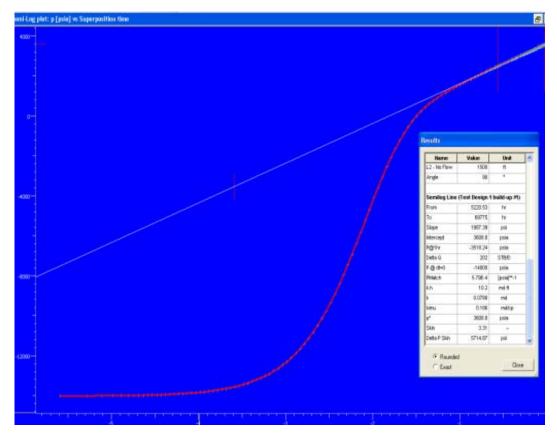
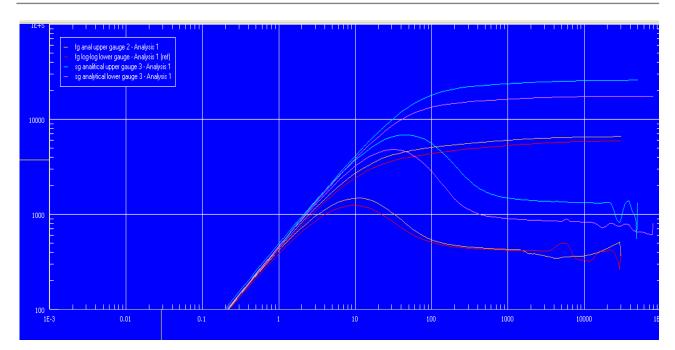



Figure 17. The result and the semilog plot of the lower gauge (SG) test design.

Figure 18. The gauge response with time.

Conf	idence Limits	;		
Cor	nfidence Intervals	Correlation	Coefficients	
	Parameter	Minimum	Value	Maximum
	С	0.0255	0.0257	0.0259
	Ci/Cf	0.585	1.17	2.34
	Alpha	2.99	5.98	12
	Skin	-0.0118	0.0143	0.0404
	k	0.703	0.706	0.708
	L1	1620	1770	1920
	L2	1210	1260	1320
	Angle	115.104	115.594	116.086

Figure 19. The confidence limit of the upper gauge reading of the test simulation.

Table 4. The result summary for the semilog plot for upper guage as shown in Figure 9.

Semi log l	ine (Test Design build-up)
Time from	6314.54 h
То	33635 h
intercept	2967.22 Psia
P@lhr	1000.009 Psia
Flowrate	202
Pressure (p@0)	3650 Psia
Pws	0.00564 Psia
Permeability (k)	25.5 mD
Skin	1.44

Semi l	og line (test design build-up)
Time from	138.90 h
То	33290.1 h
Slope	945.281 Psi
intercept	3031 Psia
P @1hr	-361.834 Psia
Flowrate	202 Stb/d
Pressure (p@0)	2838 Psia
Pws	0.00564 Psia
Permeability (k)	0.168 mD
Skin	4.63

 Table 5. The result summary of the semilog plot for lower guage as shown Figure 12.

Table 6. The result summary of the Horner plot for the lower guage as shown in Figure 13.

	First radial test design build up
Slope	338.354 mD
Intercept	3098.05 Psia
S	econd radial test design build up
Slope	-945 mD
Intercept	3471.48 Psia
Kh	60.6 m/ft
K (permeability)	1463 Md
Skin	11.8
Net ratio	2.49
Intersection X	0.81831
Distance	370 ft

Table 7. The result summary for pressure derivative of the lower guage as shown in Figure 14.

Result		
Tmatch	0.18300 h	
Pmatch	$3.8 imes 10^{-4}$ psia	
Delta p	202 Stb/d	
p@d=0	-22,300 psia	
Production index	0.00781037 Stb/d	
compressibility	0.02590 psi	
Alpha	1	
Skin	3.24	
Delta P skin	8448.18 psi	

Semi log line (Test Design build-up)		
Time from	7751.54 h	
То	4530.70 h	
Slope	3143.06 psi	
intercept	3611.12 psia	
P @1hr	-7660.31 psia	
flowrate	202 Stb/d	
Pressure (p@0)	22,300 psia	
Kh	6.43 mD/ft	
Permeability (k)	0.0493 mD	
Skin	24	

 Table 8. The result summary of semilog for upper guage as shown in Figure 15.

_

Table 9. The result summary of the Horner plot of the upper guage as shown in Figure16.

First radial test design build up		
Slope	-1059.19 mD	
Intercept	3677.74 psia	
	Second radial test design build up	
Slope	-2759.17 mD	
Intercept	5823.45 psia	
Kh	19.2 m/ft	
K (permeability)	0.148 mD	
Skin	28.1	
Net ratio	2.6	
Intersection X	0.796582	
Distance	281 ft	

Table 10. The result summary of the semilog plot of the lower guage test as shown in Figure 17.

Semi log line (Test Design build-up)		
Time from	5220.58 h	
То	6975 h	
Slope	1967.38 psi	
Intercept	3608.1 psia	
-	-	

Open Journal of Yangtze Gas and Oil

Continued	
P@1hr	–2618.24 psia
Flowrate	202 Stb/d
Pressure (p@0)	54800 psia
Kh	10.2 md/ft
Permeability (k)	4.0708 mD
Skin	3.38

5. Discussion of Result

Figure 1 shows the geology of the formation in the study, while **Figures 2-5** show the model analysis used in the research work. **Figures 6-8** show the producing response of the vertical well with wellbore storage and skin in a homogeneous reservoir of an intersecting fault with angle of intersection. The plot shows the log (Δp) derivative vs log (Δt) plot. The pressure derivative plot of the upper gauge reading shows the flow regimes of the fluid and their pressure responses with time. At first the well production is governed by the well bore storage followed by a transition into the transient state. The storage coefficient estimated from the derivative match is 0.0257 bbl/psi as a changing well bore storage which is proportional to pressure and assumed to estimate the skin factor which is used for the measurement of productivity of the well.

One of the main objectives of the research work is to estimate whether the productivity is governed by skin + storage, but as seen from the model result, the productivity is governed by skin + storage and its value predicting a low productivity index 0.03025 STB/D)/psi with a skin effect of 0.014. The result of the skin shows positive causing an increase in the pressure drop along the wellbore as shown in **Figure 9** and **Figure 10**.

The second stage is the spherical flow regime which is attributed as a result of the effect of partial penetration of the fluid as fluid flows spherically from the formation into the wellbore before the top and bottom boundaries are reached. The reservoir thickness of the formation is calculated from the well-log survey as 130 ft but only 20 ft of the total formation is perforated. From the plot, the spherical flow (half slope) is used to calculate the ratio of vertical to radial permeability given as 0.00446. The spherical flow lasts for about one cycle (10 - 100 hrs).

The third stage of the flow regime is the transient state (infinite acting radial flow). IARF is reached after the wellbore effect becomes negligible, the effect of well geometrics, the heterogeneities are passed and the lateral boundaries are detected. From the plot, the transient period begins at 100 hrs and ends at 1000 hrs and the permeability estimated in this period is given as 0.684 md, which is a very low permeability. This period only lasts for a complete cycle before the transition of the transient into the pseudo steady state. This is due to the effect of the boundary as pressure drops with time are constant and the flow regime is li-

near to the wellbore.

From the Horner plot shown in **Figure 11**, the first radial slope is more than double of the second radial flow which is due to the presence of faults.

Pressure derivative plot of the lower gauge reading shows the flow regimes of the fluid and their pressure response with time is shown in **Figure 14**. In this analysis, there are seven stages of the flow regime. At first the well production is governed by the well bore storage followed by a transition into the transient state. The storage coefficient estimated from the derivative match is 0.0263 bbl/psi as a changing well bore storage which is proportional to pressure assumed to estimate the skin factor for measuring the productivity of the well.

The productivity index is estimated at 0.034 (STB/D)/psi and a negative skin effect is also estimated (-0.00487), which indicates well improvement *i.e.* there is no pressure drop due to skin effect around the wellbore. The second stage of the flow regime is the transient state (infinite acting radial flow). From the plot in **Figure 12**, the transient period begins at 100 hrs and ends at 10,000 hrs as long transient period is experienced during production. The effective permeability estimated in this period is given as 0.166 md, which is a very low permeability compared to the upper gauge. This period lasts for more than a complete cycle before the transition of the transient into the pseudo steady state. This is due to the effect of the boundary as pressure drops with time is constant and the flow regime is linear to the wellbore. Along a linear flow, a slope doubling transition can be seen, which indicates the presence of the first sealing fault forming a single trap in the formation.

The fifth flow regime is a spherical flow. This flow regime shows the effect of fluid flow due to the effect of the intersecting fault boundary cutting across an anticlinal structure. From the plot an estimate of the ratio of the vertical to radial permeability is done to account for the vertical flow across the barriers (boundaries), the estimated value is 0.075. The sixth flow regime is the linear flow. The geometry of a linear flow streamline consists strictly of a parallel flow vectors. The presence of a second fault intersecting the sealing fault as seen in **Figure 13** below shows the presence of the intersecting fault boundary and its effect to production as pressure changes with time is constant.

The seventh flow regime depicts the intersecting angle of the boundary. The Horner plot is used to validate the test model of the sand. From the Horner plot shown in **Figures 15-17**, the first radial slope is more than double of the second radial flow which is due to the presence of faults.

In **Figure 18** and **Figure 19**, by comparing the two results with the effect of skin factor on the pressure response, the positive skin characterized from the upper gauge reading shows an effect on the pressure derivative curve by increasing the plot higher against the lower gauge response. The permeability response of the upper gauge is higher compared to the lower gauge from the infinite acting radial flow regime. In the same figure, comparing the pressure re-

sponse of the upper and lower gauge of the second interval of the test design shows that the response of the infinite radial flow corresponds with each other but their flow responses due to the effect of the intersecting fault boundary are different.

6. Conclusions

Based on these results, a complete system analysis can be done to determine the optimum measure taken to optimize the total recovery of the reservoir sand and also help to determine the cost effectiveness of treatments under consideration and assists in completion decisions. This thorough evaluation of the complete producing system establishes the flow rate versus pressure drop relation for each component of the producing system. These could be as a result of the barriers from the interpretation of the gamma ray log of the formation as the matrix stimulation in 1995 was carried on the formation to improve its productivity and there was no positive result of improvement.

Barrier bar sands are deposited in a marginal marine environment on top of the finer grained barrier foot deposits. In a barrier bar, clay breaks are correlated over a long distance. The continuity of clay breaks or other barriers can be predicted from the depositional environment. The clay breaks may limit or stop the vertical flow of the fluids.

Contribution to Knowledge

A carefully study is needed for the behavior of reservoirs and establishing the fact that wellbore effect and skin contributes to low production of hydrocarbon as a result of intersecting fault boundary.

Acknowledgements

We thank the management of SPDC for giving me data to carry out the research.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Weber, K.J., Agarwal, R.G., Hussainy, R., Ramey Jr., H.J. and Daukoru, E.M. (1982) An Investigation of *Well*bore Storage and Skin Effect in Unsteady Liquid Flow. *Transactions of AIME*, 249.
- [2] Matthews, C.S., Brons, F. and Hazebroek, P. (1953) A Method for Determination of Average Pressure in a Bounded Reservoir. *Transactions of AIME*, 201, 182-191.
- [3] Matthews, C.S. and Russell, D.G. (1967) Pressure Buildup and Flow Test in Well, Monograph Series. SPE, Richardson.
- [4] Van Everdingen, A.F. and Hurst, W. (1949) Application of the Laplace Transforma-

tion to Flow Problem in Reservoirs. Transactions of AIME, 305-324.

- [5] Van Everdingen, A.F. (1953) The Skin Effect and Its Influence in the Productive Capacity of a Well. *Transactions of AIME*, **198**, 171-176. https://doi.org/10.2118/203-G
- [6] Horner, D.R. (1950) Pressure Build-Up in Wells. In: Brill, E.J., Ed., Proceedings of the Third World Pet. Cong., Leiden II, 503-522.
- [7] Zheng, P., Rosa, A.J. and Horne, R.N. (2006) Automated Type-Curve Matching in Well Test Analysis Using Laplace Space Determination of Parameter Gradients. *SPE Annual Technical Conference and Exhibition*, San Francisco, 5-8 October 2006.

Scientific Research Publishing

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals) Providing 24-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work

Submit your manuscript at: <u>http://papersubmission.scirp.org/</u> Or contact <u>ojogas@scirp.org</u>