Does magnesium sulfate increase the incidence of postpartum hemorrhage? A systematic review

Laura M. Héman, Paul J. Q. Van Der Linden

Department of Gynaecology and Obstetrics, Deventer Ziekenhuis, Deventer, The Netherlands. Email: <u>p.j.q.vanderlinden@dz.nl</u>

Received 4 October 2011; revised 22 November 2011; accepted 3 December 2011.

ABSTRACT

The incidence of Postpartum Hemorrhage (PPH) is increasing in the western world. We hypothesize that magnesium sulfate (MgSO₄) could be a contributing factor. MgSO₄ might increase the incidence of PPH by induction of vasodilation, tocolytic effects, and effects on the blood like red cell deformity, platelet activity inhibition and a prolonged bleeding time. Based on these effects of MgSO₄ a correlation with PPH is suspected. MgSO₄ is widely used in the prevention of eclampsia. However, the working mechanism of this effective drug is largely unknown. We performed a systematic search to find all Randomized Controlled trials (RCTs) containing MgSO4 in preeclamsia as well as all MgSO₄ studies with information on PPH. Titles, abstracts and references of publications were evaluated for appropriateness and whether they met the inclusion criteria. RCTs about MgSO₄ with original data on PPH prevalence were included in our systematic review. We calculated the relative risk of PPH in every study as well as an overall relative risk. Four relevant and valid RCTs were found, totalling 11,621 relevant patients. The relative risk of PPH in women treated with MgSO₄ is 0.964 (95% CI 0.886 - 1.050). In this systematic review we found no significant increase in PPH in women treated with MgSO₄. However, there is still room for discussion due to the heterogeneity in methods (dosage and duration of treatment), results, and tertiary outcomes, as well as the small number of studies found with respect to this important issue.

Keywords: Magnesium Sulfate (MgSO₄); Postpartum Hemorrhage (PPH)

1. INTRODUCTION

In high resource countries we see an increase in Postpartum Hemorrhage (PPH) during the last decade [1,2]. We suspect a correlation with magnesium sulfate (MgSO₄) because of three following effects.

Firstly, magnesium sulfate is widely used in obstetrical care for the prevention of eclampsia during pregnancy, although the exact pharmacological mechanism of MgSO₄ in preventing eclampsia is not known [3]. Cerebral vasoconstriction has been reported in women with eclampsia [4]. Magnesium sulfate vasodilates intracranial vessels distal to the middle cerebral artery and hence may exert a main effect in the prophylaxis and treatment of eclampsia by relieving cerebral ischemia. Furthermore, MgSO₄ is effective as an antihypertensive drug. This antihypertensive effect is also explained by vasodilatation [5]. Vasodilatation could induce PPH.

Secondly, $MgSO_4$ can be applied as a tocolytic drug. Magnesium maintenance therapy is a type of tocolytic therapy used after an episode of preterm labour in an attempt to prevent the onset of further preterm contractions [6]. Therefore, atonia or hypotonia of the uterus could be possible when using magnesium sulfate. Uterus atonia is the most common cause of postpartum hemorrhage (PPH) [7].

Thirdly, there are several effects of magnesium sulfate reported on blood. Although results are conflicting, side effects are described. Several authors find a significant increased bleeding time in preeclamptic patients treated with MgSO₄, [8-10] while another author did not find a difference in bleeding time in healthy volunteers given MgSO₄ [11]. Furthermore, significantly inhibited platelet aggregation [10] and an increased RBC-deformability in a 24 hour intravenous magnesium therapy are mentioned [12].

In 1964 authors already had the impression that the observed external blood loss, during and soon after, delivery was excessive when using MgSO₄. However they did not show proof [13]. In the latest Cochrane review conflicting results are reported [14]. When comparing MgSO₄ with placebo, no significant difference in PPH is found. However, when comparing MgSO₄ with Nimodipine (calcium channel blocker), a significant increase in PPH is found. An explanation for these differences is

not given.

In summary, magnesium sulfate may induce vasodilation, tocolytic effects, and effects on blood (*i.e.* red cell deformity, inhibited platelet activity and prolonged bleeding time). If the risk of PPH is increased in women treated with MgSO₄ one should be more aware and prepared for obstetric blood loss. Therefore, we performed a systematic review of the literature to analyze whether MgSO₄ treatment increases the risk of PPH.

2. MATERIALS AND METHODS

We created two queries for the database "Pubmed." The elements of our question are "Magnesium sulphate" and "PPH." We compiled a query with synonyms. Synonyms were connected with "OR" in the search string while the intervention (MgSO₄) and outcome (PPH) were connected with "AND." Using this procedure we found 234 hits. We screened the titles and abstracts and excluded non relevant articles, case reports and articles in other languages than English, German and Dutch. We only included Randomized Controlled Trials (RCTs) involving MgSO₄ treatment which gave original data about PPH. Of the three remaining articles [13,15,16] one met our inclusion criteria and was therefore included in this systematic review [15].

We assumed that in some randomised controlled trials concerning $MgSO_4$ in preeclampsia the incidence of PPH has been examined, but not mentioned in the abstract. Therefore, we searched with another search string for RCTs with $MgSO_4$ in preeclampsia treatment. With this procedure we found 28 hits wherein 7 possible relevant trials [15-21]. After reading these articles full text, 2 studies remained [15,17]. On screening references, 3 additional articles were found [22-24] of which one was relevant [22].

Furthermore, we searched in the Cochrane Library for PPH studies as well as solitary $MgSO_4$ studies. We found the three articles we already included [15,17,22] but also two additional relevant articles in which $MgSO_4$ was given for neonatal neuroprotection before preterm birth. [25,26]. However, one [26] gave no clear definition of PPH and was therefore not included after reading full text. So, eventually a total of 4 RCTs were included in our review (see **Figure 1** Flow chart).

Within the patient populations described in these articles [15,17,22,25] we selected the women of whom there was information about PPH, mostly women who were followed and treated during labour.

Some authors calculated the relative risk of PPH in women treated with $MgSO_4$ [15,17,25]. For the remaining article we calculated (using the information provided) the relative risk of the incidence of PPH and the 95% confidence interval.

Finally, we calculated a relative risk and the 95% con-

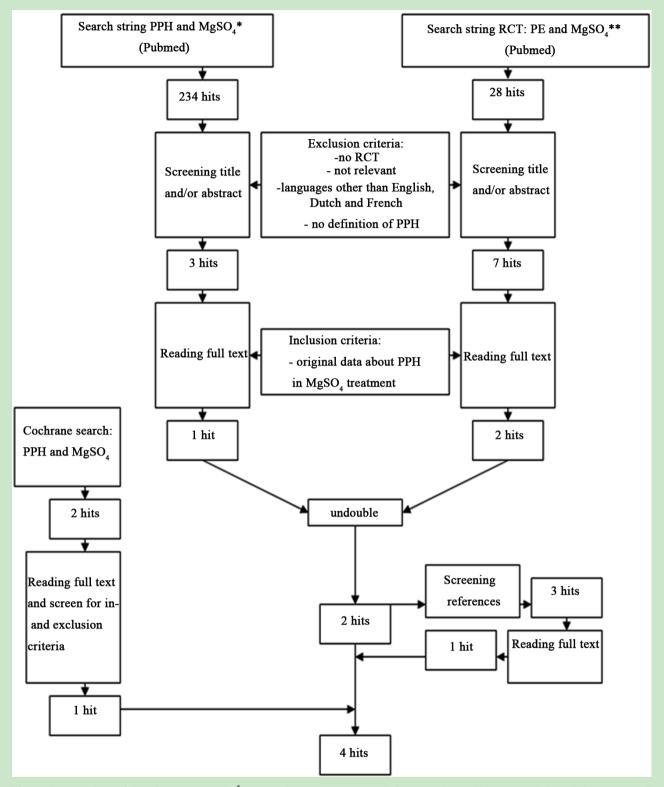
fidence interval of the combined studies.

3. RESULTS

In **Table 1** the primary results of the trials are shown. The Magpie trial [22] included by far the most patients (10.141). Heterogeneity between the included studies has been found when comparing the primary outcome measurements *i.e.* eclampsia, duration of labour, disease progression and neuroprotection of the infant as well as the comparison *i.e.* placebo or Nimodipine.

Information on PPH was given on a total of 11,621 women. The results with respect to the incidence of PPH differ in the various articles (**Table 2**). The researchers of the Magpie trial [22] and Crowther *et al.* [25] did not found a significant change in the incidence of PPH in women when treated with MgSO₄.

Belfort *et al.* [17] however, do find a significant difference. PPH occurs in 2.4% of the women treated with MgSO₄ versus 1.0% of women in the control group (RR 2.4695%CI 1.09 - 5.56; p = 0.03.)


Witlin *et al.* [15] report a fourfold greater incidence of PPH in the MgSO₄ group, although this finding is not significant. There was a significant difference in the maximum dose of oxytocin used with Magnesium sulphate versus placebo (p = 0.036).

The calculated overall relative risk does not show an increase of the risk of PPH when using $MgSO_4$ (RR 0.964 (95% CI 0.886 - 1.050)).

4. DISCUSSION

In this systematic review we do not find a significant increase in PPH in women treated with MgSO₄.

Still, there are some interesting remarks to make. Two of four articles in this systematic review report a trend [15] or a significant difference in PPH [17]. However, the data given by the Magpie trial (with no significant difference) overrule all other results because of the large patient population. PPH was one of the many secondary outcome measures of this study. We wonder if we can draw any conclusions yet. Moreover, because the lowest dose of MgSO₄ was used in the two studies which showed no significant increased risk of PPH, including the Magpie study. They treated with 4 gram loading dose continued with 1 gram per hour for 24 hours at most. Belfort et al., who do find a significant difference, used the longest duration of MgSO₄ treatment. They treat with a maximum of 24 hours (mean 8.8 hour) during labour and always 24 hours post partum. This could explain the differences in outcomes, and thus the effects of MgSO₄. The dosage of MgSO₄ might be crucial in the risk of PPH. It could be possible that the dosage given in the Magpie trial is safe but that there is a threshold to provoke PPH.

Figure 1. Flow chart of the Literature search, ^{*}search string: ((("Post partum" OR "Post labour" OR "Post delivery" OR "Pueperal" OR "Uterine") AND ("Hypotonia" OR "Hemorrhagic" OR "Hemorrhage" OR "Heamorrhage" OR "Bleeding" OR "Bleedin

Table 1.	Table 1. Primary results.	sults.								
al.	(1996 - 200	Gynaecology	, M	seclampsia	modumor	RCTed	And placebo	eclampsia With MgSO4		Relative risk (95% Confidence interval and/or p-value)
dy	Year of Publicatio (Year of Scanning	0) JAMA	 yo 30 30 30 9 4 9 4	ild eeclampsia	Duration of labour	RC7 RC7	Nimodipine and MgSO4	Sig. more eclampsia with Nimodipine (especially post partum)	40/5055 (0.8%) vs 96/5055 (1.9%)	$\begin{array}{c} 0.42 \\ (0.29 \text{ - } 0.60) \\ p < 0.0001 \end{array}$
	2002 (1998 - 200	on Journal	wi No of Inc patients	pmen pregnant th fetus(es) unger than weeks gestational e if birth was anned or expected	Peadiatric I mortality and morbidity	ed Blind RC1	MgSO4 and placebo	MgSO4 has no influence on the duration of labour No sionificant	21/819 (2.6%) vs 7/831 (0.8%)	3.2 (1.1 - 9.1) p = 0.01
lfort <i>al.</i>	2003 (1995 - 200	1) Lancet	M 10141 ser pr		Primary outcome	Stud ed desig	MgSO4 And placebo	differences in pediatric mortality; Less substantial pediatric motor Avefunction in the	(n = 67) vs (n = 67) vs (n = 68)	p = 0.7
itlin <i>al</i> .	1997 (1995 - 199	6	1650 Se pro	1.00	n alamata An anala	Blind		MgSO4 group	87/629 (13.8%) vs	0.83
		Medicine	-	vere eeclampsia	Eclampsia	RC1 y	Comparison	Results	107/626 (17.1%) 18/533 (3.4%)	(0.64 - 1.09) 0.51
owther	2003	American Journal of Obstetrics 6) And	135 M nn	M Dr ⁱ vere	Felamnsia	Not blir	MaSO.	Sin less	vs 34/514 (6.6%)	(0.29 - 0.91)
Table 2.	PPH in Mg	Table 2. PPH in MgSO ₄ treatment.								
apie trial	8774				introl group)	RR		p-value MgSO4 dose	se	MgSO4 treatment time
0		> 500 mL	750/4415 (1	(17%) 774/4	359 (18%)	0.96 (95%CI 0.87 - 1.05)	(7 - 1.05)	NS 4 g loading dose	g dose	Maximum of 24h
lfort al.	1650	> 500 mL after vaginal delivery and >1000 mL after caesarean section	20/831 (2.4%)	8/81	9 (1.0%)	2.46 (95%CI 1.09 - 5.56)		$p=0.03$ $p=0.03$ $p=0.03$ $py 2 g/h \text{ or } 4-g \log p$	rollowed by 1g/n 6-g loading dose followed by 2 g/n or 4-g loading	Max. 24h antepartum (mean 8.8) and always
tlin 21.	135	500 mL after vaginal delivery and >1000 mL after caesarean section	4/67 (6%)	1/6	68 (1%)	4.1 (95%CI 0.5 - 35.4)	- 35.4)	dose followed by 6-g loading dose followed by 2g/h	1g/h	24h post partum Until 12h post partum
owther al.	1062	Primary PPH >600 mL	86/535 (16.	(6.1%) 99/52	7 (18.8%)	0.86 (95%CI 0.66 - 1.11)		P = 0.24		
		Major PPH >1000 mL	26/535 (4.9%)	25/52	27 (4.7%)	1.02 (95%CI 0.60 - 1.75)		$P = 0.93 \qquad \begin{array}{c} 4-g \text{ loading dose} \\ \text{followed by } 1g/h \end{array}$		Until birth or up to 24 hours
studies	11621		886/5848 (15.2%)	907/57	73 (15.7%) (0.964 (95%CI 0.886 - 1.050)	86 - 1.050)	NS		
ıdy	Patients	Definition HPP	("US¢W) Hdd	U.) PPH (cd						

Copyright © 2011 SciRes.

L. M. Héman et al. / Open Journal of Obstetrics and Gynecology 1 (2011) 168-173

171

OJOG

Particularly, Witlin *et al.* report a significantly higher dosage of oxytocin needed in the MgSO₄ group (p = 0.036). This may suggest that a possible effect of MgSO₄ can be a hypotonic uterus.

Although we had to exclude the study of Friedman *et al.* [21] because the authors did not give numbers about PPH and therefore did not meet our inclusion criteria, there are some remarkable results. The authors examined side effects of MgSO₄ compared to phenytoin. They found a significant greater haematocrit fall after delivery when using MgSO₄ (7.6% vs. 4.7% (p = 0.0034)), as well as a significant greater blood loss (606 ml vs. 418 ml (p = 0.04)).

We do not question the proven and great value of $MgSO_4$ in preventing eclampsia or the indication when to start this treatment. But one can doubt the evidence about side effects. One may suggest that since 2002 $MgSO_4$ treatment possibly becomes more and more common. A false sense of security in preventing eclampsia could enhance the use of $MgSO_4$ and the duration of treatment. Remarkably, in this systematic review we found only very few articles (4) that studied PPH in combination with $MgSO_4$ treatment, while knowing that $MgSO_4$ is extensively used all over the world and PPH is a dangerous and frequent complication of labour [2].

It would be interesting to know the exact pharmacological effect of $MgSO_4$. This would help us to understand the function of $MgSO_4$ in preventing eclampsia as well as other possible side effects such as PPH. Theoretically, $MgSO_4$ still could influence the uterus tonus, the bleeding time and provoke vasodilatation.

To give a definitive answer on our question, ideally a trial with PPH as a primary outcome should be performed. Secondary, dosage and duration of MgSO₄ therapy should be considered, together with interventions to prevent PPH, *i.e.* the dosage of oxytocin. With respect to PPH, the decrease in haemoglobin or haematocrit could provide objective results. In women with HELLP syndrome the risk of PPH in combination with a possible trombopenia should be considered.

A limitation of our study is that we mainly systematically searched the Pubmed database. However, a screening in Embase did not show any relevant articles. Another limitation of our overview could be the heterogeneity of the articles included. We decided to only use an assessment for statistical heterogeneity with population size. One could question if you can compare women with preeclampsia with women with threatened preterm birth who are given MgSO₄ as neuroprotection for the foetus. However, we decided that when researching the unknown effect of MgSO₄ on PPH the indication for treatment are less relevant. Moreover, this heterogeneity is an argument for more and specific research. In this systematic review, we do not find a significant risk of PPH when treating with $MgSO_4$. $MgSO_4$ has a great, important and proven role in the prevention of eclampsia. However, in our opinion, consensus on the question whether $MgSO_4$ does or does not influence blood loss during delivery is not possible, due to few and non specific studies and the heterogeneity of the relevant studies.

REFERENCES

- Knight, M., Callaghan, W.M., Berg, C., *et al.* (2009) Trends in postpartum hemorrhage in high resource countries: A review and recommendations from the International Postpartum Hemorrhage Collaborative Group. *BMC Pregnancy and Childbirth*, 9, 55. doi:10.1186/1471-2393-9-55
- [2] Woisky, M.D., Hermens, R.P.M.G., Middeldorp, J.M., et al. (2010) Haemorrhagia post partum; an implementation study on the evidence-based guidline of the Dutch Society of Obstetrics and Gynaecology (NVOG) and the MOET (Managing Obstetric Emergencies and Traumacourse) instructions; the Fluxim study. BMC Pregnancy and Childbirth, 10, 5. doi:10.1186/1471-2393-10-5
- [3] Euser, A.G. and Cipolla, M.J. (2009) Magnesium sulfate for the treatment of eclampsia: A brief review. *Stroke*, 40, 1169-1175. doi:10.1161/STROKEAHA.108.527788
- [4] Belfort, M.A. and Moise, K.J. (1992) Effect of magnesium sulfate on maternal brain blood flow in preeclampsia: A randomized, placebo-controlled study. *American Journal of Obstetrics & Gynecology*, **167**, 661-666.
- [5] Elsharnouby, N.M. and Elsharnouby, M.M. (2006) Magnesium sulphate as a technique of hypotensive anesthesia. *British Journal of Anaesthesia*, **96**, 727-731. doi:10.1093/bja/ael085
- [6] Han, S., Crowther, C.A. and Moore, V. (2010) Magnesium maintenance therapy for preventing preterm birth after threatened preterm labour. *Cochrane Database of Systematic Reviews*, **7**.
- [7] Mousa, H.A. and Alfirevic, Z. (2007) Treatment for primary postpartum haemorrhage. *Cochrane Database of Systematic Reviews*, Art. No.: CD003249. doi:10.1002/14651858.CD003249.pub2
- [8] Assaley, J.M., Baron, J.M. and Cibils, L.A. (1998) Effects of magnesium sulfate infusion upon clotting parameters in patients with preeclampsia. *Journal of Perinatal Medicine*, 26, 115-119. doi:10.1515/jpme.1998.26.2.115
- [9] Fuentes, A., Rojas, A., Porter, K.B., Savliello, G and O'Brien, W.F. (1995) The effect of magnesium sulfate on bleeding time in pregnancy. *American Journal of Obstetrics & Gynecology*, **173**, 1246-1249. doi:10.1016/0002-9378(95)91363-7
- [10] Ravn, H.B., Vissinger, H., Kristensen, S.D., Wennmalm, A., Thygesen, K. and Husted, S.E. (1996) Magnesium inhibits platelet activity—an infusion study in healthy volunteers. *Journal of Thrombosis and Haemostasis*, **75**, 939-944.
- [11] Falck, G, Lundgaard, H., Jareld, T., *et al.* (1999) Effect of magnesium infusion on bleeding time in healthy male

volunteers. Scandinavian Journal of Clinical & Laboratory Investigation, **59**, 425-430. doi:10.1080/00365519950185445

- [12] Schauf, B., Becker, S., Abele, H., Klever, T., Wallwiener, D. and Aydeniz, B. (2005) Effect of magnesium on red blood cell deformability in pregnancy. Hypertension and Pregnancy, 24, 17-27. doi:10.1081/PRG-45767
- [13] Rowland, R.C. and Pritchard, J.A. (1964) The effect of parenteral magnesium sulfate therapy on blood loss at delivery. *American Journal of Obstetrics Gynaecology*, 89, 261-262.
- [14] Duley, L., Gülmezoglu, A.M., Henderson-Smart, D.J. and Chou, D. (2010) Magnesium sulphate and other anticonvulsants for women with pre-eclampsia. *Cochrane Database of Systematic Reviews*, Art. No.: CD000025. doi:10.1002/14651858.CD007388.pub2
- [15] Witlin, A.G., Friedman, S.A. and Sibai, B.A. (1997) The effect of magnesium sulfate therapy on the duration of labor in women with mild preeclampsia at term: A randomized double blind placebo controlled trial. *American Journal of Obstetrics Gynaecology*, **176**, 623-627. doi:10.1016/S0002-9378(97)70558-1
- [16] Livingston, J.C., Livingston, L.W., Ramsey, R., Mabie, B.C. and Sibai, B.M. (2003) Magnesium sulfate in women with mild preeclampsia: A randomized controlled trial. *Obstetrics and Gynaecology* **101**, 217-220. doi:10.1016/S0029-7844(02)03053-3
- [17] Belfort, M.A., Anthony, J., Saade, G.R. and Allen, J.C. (2003) A comparison of magnesium sulphate and nimodipine for the prevention of eclampsia. *New England Journal of Medicine*, **348**, 304-311. doi:10.1056/NEJMoa021180
- [18] Leveno, K.J., Alexander, J.M., McIntire, D.D., Lucas, M.J. (1998) Does magnesium sulphate given for prevention of eclampsia affect the outcome of labor? *American Journal of Obstetrics Gynaecology*, **178**, 707-712. doi:10.1016/S0002-9378(98)70480-6
- [19] Lucas, M.J., Leveno, K.J. and Cunningham, F.G. (1995) A comparison of magnesium sulfate with phenytoin for

the prevention of eclampsia. *New England Journal of Medicine*, **333**, 201-205. doi:10.1056/NEJM199507273330401

- [20] Atkinson, M.W., Guinn, D., Owen, J. and Hauth, J.C. (1995) Does magnesium sulfate affect the length of labor induction in women with pregnancy-associated hypertension? *American Journal of Obstetrics Gynaecology*, **173**, 1219-1222. doi:10.1016/0002-9378(95)91357-2
- [21] Friedman, S.A., Lim, K.H., Baker, C.A. and Repke, J.T. (1993) Phenytoin versus magnesium sulphate in preeclampsia: A pilot study. *American Journal of Perinatology*, **10**, 233-238.
- [22] The Magpie Trial collaborative group (2002) Do women with pre-eclapsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: A randomised placebo controlled trial. *Lancet*, **359**, 1877-1890. doi:10.1016/S0140-6736(02)08778-0
- [23] Coetzee, E.J., Dommisse, J. and Anthony, J. (1998) A randomised controlled trial of intravenous magnesium sulphate versus placebo in the management of women with severe pre-eclampsia. *British Journal of Obstetrics Gynaecology*, **105**, 300-303. doi:10.1111/j.1471-0528.1998.tb10090.x
- [24] Moodley, J. and Moodley, V.V. (1994) Prophylactic anticonvulsant therapy in hypertensive crises of pregnancy—the need for a large, randomized trial. *Hypertension in pregnancy*, **13**, 245-252. doi:10.3109/10641959409072226
- [25] Crowther, C.A. (2003) Effect of magnesium sulfate given for neuroprotection before preterm birth. *Journal of the American Medical Association*, **290**, 2669-2676. <u>doi:10.1001/jama.290.20.2669</u>
- [26] Marret, S., Marpeau, L., Zupan-Simunek, V., Eurin, D., Lévêque, C., Hellot, M.F. and Bénichou, J. (2007) Magnesium sulphate given before very-preterm birth to protect infant brain: The randomised controlled PREMAG trial. *British Journal of Obstetrics Gynaecology*, **114**, 310-318.