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Abstract 
Sorting an array of objects such as integers, bytes, floats, etc. is considered as one of the most im-
portant problems in Computer Science. Quicksort is an effective and wide studied sorting algo-
rithm to sort an array of n distinct elements using a single pivot. Recently, a modified version of 
the classical Quicksort was chosen as standard sorting algorithm for Oracles Java 7 routine library 
due to Vladimir Yaroslavskiy. The purpose of this paper is to present the different behavior of the 
classical Quicksort and the Dual-pivot Quicksort in complexity. In Particular, we discuss the con-
vergence of the Dual-pivot Quicksort process by using the contraction method. Moreover we show 
the distribution of the number of comparison done by the duality process converges to a unique 
fixed point. 
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1. Introduction 
Quicksort is one of the important sorting algorithms. Hoare [1] proposed an algorithm depended on selecting an 
arbitrary element from the array. This element called a pivot element such that Quicksort algorithm used for 
parting the arrays into two sub-arrays: those smaller than the pivot and those larger than the pivot [2]. 

After that Quicksort depends on recursive sorting of the two subarrays. Later Sedgewick studied several variants. 
Regnier [3] studied the limiting distribution of the number of comparisons done by Quicksort algorithm when 

suitably normalized. It converges with uncertain unknown limit. The first accounts were computed by Henne-
quin who proved that this distribution is not a normal distribution. The limiting distribution is characterized by a 
stochastic fixed point equation [4] [5]. The cost of the Quicksort algorithm depends on the position of the se-
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lected pivot. There are many cases to choose the pivot element. The worst-case, the best-case and the average 
case express the performance of the algorithm. We will discuss some of them and for more details; we refer to 
Ragab [6] and [7]. The worst-case occurs when the pivot is the smallest (or largest) element at partitioning on 
array of size n, yielding one empty sub-array, one element (pivot) in the correct place and one sub-array of size 
n − 1. So, the two sub-arrays are lopsided so this case is defined by worst case [8]. We found the recursion depth 
is n − 1 levels and the complexity of Quicksort is ( )2O n . The best case occurs when the pivot is in the median 
at each partition step, i.e. after each partitioning, on array of size n, yielding two sub-arrays of approximately 
equal size and, the pivot element in the middle position takes n data comparisons [9]. There are various methods 
to choose a good pivot, like choosing the First element, Last element, and Median-of-three elements (selection 
three elements, and find the median of these elements), and so on. In this case the Quicksort algorithm selects a 
pivot by random selection each time. This choice reduces probability that the worst-case ever occurs. The other 
method, which essential prevents the worst case from ever occurring, picks a pivot as the median of the array 
each time. When we chose the pivot, we compare all other elements to it and we have n − 1 comparisons to di-
vided the array. The choosing of the pivot divided the array into one sub-array of size 0 and one sub-array of 
size n − 1, or into a sub-array of size 1 and other one of size n − 2, and so on up to a sub-array of size n − 1 and 
one of size 0. We have n possible positions and each one is equality in probability 1/n. Hennequin studied com-
parisons for array by using Quicksort with r pivots when r = 2, same comparisons as classic Quicksort in one 
partitioning. When r > 2, he found the problem is complied. Yaroslavskiy [10] introduced a new implementation 
of Dual-pivot Quicksort in Java 7’s runtime library. In 2012, Wild and Nabel denoted exact numbers of swaps 
and comparisons for Yaroslavskiy’s algorithm [10]. In this paper, our aim is to analyze the running time perfor-
mance of Dual-pivot Quicksort. The limiting distribution of the normalized number of comparisons required by 
the Dual-pivot Quicksort algorithm is studied. It is known to be the unique fixed point of a certain distributional 
transformation T with zero mean and finite variance. 

We show that using two pivot elements (or partitioning to three subarrays) is very efficient, particularly on 
large arrays. We propose the new Dual-pivot Quicksort scheme, faster than the known implementations, which 
improves this situation (see in [11] and [12]). The implementation of the Dual-pivot Quicksort algorithm has 
been inspected on different inputs and primitive data types. 

The new Quicksort algorithm uses partitioning a source array [ ]T g , where g is primitive array which we 
need to sort it. Such as int, float, byte, char, double, long and short, to three parts defined by two pivot elements 
p and q (and therefore, there are pointers A, B, C and left and right indices of the first and last elements respec-
tively). The aim of this paper is topresent such a version arising from an algorithm depending on the work in [13] 
and [14]. The Dual-pivot Quicksort is explained clearly in [15] and it works as follow: 

1) For small arrays (length < 17), use the Insertion sort algorithm [10]. 
2) Choose two pivot elements p and q. We can get, for example, the first element [ ]g left  as p and the last 

element [ ]g right  as q. 
3) p must be less than q, otherwise they are swapped. So, we have the following parts. 

• Part I with indices from left + 1 to A − 1 with elements, which are less than p. 
• Part II with indices from A to B − 1 with elements, which are greater or equal to p and less or equal to q. 
• Part III with indices from C + 1 to right − 1 with elements greater than q. 
• Part IV contains the rest of the elements to be examined with indices from B to C. 

4) The next element [ ]g B  from the part IV is compared with two pivots p and q, and placed to the corres-
ponding part I, II, or III. 

5) The pointers A, B, and C are changed in the corresponding directions. 
6) The steps 4 - 5 are repeated while B C≤ . 
7) The pivot element p is swapped with the last element from part I, the pivot element q is swapped with the 

first element from part III. 
8) The steps 1 - 7 are repeated recursively for every part I, part II, and part III as in Figure 1.  

 

 
Figure 1. Graph explains the dual-pivot quicksort algorithm. 
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2. Run-Time Performance 
In this section, we introduce some running time of the Dual-pivot Quicksort. An efficient procedure is described 
by Vasileios Iliopoulos and David B. Penman [13], where they analyzethe Dual pivot Quicksort algorithm. Their 
approach can be here provided and for more detailswe refer to [13] and [14]. First we introduce the algorithm of 
it and we compare between it and the classical Quicksort as follows [16]. 

The following graphs show the relation between the size of array which need to sort and the time of complex-
ity which represent by the number of comparisons and swaps as in Figure 2. We found the Dual-pivot Quicksort 
is faster than classical Quicksort. 

3. The Dual-Pivot Quicksort Average Case Analysis 
To find the distributional equation, we note the following: for the underlying process, there are two parts. The 
first part is partitioning and the second is the total number of comparisons to sort an array of 2n ≥  keys, when 
the pivot is a uniform random variable { }1,2,3, ,n  is equal to the number of comparisons to sort the sub- 
array of on 

1
1nU −  keys below the first pivot [17]. 

In addition, we need to compute the number of comparisons to sort the sub-array of 
2nn U−  elements above 

the second pivot plus the number of comparisons to sort the sub-array of 
2 1

1n nU U− −  elements between the 
first and the second pivot. 

Plus 
1

2 2nn U− −  comparisons done to partition the array which come from when the all elements compare one 
time with the first pivot and the remain elements compare two times with the second and the first pivot. Therefore, 
 

 
Figure 2. Comparison between the classical Quicksort and the Dual-pivot Quicksort. 
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1 1 2 2 11 12 2 ,
n n n n

d

n n U n U U UX n U X X X∗
− − − −= − − + + +                        (1) 

where the random variables 
1 1nUX − , 

2nn UX ∗
−  and 

2 1 1n nU UX − −  are identically distributed and independent of 
1nU  

and 
2nU . Here 

d
=  refers to the equality in distribution. 

The array is partitioned into three subarrays one with 
1

1nU −  keys smaller than the first pivot, a subarray of 
2 1

1n nU U− −  keys between two pivots and the part of 
2nn U−  elements greater than the second pivot. The 

algorithm is then recursively applied to each of these subarrays. The number of comparisons during the first 
stage is 

( ) ( ) ( )1 2 1 2
1 1 2 1 2 ,n n n n nA U U U n U = + − + − − + −   

where 
1

1, , 1nU n= −  and 
2 1

1, ,n nU U n= +  . Using [11], the average value of nA  can be calculated as fol-
low: 

( ) ( ) ( ) ( )( )

( ) ( )

1

1 1

1
3 2

1 1

1 1 1 2 1 2

2

1 2 5 7 5 72 2 2
1 6 6 3

2

n n

n
i j i

n n

i j i

E A i j i n j
n

nn i n n n
n n n

−

= = +

−

= = +

= + − + − − + −   
 
 

− = − − = − + = −   
 
 

∑∑

∑∑
 

4. Expected Number of Comparisons  
Here by Equation (1) and using [13], it is easy to determine the recurrence for the expected number of compari-
sons due to the duality as follow: 

( ) ( ) ( ) ( ) ( )
2

1 1 1

1
1 1 1 1 1 1

5 7 2 1 .
3 1 n

n n n n n n

n i n U j i
i j i i j i i j i

nE X E X E X E X
n n

− − −
∗
− − −

= = + = = + = = +

 −
= + − + + −  

∑∑ ∑∑ ∑∑  

Since the three double sums above are equal, then the recurrence becomes 

( ) ( ) ( ) ( )
1

1
1

5 7 6 ,
3 1

n

n i
i

nE X n i E X
n n

−

−
=

−
= + −

− ∑  

setting ( )n na E X= , 

( ) ( )
1

1
1

5 7 6 , 2.
3 1

n

n i
i

na n i a n
n n

−

−
=

−
= + − ≥

− ∑  

By initial conditions we have 0 1 0a a= = . Multiplying both sides by 
2
n 
 
 

, we obtain 

( ) ( ) ( ) ( ) ( )
1 1

1 1
1 1

1 5 75 7 6 3 .
2 2 3 1 6

n n

n i i
i i

n n n n nna n i a n i a
n n

− −

− −
= =

  − −    −
= + − = + −     −    

∑ ∑  

We introduce a difference operator for the solution of this recurrence. The operator is defined by 

( ) ( ) ( ): 1 .F n F n F n∆ = ∆ + −                                (2) 

And for higher orders 

( ) ( ) ( )1 1: 1 .k k kF n F n F n− −∆ = ∆ + − ∆  

Thus, we have 
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2 1

1
0

1 5 3 3 .
2 2 2 2

n

n n n i
i

n n n n na a a a
−

+
=

+      −
∆ = − = +     
     

∑  

1

1
5 1 3 .

2 2 2n n n n

n n n
a a a n a+

+     
∆ = ∆ − ∆ = + +     
     

 

By definition (2), 

2
1 2 1

1 2 1
2 .

2 2 2 2 2 2n n n n n n

n n n n n n
a a a a a a+ + +

+ + +           
∆ = ∆ − ∆ = − +           

           
 

( ) ( ) ( ) ( ) ( )2 11 2 2 1 1 2 5 1 3n n n nn n a n n a n n a n a+ ++ + − + + − = + +  

then 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2 1 11 2 2 2 1 3 2 5 1 .n n n nn n a n a n n a n a n+ + ++ + − − + + + − − = +  

Dividing by ( ) ( )1 2n n+ + , we obtain the telescoping recurrence 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 1 12 2 1 3 2 5 1
,

2 1 1 2
n n n nn a n a n a n a n

n n n n
+ + ++ − − + − − +

= +
+ + + +

 

which yields 

( ) ( )
( ) ( )

2 1
1

0

2 2 5 1 182 10 18 .
2 1 2 2

n
n n

n
j

n a n a j H n
n j j n
+ +

+
=

+ − − +
= = + −

+ + + +∑  

Multiplying by 
( ) ( ) ( )1 2 3

24
n n n− − −

, this recurrence is transformed to a telescoping one 

( ) ( ) ( )
1 1

1 18 1 2 3
10 18

4 4 4 424n n n

n n n nn n n
a a H− −

− − − −       
= + + −       

       
 

( ) ( ) ( )
1

1 1 1

1 2 3
18 10 18 .

4 4 424

n n n

n j
j j j

n j jj j j
a H −

= = =

− − −     
= + −     

     
∑ ∑ ∑                  (3) 

By using maple V. Iliopoulos and D. B. Penman [13] get  

( ) ( ) ( )
1

1 2 3 6 .
4

n

j

n
j j j

=

 
− − − =  

 
∑  

And for the other sums in Equation (3):  

1
1

1 1 .
4 5 5

n

j n
j

j n
H H +

=

+    = −    
    

∑  

Therefore, 

( ) ( ) ( )

1
1 1 1 1

1
1

1

1 1
4 4 4 4

1 1 1 1 2 3
5 5 24

1 1 1 .
5 45 4

n n n n

j j j
j j j j

n

n
j

n

j j j j
H H H

j j
n

H j j j

n n
H

−
= = = =

+
=

+

        
= − = −        

        
+  = − − − − −  

  
+    = − −    

    

∑ ∑ ∑ ∑

∑  

Now the equation becomes 
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1

1 19 1 110 18
4 4 5 4 52 5 4n n

n n n n n
a H +

 +  +          = + − − −           
           

 

1
9 1 1 1 110 18 .
2 5 5 4 5n n

n na H +
 +  + = + − − −    

 

Finally, the expected number of comparisons, when two pivots are chosen is 

( ) ( )2 1 4 ~ 2 log ,n na n H n n n= + −                              (4) 

where nH  is the harmonic number defined by 
1

1:
n

n
k

H
k=

= ∑  (see [18] and [19]). 

This is the same value of the expected number of comparisons, when one pivot chosen in the classical Quick-
sort [20]. Note that this result for the dual Quicksort is identical with theexpected number of comparisons in 
[13]. 

5. Varience of Comparisons  
The main result of this section was obtained by [13] (see following results for explanationand notation). Now we 
compute the variance of the number of comparisons by Dual-pivot Quicksort. Recall that 

( ) 5 72 2 and .
3n n

nA n i E A −
= − − =                             (5) 

From Equation (1), we have 

( ) ( )
1

1 1
1 1

1 ,

2

n n

n n i j i n j
i j i

P X t P A X X X t
n

−
∗

− − − −
= = +

= = + + + =
 
 
 

∑∑  

noting that the resulting subarrays are independently sorted, then we get 

( ) ( ) ( ) ( )
1

1 1
1 1 ,

1 2 2 .

2

n n

n i j i n j
i j i l m

P X t P X l P X m P X t m l n i
n

−
∗

− − − −
= = +

 = = = = = − − − + +  
 
 

∑∑∑  

Letting 

( ) ( )
0

,t
n n

t
f z P X t z

∞

=

= =∑  

be the ordinary probability generating function for the number of comparisons needed to sort n keys, we obtain 

( ) ( ) ( ) ( )
1

2 2
1 1

1 1

1

2

n n
n i

n i j i n j
i j i

f z z f z f z f z
n

−
− −

− − − −
= = +

=
 
 
 

∑∑                        (6) 

It holds that ( )1 1nf =  and ( ) ( )1 2 1 4n nf n H n′′ = + − . Moreover, the second order derivative of Equation (6) 
evaluated at 1z =  is recursively given by 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 12
1

1 1 1 1 1 1

1 1

1
1 1 1 1

1 1

1 1 1
1 1 1 1 1

2 2 2 2 2 2 2 2
1

2 2 2 2 2 2

2 2 2

n n n n n n

n i
i j i i j i i j i

n n n n

j i n j
i j i i j i

n n n n n

i j i i n j
i j i i j i i

f z n i n i n i E X
n n

n i E X n i E X

E X E X E X E X

− − −

−
= = + = = + = = +

− −

− − −
= = + = = +

− − −

− − − − −
= = + = = + =


′′ = − − − − − + − −− 

+ − − + − −

+ + +

∑∑ ∑∑ ∑∑

∑∑ ∑∑

∑∑ ∑∑ ( ) ( )

( ) ( ) ( )

1

1
1

1 1 1

1 1
1 1 1 1 1 1

1 1 1 .

n

j i n j
j i

n n n n n n

i i j n j
i j i i j i i j i

E X E X

f f f

− − −
= +

− − −

− − − −
= = + = = + = = +


′′ ′′ ′′+ + + 



∑∑

∑∑ ∑∑ ∑∑
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By simple manipulation of indices, the sums of the products of expected values are equal. The double sum of 
the product of the mean number of comparisons can be simplified as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1
1 1 1 0

21

1
1

1 5
2 1 4 1 2 .

2 2

n n n n i

i n j i j
i j i i j

n

i
i

E X E X E X E X

n i n i n i
i H i

− − − −

− − −
= = + = =

−

−
=

=

 − + − − − 
= + − − +     

   

∑ ∑ ∑ ∑

∑
 

We find 

( )( )

( )

( ) ( ) ( )

1 1

1 1
1 1

1 1

1 1
1 1

1 1

1 1
1 1

1 1
1 1

2 2

1
2 2

1 .

n n

i n i i n i
i i

n n

i n i i n i
i i

n n

i n i i n i
i i

n i n i
i H H i H H

n i n i
i H H H H

i n i H H n i H H

− −

− − − −
= =

− −

− − − −
= =

− −

− − − −
= =

− + − +   
= − +   

   
− −   

= − +   
   

+ − − + −

∑ ∑

∑ ∑

∑ ∑

 

The recurrence becomes 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

22 2

1
2

1
1

17 471 2 1 2 6
3 3

209 731 13 6 1 ,
36 36 6 1

n n n n

n

i
i

f n n H H H n n

n n n i f
n n

−

−
=

 ′′ = + + − − + + 
 

′′+ + + + −
− ∑

 

where ( )2
nH  is the second order harmonic number defined by ( )2

2
1

1:
n

n
k

H
k=

= ∑  (see [17] and [18]). Letting  

( )1n nd f ′′=  and subtracting 
2 n

n
d 

 
 

 from 1

1
2 n

n
d +

+ 
 
 

, we get 

( )( ) ( )( ) ( )

( )

22 2

2
1

1

4 1 2 84 198 42
2 9

3 79 231 14 .
9

n
n n n

n

i
i

n nHd n n n H H n n

nd n n−
=

 
∆ = + + − − + + 
 

+ + + +∑
 

By using the identity [4] 

( ) ( )2 22 2
1 1

2 .
1
n

n n n n
HH H H H

n+ +
 − = − + + 

                            (7) 

It holds that  

( ) ( ) ( )( ) ( )22 2 2 212 1 2 20 32 12 17 37 3 .
2 n n n n n

n
d n n H H H n n n n d 

∆ = + + − − + − + + + 
 

 

The previous equation is the same as 

2 1

2 1
2 .

2 2 2n n n

n n n
d d d+ +

+ +     
− +     

     
 

And our recurrence becomes 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )( )
2 1

22 2 2

1 2 2 1 1

2 12 1 2 20 32 12 17 37 3 .

n n n

n n n n

n n d n n d n n d

n n H H H n n n n d

+ ++ + − + + −

= + + − − + − + + +
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Dividing by ( ) ( )1 2n n+ + , we obtain the telescoping recurrence 
( ) ( )

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

2 1

2 2
21 2

1 1

2 2
2

20 32 121 3 17 372 12 .
1 1 2 1 2

n n

nn n
n n

n d n d
n

H n nn d n d n nH H
n n n n n

+ +

+
+ +

+ − −
+

 + −+ − − + = + − − +
 + + + + + 

 

( ) ( )
( ) ( )( ) ( )

2 1

22 2 2 2
1 1 1

2 2

24 100 104 88 292 8 122 346 20,

n n

n n n

n d n d

n n H H H n n n n

+ +

+ + +

+ − −

= + + − − + − + + +
 

which is equivalent to 
( )

( ) ( )( ) ( )
1

22 2 2 2
1

4

24 4 88 60 8 122 142 20.

n n

n n n

nd n d

n n H H H n n n n

−

−

− −

= + − − − − + − +
 

Again as before, multiplying both sides by 
( ) ( ) ( )1 2 3

24
n n n− − −

, the recurrence telescopes with solution  

( ) ( ) ( )( ) ( ) ( )2 22 2
1 1 11 4 1 4 1 4 3 23 33 12.n n n nf n H H H n n n n+ + +′′ = + − − + + + + +  

Using the well known fact that 

( ) ( ) ( ) ( )( )2
1 1 1 ,n n n nVar C f f f′′ ′ ′= + −  

the variance of the number of key comparisons of the Dual-pivot Quicksort is (see [17] [19] and [20])  

( ) ( ) ( )2 227 4 1 2 1 13 ,n nn n H n H n− + − + +  

where ( )2
nH  is the second order harmonic number defined by (see [18] and[19]) 

( )2
2

1

1 .
n

n
k

H
k=

= ∑  

6. Asympototic Distribution  
In this section, we show the convergence results which are essential for the main purpose. 

Defining a random variables 

( ): , 1
d

n n
n

X E X
Y n

n
−

= ≥                                 (8) 

Equation (8) can be rewritten in the following form 

( )( )1 1 2 2 11 1
1: 2 2 ,

n n n n

d

n n U n U U U nY n U X X X E X
n

∗
− − − −= − − + + + −  

and so, 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

1 2
1 2

2 1 2 1

2 1 1

2 1

1 2 2 1

1 1

1 1

1

1 1

1 1
1

1 2 2

.

n n n n

n n n n

n n

n n n n

U U n U n U

n n n
n n

U U U U

n n n
U U

U n U U U n

X E X X E X
Y U n U

n U n U

X E X
U U n U

E X E X E X E X

∗ ∗
− − − −

− − − −

− −

∗
− − − −

 − −
= − + − − −


−
+ ⋅ − − + − −


+ + + − 



                (9) 
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By a simple manipulation, one gets 

( )1 2 2 1
1 1 21 2 2 1

1

1 1
, ,

n n U Un n

n n n n
n U n U n n n

U n U U U
Y Y Y Y C U U

n n n− −

∗
− −

− − − −     
= + + +     

     
 

where the cost function ( )1 2
,n n nC U U  is given as and it seems to be like in [6] and [7], and given by 

( ) ( ) ( ) ( ) ( )( )1 1
2 2 1, = .n i n j j i n

n iC i j E X E X E X E X
n n

∗
− − − −

− −
+ + + −               (10) 

Now, we show the random vector 1 2,n nU U
n n

 
 
 

 converges to a uniformly distributed random vector ( )1 2,U U  

on [ ]0,1 . So,  

( )1 2
1 2, , .n n D

U U
U U

n n
 

→  
 

                               (11) 

Here ( )1 2,U U  is uniformly distributed random vector on [ ]0,1 . The moment generating function of  
( )1 2

,n nU U  is given by 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

1 21 2
1 2 1 2

1 2 1

1 2

1 21 2

1 2

1 21 2

1 2

1

1 2 1 2
1

1 2

1 1

2 1 1

, , e , ,

1 e e 1 e e
e 1 e 1

2 2

2 e e e .
1 e 1 e 1

k k

n Un

n n s s
n n n n

k k k

U

s n s ns s

s s

s n s ns s

s s

M U U s s P U U K K

M s M s

n n

e
n n

+
−

= +

+ +

+ +

 = = 

=

− −
=

− −   
   
   

  − −
=   − − − 

∑ ∑

 

For the random vector 1 2,n nU U
n n

 
 
 

, 

( ) ( )

( ) ( ) ( ) ( )

( )
( )

11 2 21 2

1 1 2 2

1 2 1

1 21 2

1 2

1

1 2 1 2
1 2 ,,

1

1

1 1 1 1

2 1

, ,

1 1e e

2 2

1 e e 1 e e
e 1 e 1

2 2

2 e
1

n Un n nn n
UU U U U

n n

s k s kn n
n n

k k k

s n n s n ns n s n

s s

s n n

s s s sM s s M M M
n n n n

n n

n n

n n

 
  
 

−

= +

+ + + +

+ +

     = = ⋅     
     

= ⋅
   
   
   

− −
=

− −   
   
   

 
=   − 

∑ ∑

( ) ( ) ( )21 2

1 2

1 1 1e e e .
e 1 e 1

s n ns n s n

s s

+ +− −
− −

 

Now, the random vector ( )1 2,U U  has the following moment generating function  

( ) ( )
1 2

1 1 2 2 1 1 2 2
1 2

1 1 1 1

1 2 1 2 1 2,
1 20 0 0 0

e 1 e 1, e d d e d e d .
s s

s t s t s t s t
U UM s s t t t t

s s
+   − −

= = =   
  

∫∫ ∫ ∫              (12) 
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By the above Equation (12) the moment generating function of 1nU
n

 is an approximation to the average val-

ue of 1es x  over the interval [ ]0,1 . The moment generating function of 2nU
n

 is an approximation to the aver-

age value of 2es x  over the interval [ ]0,1  (see [8] and [9]). 
For the cost function 

( ) ( ) ( ) ( ) ( )1 1
2 2 1, .n i n j j i n

n iC i j E X E X E X E X
n n

∗
− − − −

− −  = + + + −   

By using asymptotically, the expected complexity of Dual-pivot Quicksort is 2 logn n  given in Equation (4), 
it follows that 

( ) ( ) ( ) ( )( )

( ) ( )

( )

1 2

1

1 2 2 1

1 1 2
1 2

2 1
2 1

1 1

lim ,

2 2 1lim

2 1lim 2 2 1 log 1 2 log

2 1 log 1

n n n n

n n
nn

n
U n U U U nn

n n n
n nn

n n
n n

U U
C n n

n n

n U
E X E X E X E X

n n

U n U n U
U n n U

n n n n n

n U n U
U U

n n

→∞

∗
− − − −→∞

→∞

 
⋅ ⋅ 

 
− − 

= + + + − 
 
  ⋅ ⋅     

= − − + − − + − −           

⋅ ⋅ 
+ − − − − − 

 
( )

( ) ( ) ( ) ( ) ( ) [ ]1 1 2 2 2 1 2 1 1 2

2 log

2 2 log 2 1 log 1 2 log , , 0,1 .

n n

ε ε ε ε ε ε ε ε ε ε




= + + − − + − − ∀ ∈

 

Thus 1 2,n n
n

U U
C n n

n n
 

⋅ ⋅ 
 

 converges to some ( )1 2,C U U , defined as 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2 2 1 2 1, 2 2 log 2 1 log 1 2 log ,C U U U U U U U U U U= + + − − + − −  

where U1 and U2 are uniformly distributed random variables on [ ]0,1 . Therefore, if we assume for moment that 
Yn converges in distribution to some Y, we obtain 

( ) ( ) ( ) ( )( )1 2 2 1 1 21 , .L Y L YU Y U Y U U C U U∗= + − + − +  

Here 1 2, , ,U U Y Y  and Y ∗  are independent. Y ∗  and Y  have the same distribution as Y. Finally we show 
that nY  converges in fact to the fixed point Y.  

Let D be the space of distribution functions F with finite second moments ( )2dx F x < ∞∫  and the first 
moment ( )d 0x F x =∫ . We use the Wasserstein metric [4] on D.  

( ) 2, inf ,d F G X Y= −  

where 2.  denotes the 2L  norm. Defining a map :T D D→  by 

( ) ( ) ( ) ( )( )1 2 2 1 1 21 , ,T F L X X X Cτ τ τ τ τ τ∗= + − + − +  

where 1, , ,X X X τ∗  and 2τ  are independent . 

( ) ( ) ( ) .L X L X L X F∗= = =  

Here τ1 and τ2 are uniformly distributed random variables on [ ]0,1  and C is a map defined as [ ]: 0,1C →  . 
We have to refer to Roesler (see in [4] [21] and [22]) for the main idea for the next lemma.  

Lemma 1 
The map :T D D→  is a contraction on ( ),D d  and has a unique fixed point. Moreover, every sequence 
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( ) ( )2, , , , ,F T F T F F D∈  converges in the d-metric to fixed point of T.  
Proof  
Let F and G are in D 

( ) ( ) ( ) ( )( )1 2 2 1 1 21 , .T F L X X X Cτ τ τ τ τ τ∗= + − + − +  

( ) ( ) ( ) ( )( )1 2 2 1 1 21 , .T G L Y Y Y Cτ τ τ τ τ τ∗= + − + − +  

( ) ( ) ( ) .L X L X L X F∗= = =  

( ) ( ) ( ) .L Y L Y L Y G∗= = =  

The random variables 1 2, , ,X Xτ τ ∗  and X  are independent. Also 1 2, , ,Y Yτ τ ∗  and Y  are independent. 
Here 1τ  and 2τ  are uniformly distributed on [ ]0,1 . Then 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( )

2

2

1 2 2 1 1 2 1 2 2 1 1 2 2
2

1 2 2 1 2

2 22 2 22
1 2 2 1

2 22

2

,

1 , 1 ,

1

1

1 1 1
3 3 6
5 ,
6

d S F S G

X X X C Y Y Y C

X Y X Y X Y

E X Y E E X Y E E X Y E

E X Y E X Y E X Y

E X Y

τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ

τ τ τ τ

∗

∗ ∗

∗ ∗

∗ ∗

≤ + − + − + − − − − − −

≤ − + − − + − −

≤ − + − − + − −

 ≤ − + − + − 
 

≤ −

 

where 

( )
1312 2 1

1 1 10
0

1d .
3 3

E ττ τ τ
 

= = = 
 

∫  

( )( ) ( ) ( )
13

12 2 2
2 2 20

0

1 11 1 d .
3 3

E
τ

τ τ τ
 −

− = − − = − = 
  

∫  

( )( ) ( ) ( )

( ) ( )

( ) ( )

1 1 1 12 2 2 2
1 2 1 2 1 2 1 1 2 2 1 20 0 0 0

1 13 2 11 12 21 1
2 2 1 2 2 2 20 00

0 0

12 3
2 22

0

d d 2 d d

1 12 d 2 d
3 2 3 2

1 1 1 1 .
3 2 3 3 2 3 6

E

t

τ τ τ τ τ τ τ τ τ τ τ τ

τ ττ τ τ τ τ τ τ

τ ττ

− = − = − +

    = − ⋅ + ⋅ = − ⋅ ⋅ +     

 
 = − + = − + =
  

∫ ∫ ∫ ∫

∫ ∫  

Taking the infimum over all possible ( ),X Y  we obtain 

( ) ( )( ) ( )5, , ,
6

d T F T G d F G≤  

using Banach fixed point theorem completes the proof (also see[13]). 
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Appendix  
A1. The Dual-Pivot Quicksort Algorithm [15] 
DUALITY -PIVOT QUICKSORT (G, left, right) 
// Sort [ ], ,G left right  (including end points). 

1) If right – left < M // i.e. the sub-array has n ≤ M elements 
2) INSERTIONSORT (G, left, right) 
3) Else 
4) If [ ] [ ]G left G right>  
5) [ ]:p G right= ; [ ]:q G left=  
6) Else 
7) [ ]:p G left= ; [ ]:q G right=  
8) End If 
9) : 1A left= + ; : 1B right= − ; :B A=  
10) While B C≤  
11) If [ ]G B p<  
12) Swap [ ]G B  and [ ]G A  
13) : 1A A= +  
14) Else 
15) If [ ]G B q≥  
16) While [ ]A C q>  and B C<  do : 1C C= −  End While 
17) If [ ]G C p≥  
18) Swap [ ]G B  and [ ]G C  
19) Else 
20) Swap [ ]G B  and [ ]G B ; Swap [ ]G B  and [ ]G A  
21) : 1A A= +  
22) End if 
23) : 1C C= −  
24) End if 
25) End if 
26) : 1B B= +  
27) End While 
28) : 1A A= − ; : 1C C= +  
29) [ ] [ ]:G left G L= ; [ ] :G L p=  // Swap pivots to final position 
30) [ ] [ ]:G right G C= ; [ ] :G C q=  
31) DUALITY-PIVOT QUICKSORT ( ), , 1G left L −  
32) DUALITY-PIVOT QUICKSORT ( ), 1, 1G L g+ −  
33) DUALIY-PIVOT QUICKSORT ( ), 1,G g right+  
34) End if 

A2. The Implementation of the New Dual-Pivot 
Here’s the implementation of the new Dual-Pivot (Yaroslavskiy) in java: 

public main void sort(double[] g) { 
sort(g, 0, g.length); 
} 
public main void sort(double[] g, double fromIndex, double toIndex) { 
rangeCheck(g.length, fromIndex, toIndex); 
Yaroslavskiy(g, fromIndex, toIndex - 1, 3); 
} 
private main void rangeCheck(double length, double fromIndex, double toIndex) { 
if (fromIndex > toIndex) { 
throw new IllegalArgumentException("fromIndex > toIndex"); 
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} 
if (fromIndex < 0) { 
throw new ArrayIndexOutOfBoundsException(fromIndex); 
} 
if (toIndex > length) { 
throw new ArrayIndexOutOfBoundsException(toIndex); 
} 
} 
private main void swap(double[] g, double i, double j) { 
int tem = g[i]; 
g[i] = g[j]; 
g[j] = tem; 
} 
private static void dualPivotQuicksort(double [] g, double left, double right, double div) { 
double lenth = right - left; 
if (lenth < 27) { // insertion sort for tiny array 
for (double i = left + 1; i <= right; i++) { 
for (int j = i; j > left &&g[j] < g[j - 1]; j--) { 
swap(g, j, j - 1); 
} 
} 
return; 
} 
int third = len / div; 
// "medians" 
int s1 = left + third; 
int s2 = right - third; 
if (s1 <= left) { 
s1 = left + 1; 
} 
if (s2 >= right) { 
s2 = right - 1; 
} 
if (g[s1] < g[s2]) { 
swap(g, s1, left); 
swap(g, s2, right); 
} 
else { 
swap(g, s1, right); 
swap(g, s2, left); 
} 
// chosse the pivots 
double first pivot =g[left]; 
double second pivot = g[right]; 
// pointers 
double less = left + 1; 
double great = right - 1; 
// sorting the array by the Dual pivot Quicksort 
for (int k = less; k <= great; k++) { 
if (g[k] < first pivot) { 
swap(g, k, less++); 
} 
else if (g[k] > second pivot) { 
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until (k > great && g[great] < second pivot) { 
great--; 
} 
swap(g, k, great--); 
if (g[k] < first pivot) { 
swap(g, k, less++); 
} 
} 
} 
// swaps 
double Dis = great - less; 
if (Dis < 13) { 
div++; 
} 
swap(g, less - 1, left); 
swap(g, great + 1, right); 
// recursive the algorithm for the arrays 
Yaroslavskiy(g, left, less - 2, div); 
Yaroslavskiy(g, great + 2, right, div); 
// subarray 
if ( first pivot < second pivot) { 
Yaroslavskiy(g, less, great, div); 
} 
} 
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