
Open Journal of Modelling and Simulation, 2016, 4, 1-15
Published Online January 2016 in SciRes. http://www.scirp.org/journal/ojmsi
http://dx.doi.org/10.4236/ojmsi.2016.41001

On the Convergence of the Dual-Pivot
Quicksort Process
Mahmoud Ragab1, Beih El-Sayed El-Desouky2, Nora Nader2
1Department of Mathematies, Faculty of Science, Al Azhar University, Cairo, Egypt
2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

Received 19 November 2015; accepted 26 January 2016; published 29 January 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Sorting an array of objects such as integers, bytes, floats, etc. is considered as one of the most im-
portant problems in Computer Science. Quicksort is an effective and wide studied sorting algo-
rithm to sort an array of n distinct elements using a single pivot. Recently, a modified version of
the classical Quicksort was chosen as standard sorting algorithm for Oracles Java 7 routine library
due to Vladimir Yaroslavskiy. The purpose of this paper is to present the different behavior of the
classical Quicksort and the Dual-pivot Quicksort in complexity. In Particular, we discuss the con-
vergence of the Dual-pivot Quicksort process by using the contraction method. Moreover we show
the distribution of the number of comparison done by the duality process converges to a unique
fixed point.

Keywords
Randomized Quicksort, Convergence, Dual-Pivot Quicksort Process, Running Time Analysis

1. Introduction
Quicksort is one of the important sorting algorithms. Hoare [1] proposed an algorithm depended on selecting an
arbitrary element from the array. This element called a pivot element such that Quicksort algorithm used for
parting the arrays into two sub-arrays: those smaller than the pivot and those larger than the pivot [2].

After that Quicksort depends on recursive sorting of the two subarrays. Later Sedgewick studied several variants.
Regnier [3] studied the limiting distribution of the number of comparisons done by Quicksort algorithm when

suitably normalized. It converges with uncertain unknown limit. The first accounts were computed by Henne-
quin who proved that this distribution is not a normal distribution. The limiting distribution is characterized by a
stochastic fixed point equation [4] [5]. The cost of the Quicksort algorithm depends on the position of the se-

How to cite this paper: Ragab, M., El-Desouky, B.E. and Nader, N. (2016) On the Convergence of the Dual-Pivot Quicksort
Process. Open Journal of Modelling and Simulation, 4, 1-15. http://dx.doi.org/10.4236/ojmsi.2016.41001

http://www.scirp.org/journal/ojmsi
http://dx.doi.org/10.4236/ojmsi.2016.41001
http://dx.doi.org/10.4236/ojmsi.2016.41001
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

M. Ragab et al.

lected pivot. There are many cases to choose the pivot element. The worst-case, the best-case and the average
case express the performance of the algorithm. We will discuss some of them and for more details; we refer to
Ragab [6] and [7]. The worst-case occurs when the pivot is the smallest (or largest) element at partitioning on
array of size n, yielding one empty sub-array, one element (pivot) in the correct place and one sub-array of size
n − 1. So, the two sub-arrays are lopsided so this case is defined by worst case [8]. We found the recursion depth
is n − 1 levels and the complexity of Quicksort is ()2O n . The best case occurs when the pivot is in the median
at each partition step, i.e. after each partitioning, on array of size n, yielding two sub-arrays of approximately
equal size and, the pivot element in the middle position takes n data comparisons [9]. There are various methods
to choose a good pivot, like choosing the First element, Last element, and Median-of-three elements (selection
three elements, and find the median of these elements), and so on. In this case the Quicksort algorithm selects a
pivot by random selection each time. This choice reduces probability that the worst-case ever occurs. The other
method, which essential prevents the worst case from ever occurring, picks a pivot as the median of the array
each time. When we chose the pivot, we compare all other elements to it and we have n − 1 comparisons to di-
vided the array. The choosing of the pivot divided the array into one sub-array of size 0 and one sub-array of
size n − 1, or into a sub-array of size 1 and other one of size n − 2, and so on up to a sub-array of size n − 1 and
one of size 0. We have n possible positions and each one is equality in probability 1/n. Hennequin studied com-
parisons for array by using Quicksort with r pivots when r = 2, same comparisons as classic Quicksort in one
partitioning. When r > 2, he found the problem is complied. Yaroslavskiy [10] introduced a new implementation
of Dual-pivot Quicksort in Java 7’s runtime library. In 2012, Wild and Nabel denoted exact numbers of swaps
and comparisons for Yaroslavskiy’s algorithm [10]. In this paper, our aim is to analyze the running time perfor-
mance of Dual-pivot Quicksort. The limiting distribution of the normalized number of comparisons required by
the Dual-pivot Quicksort algorithm is studied. It is known to be the unique fixed point of a certain distributional
transformation T with zero mean and finite variance.

We show that using two pivot elements (or partitioning to three subarrays) is very efficient, particularly on
large arrays. We propose the new Dual-pivot Quicksort scheme, faster than the known implementations, which
improves this situation (see in [11] and [12]). The implementation of the Dual-pivot Quicksort algorithm has
been inspected on different inputs and primitive data types.

The new Quicksort algorithm uses partitioning a source array []T g , where g is primitive array which we
need to sort it. Such as int, float, byte, char, double, long and short, to three parts defined by two pivot elements
p and q (and therefore, there are pointers A, B, C and left and right indices of the first and last elements respec-
tively). The aim of this paper is topresent such a version arising from an algorithm depending on the work in [13]
and [14]. The Dual-pivot Quicksort is explained clearly in [15] and it works as follow:

1) For small arrays (length < 17), use the Insertion sort algorithm [10].
2) Choose two pivot elements p and q. We can get, for example, the first element []g left as p and the last

element []g right as q.
3) p must be less than q, otherwise they are swapped. So, we have the following parts.

• Part I with indices from left + 1 to A − 1 with elements, which are less than p.
• Part II with indices from A to B − 1 with elements, which are greater or equal to p and less or equal to q.
• Part III with indices from C + 1 to right − 1 with elements greater than q.
• Part IV contains the rest of the elements to be examined with indices from B to C.

4) The next element []g B from the part IV is compared with two pivots p and q, and placed to the corres-
ponding part I, II, or III.

5) The pointers A, B, and C are changed in the corresponding directions.
6) The steps 4 - 5 are repeated while B C≤ .
7) The pivot element p is swapped with the last element from part I, the pivot element q is swapped with the

first element from part III.
8) The steps 1 - 7 are repeated recursively for every part I, part II, and part III as in Figure 1.

Figure 1. Graph explains the dual-pivot quicksort algorithm.

2

M. Ragab et al.

2. Run-Time Performance
In this section, we introduce some running time of the Dual-pivot Quicksort. An efficient procedure is described
by Vasileios Iliopoulos and David B. Penman [13], where they analyzethe Dual pivot Quicksort algorithm. Their
approach can be here provided and for more detailswe refer to [13] and [14]. First we introduce the algorithm of
it and we compare between it and the classical Quicksort as follows [16].

The following graphs show the relation between the size of array which need to sort and the time of complex-
ity which represent by the number of comparisons and swaps as in Figure 2. We found the Dual-pivot Quicksort
is faster than classical Quicksort.

3. The Dual-Pivot Quicksort Average Case Analysis
To find the distributional equation, we note the following: for the underlying process, there are two parts. The
first part is partitioning and the second is the total number of comparisons to sort an array of 2n ≥ keys, when
the pivot is a uniform random variable { }1,2,3, ,n is equal to the number of comparisons to sort the sub-
array of on

1
1nU − keys below the first pivot [17].

In addition, we need to compute the number of comparisons to sort the sub-array of
2nn U− elements above

the second pivot plus the number of comparisons to sort the sub-array of
2 1

1n nU U− − elements between the
first and the second pivot.

Plus
1

2 2nn U− − comparisons done to partition the array which come from when the all elements compare one
time with the first pivot and the remain elements compare two times with the second and the first pivot. Therefore,

Figure 2. Comparison between the classical Quicksort and the Dual-pivot Quicksort.

3

M. Ragab et al.

1 1 2 2 11 12 2 ,
n n n n

d

n n U n U U UX n U X X X∗
− − − −= − − + + + (1)

where the random variables
1 1nUX − ,

2nn UX ∗
− and

2 1 1n nU UX − − are identically distributed and independent of
1nU

and
2nU . Here

d
= refers to the equality in distribution.

The array is partitioned into three subarrays one with
1

1nU − keys smaller than the first pivot, a subarray of
2 1

1n nU U− − keys between two pivots and the part of
2nn U− elements greater than the second pivot. The

algorithm is then recursively applied to each of these subarrays. The number of comparisons during the first
stage is

() () ()1 2 1 2
1 1 2 1 2 ,n n n n nA U U U n U = + − + − − + −

where
1

1, , 1nU n= − and
2 1

1, ,n nU U n= + . Using [11], the average value of nA can be calculated as fol-
low:

() () () ()()

() ()

1

1 1

1
3 2

1 1

1 1 1 2 1 2

2

1 2 5 7 5 72 2 2
1 6 6 3

2

n n

n
i j i

n n

i j i

E A i j i n j
n

nn i n n n
n n n

−

= = +

−

= = +

= + − + − − + −

− = − − = − + = −

∑∑

∑∑

4. Expected Number of Comparisons
Here by Equation (1) and using [13], it is easy to determine the recurrence for the expected number of compari-
sons due to the duality as follow:

() () () () ()
2

1 1 1

1
1 1 1 1 1 1

5 7 2 1 .
3 1 n

n n n n n n

n i n U j i
i j i i j i i j i

nE X E X E X E X
n n

− − −
∗
− − −

= = + = = + = = +

 −
= + − + + −

∑∑ ∑∑ ∑∑

Since the three double sums above are equal, then the recurrence becomes

() () () ()
1

1
1

5 7 6 ,
3 1

n

n i
i

nE X n i E X
n n

−

−
=

−
= + −

− ∑

setting ()n na E X= ,

() ()
1

1
1

5 7 6 , 2.
3 1

n

n i
i

na n i a n
n n

−

−
=

−
= + − ≥

− ∑

By initial conditions we have 0 1 0a a= = . Multiplying both sides by
2
n

, we obtain

() () () () ()
1 1

1 1
1 1

1 5 75 7 6 3 .
2 2 3 1 6

n n

n i i
i i

n n n n nna n i a n i a
n n

− −

− −
= =

 − − −
= + − = + − −

∑ ∑

We introduce a difference operator for the solution of this recurrence. The operator is defined by

() () (): 1 .F n F n F n∆ = ∆ + − (2)

And for higher orders

() () ()1 1: 1 .k k kF n F n F n− −∆ = ∆ + − ∆

Thus, we have

4

M. Ragab et al.

2 1

1
0

1 5 3 3 .
2 2 2 2

n

n n n i
i

n n n n na a a a
−

+
=

+ −
∆ = − = +

∑

1

1
5 1 3 .

2 2 2n n n n

n n n
a a a n a+

+
∆ = ∆ − ∆ = + +

By definition (2),

2
1 2 1

1 2 1
2 .

2 2 2 2 2 2n n n n n n

n n n n n n
a a a a a a+ + +

+ + +
∆ = ∆ − ∆ = − +

() () () () ()2 11 2 2 1 1 2 5 1 3n n n nn n a n n a n n a n a+ ++ + − + + − = + +

then

() () ()() () () ()() ()2 1 11 2 2 2 1 3 2 5 1 .n n n nn n a n a n n a n a n+ + ++ + − − + + + − − = +

Dividing by () ()1 2n n+ + , we obtain the telescoping recurrence

() () () () ()
() ()

2 1 12 2 1 3 2 5 1
,

2 1 1 2
n n n nn a n a n a n a n

n n n n
+ + ++ − − + − − +

= +
+ + + +

which yields

() ()
() ()

2 1
1

0

2 2 5 1 182 10 18 .
2 1 2 2

n
n n

n
j

n a n a j H n
n j j n
+ +

+
=

+ − − +
= = + −

+ + + +∑

Multiplying by
() () ()1 2 3

24
n n n− − −

, this recurrence is transformed to a telescoping one

() () ()
1 1

1 18 1 2 3
10 18

4 4 4 424n n n

n n n nn n n
a a H− −

− − − −
= + + −

() () ()
1

1 1 1

1 2 3
18 10 18 .

4 4 424

n n n

n j
j j j

n j jj j j
a H −

= = =

− − −
= + −

∑ ∑ ∑ (3)

By using maple V. Iliopoulos and D. B. Penman [13] get

() () ()
1

1 2 3 6 .
4

n

j

n
j j j

=

− − − =

∑

And for the other sums in Equation (3):

1
1

1 1 .
4 5 5

n

j n
j

j n
H H +

=

+ = −

∑

Therefore,

() () ()

1
1 1 1 1

1
1

1

1 1
4 4 4 4

1 1 1 1 2 3
5 5 24

1 1 1 .
5 45 4

n n n n

j j j
j j j j

n

n
j

n

j j j j
H H H

j j
n

H j j j

n n
H

−
= = = =

+
=

+

= − = −

+ = − − − − −

+ = − −

∑ ∑ ∑ ∑

∑

Now the equation becomes

5

M. Ragab et al.

1

1 19 1 110 18
4 4 5 4 52 5 4n n

n n n n n
a H +

 + + = + − − −

1
9 1 1 1 110 18 .
2 5 5 4 5n n

n na H +
 + + = + − − −

Finally, the expected number of comparisons, when two pivots are chosen is

() ()2 1 4 ~ 2 log ,n na n H n n n= + − (4)

where nH is the harmonic number defined by
1

1:
n

n
k

H
k=

= ∑ (see [18] and [19]).

This is the same value of the expected number of comparisons, when one pivot chosen in the classical Quick-
sort [20]. Note that this result for the dual Quicksort is identical with theexpected number of comparisons in
[13].

5. Varience of Comparisons
The main result of this section was obtained by [13] (see following results for explanationand notation). Now we
compute the variance of the number of comparisons by Dual-pivot Quicksort. Recall that

() 5 72 2 and .
3n n

nA n i E A −
= − − = (5)

From Equation (1), we have

() ()
1

1 1
1 1

1 ,

2

n n

n n i j i n j
i j i

P X t P A X X X t
n

−
∗

− − − −
= = +

= = + + + =

∑∑

noting that the resulting subarrays are independently sorted, then we get

() () () ()
1

1 1
1 1 ,

1 2 2 .

2

n n

n i j i n j
i j i l m

P X t P X l P X m P X t m l n i
n

−
∗

− − − −
= = +

 = = = = = − − − + +

∑∑∑

Letting

() ()
0

,t
n n

t
f z P X t z

∞

=

= =∑

be the ordinary probability generating function for the number of comparisons needed to sort n keys, we obtain

() () () ()
1

2 2
1 1

1 1

1

2

n n
n i

n i j i n j
i j i

f z z f z f z f z
n

−
− −

− − − −
= = +

=

∑∑ (6)

It holds that ()1 1nf = and () ()1 2 1 4n nf n H n′′ = + − . Moreover, the second order derivative of Equation (6)
evaluated at 1z = is recursively given by

() () () () () ()

() () () ()

() () () ()

1 1 12
1

1 1 1 1 1 1

1 1

1
1 1 1 1

1 1

1 1 1
1 1 1 1 1

2 2 2 2 2 2 2 2
1

2 2 2 2 2 2

2 2 2

n n n n n n

n i
i j i i j i i j i

n n n n

j i n j
i j i i j i

n n n n n

i j i i n j
i j i i j i i

f z n i n i n i E X
n n

n i E X n i E X

E X E X E X E X

− − −

−
= = + = = + = = +

− −

− − −
= = + = = +

− − −

− − − − −
= = + = = + =

′′ = − − − − − + − −−

+ − − + − −

+ + +

∑∑ ∑∑ ∑∑

∑∑ ∑∑

∑∑ ∑∑ () ()

() () ()

1

1
1

1 1 1

1 1
1 1 1 1 1 1

1 1 1 .

n

j i n j
j i

n n n n n n

i i j n j
i j i i j i i j i

E X E X

f f f

− − −
= +

− − −

− − − −
= = + = = + = = +

′′ ′′ ′′+ + +

∑∑

∑∑ ∑∑ ∑∑

6

M. Ragab et al.

By simple manipulation of indices, the sums of the products of expected values are equal. The double sum of
the product of the mean number of comparisons can be simplified as follows:

() () () ()

() () ()

1 1 1

1 1
1 1 1 0

21

1
1

1 5
2 1 4 1 2 .

2 2

n n n n i

i n j i j
i j i i j

n

i
i

E X E X E X E X

n i n i n i
i H i

− − − −

− − −
= = + = =

−

−
=

=

 − + − − −
= + − − +

∑ ∑ ∑ ∑

∑

We find

()()

()

() () ()

1 1

1 1
1 1

1 1

1 1
1 1

1 1

1 1
1 1

1 1
1 1

2 2

1
2 2

1 .

n n

i n i i n i
i i

n n

i n i i n i
i i

n n

i n i i n i
i i

n i n i
i H H i H H

n i n i
i H H H H

i n i H H n i H H

− −

− − − −
= =

− −

− − − −
= =

− −

− − − −
= =

− + − +
= − +

− −

= − +

+ − − + −

∑ ∑

∑ ∑

∑ ∑

The recurrence becomes

() () () ()()

() () ()

22 2

1
2

1
1

17 471 2 1 2 6
3 3

209 731 13 6 1 ,
36 36 6 1

n n n n

n

i
i

f n n H H H n n

n n n i f
n n

−

−
=

 ′′ = + + − − + +

′′+ + + + −
− ∑

where ()2
nH is the second order harmonic number defined by ()2

2
1

1:
n

n
k

H
k=

= ∑ (see [17] and [18]). Letting

()1n nd f ′′= and subtracting
2 n

n
d

 from 1

1
2 n

n
d +

+

, we get

()() ()() ()

()

22 2

2
1

1

4 1 2 84 198 42
2 9

3 79 231 14 .
9

n
n n n

n

i
i

n nHd n n n H H n n

nd n n−
=

∆ = + + − − + +

+ + + +∑

By using the identity [4]

() ()2 22 2
1 1

2 .
1
n

n n n n
HH H H H

n+ +
 − = − + +

 (7)

It holds that

() () ()() ()22 2 2 212 1 2 20 32 12 17 37 3 .
2 n n n n n

n
d n n H H H n n n n d

∆ = + + − − + − + + +

The previous equation is the same as

2 1

2 1
2 .

2 2 2n n n

n n n
d d d+ +

+ +
− +

And our recurrence becomes

() () () ()

() () () ()()()
2 1

22 2 2

1 2 2 1 1

2 12 1 2 20 32 12 17 37 3 .

n n n

n n n n

n n d n n d n n d

n n H H H n n n n d

+ ++ + − + + −

= + + − − + − + + +

7

M. Ragab et al.

Dividing by () ()1 2n n+ + , we obtain the telescoping recurrence
() ()

() () ()() ()
() () () ()

2 1

2 2
21 2

1 1

2 2
2

20 32 121 3 17 372 12 .
1 1 2 1 2

n n

nn n
n n

n d n d
n

H n nn d n d n nH H
n n n n n

+ +

+
+ +

+ − −
+

 + −+ − − + = + − − +
 + + + + +

() ()
() ()() ()

2 1

22 2 2 2
1 1 1

2 2

24 100 104 88 292 8 122 346 20,

n n

n n n

n d n d

n n H H H n n n n

+ +

+ + +

+ − −

= + + − − + − + + +

which is equivalent to
()

() ()() ()
1

22 2 2 2
1

4

24 4 88 60 8 122 142 20.

n n

n n n

nd n d

n n H H H n n n n

−

−

− −

= + − − − − + − +

Again as before, multiplying both sides by
() () ()1 2 3

24
n n n− − −

, the recurrence telescopes with solution

() () ()() () ()2 22 2
1 1 11 4 1 4 1 4 3 23 33 12.n n n nf n H H H n n n n+ + +′′ = + − − + + + + +

Using the well known fact that

() () () ()()2
1 1 1 ,n n n nVar C f f f′′ ′ ′= + −

the variance of the number of key comparisons of the Dual-pivot Quicksort is (see [17] [19] and [20])

() () ()2 227 4 1 2 1 13 ,n nn n H n H n− + − + +

where ()2
nH is the second order harmonic number defined by (see [18] and[19])

()2
2

1

1 .
n

n
k

H
k=

= ∑

6. Asympototic Distribution
In this section, we show the convergence results which are essential for the main purpose.

Defining a random variables

(): , 1
d

n n
n

X E X
Y n

n
−

= ≥ (8)

Equation (8) can be rewritten in the following form

()()1 1 2 2 11 1
1: 2 2 ,

n n n n

d

n n U n U U U nY n U X X X E X
n

∗
− − − −= − − + + + −

and so,

() () () ()

() ()

() () () ()

1 1 2 2

1 2
1 2

2 1 2 1

2 1 1

2 1

1 2 2 1

1 1

1 1

1

1 1

1 1
1

1 2 2

.

n n n n

n n n n

n n

n n n n

U U n U n U

n n n
n n

U U U U

n n n
U U

U n U U U n

X E X X E X
Y U n U

n U n U

X E X
U U n U

E X E X E X E X

∗ ∗
− − − −

− − − −

− −

∗
− − − −

 − −
= − + − − −

−
+ ⋅ − − + − −

+ + + −

 (9)

8

M. Ragab et al.

By a simple manipulation, one gets

()1 2 2 1
1 1 21 2 2 1

1

1 1
, ,

n n U Un n

n n n n
n U n U n n n

U n U U U
Y Y Y Y C U U

n n n− −

∗
− −

− − − −
= + + +

where the cost function ()1 2
,n n nC U U is given as and it seems to be like in [6] and [7], and given by

() () () () ()()1 1
2 2 1, = .n i n j j i n

n iC i j E X E X E X E X
n n

∗
− − − −

− −
+ + + − (10)

Now, we show the random vector 1 2,n nU U
n n

 converges to a uniformly distributed random vector ()1 2,U U

on []0,1 . So,

()1 2
1 2, , .n n D

U U
U U

n n

→

 (11)

Here ()1 2,U U is uniformly distributed random vector on []0,1 . The moment generating function of
()1 2

,n nU U is given by

() () () ()

() ()
() ()

()
() ()

1 21 2
1 2 1 2

1 2 1

1 2

1 21 2

1 2

1 21 2

1 2

1

1 2 1 2
1

1 2

1 1

2 1 1

, , e , ,

1 e e 1 e e
e 1 e 1

2 2

2 e e e .
1 e 1 e 1

k k

n Un

n n s s
n n n n

k k k

U

s n s ns s

s s

s n s ns s

s s

M U U s s P U U K K

M s M s

n n

e
n n

+
−

= +

+ +

+ +

 = =

=

− −
=

− −

 − −
= − − −

∑ ∑

For the random vector 1 2,n nU U
n n

,

() ()

() () () ()

()
()

11 2 21 2

1 1 2 2

1 2 1

1 21 2

1 2

1

1 2 1 2
1 2 ,,

1

1

1 1 1 1

2 1

, ,

1 1e e

2 2

1 e e 1 e e
e 1 e 1

2 2

2 e
1

n Un n nn n
UU U U U

n n

s k s kn n
n n

k k k

s n n s n ns n s n

s s

s n n

s s s sM s s M M M
n n n n

n n

n n

n n

−

= +

+ + + +

+ +

 = = ⋅

= ⋅

− −
=

− −

= −

∑ ∑

() () ()21 2

1 2

1 1 1e e e .
e 1 e 1

s n ns n s n

s s

+ +− −
− −

Now, the random vector ()1 2,U U has the following moment generating function

() ()
1 2

1 1 2 2 1 1 2 2
1 2

1 1 1 1

1 2 1 2 1 2,
1 20 0 0 0

e 1 e 1, e d d e d e d .
s s

s t s t s t s t
U UM s s t t t t

s s
+ − −

= = =

∫∫ ∫ ∫ (12)

9

M. Ragab et al.

By the above Equation (12) the moment generating function of 1nU
n

 is an approximation to the average val-

ue of 1es x over the interval []0,1 . The moment generating function of 2nU
n

 is an approximation to the aver-

age value of 2es x over the interval []0,1 (see [8] and [9]).
For the cost function

() () () () ()1 1
2 2 1, .n i n j j i n

n iC i j E X E X E X E X
n n

∗
− − − −

− − = + + + −

By using asymptotically, the expected complexity of Dual-pivot Quicksort is 2 logn n given in Equation (4),
it follows that

() () () ()()

() ()

()

1 2

1

1 2 2 1

1 1 2
1 2

2 1
2 1

1 1

lim ,

2 2 1lim

2 1lim 2 2 1 log 1 2 log

2 1 log 1

n n n n

n n
nn

n
U n U U U nn

n n n
n nn

n n
n n

U U
C n n

n n

n U
E X E X E X E X

n n

U n U n U
U n n U

n n n n n

n U n U
U U

n n

→∞

∗
− − − −→∞

→∞

⋅ ⋅

− −

= + + + −

 ⋅ ⋅

= − − + − − + − −

⋅ ⋅
+ − − − − −

()

() () () () () []1 1 2 2 2 1 2 1 1 2

2 log

2 2 log 2 1 log 1 2 log , , 0,1 .

n n

ε ε ε ε ε ε ε ε ε ε

= + + − − + − − ∀ ∈

Thus 1 2,n n
n

U U
C n n

n n

⋅ ⋅

 converges to some ()1 2,C U U , defined as

() () () () () ()1 2 1 1 2 2 2 1 2 1, 2 2 log 2 1 log 1 2 log ,C U U U U U U U U U U= + + − − + − −

where U1 and U2 are uniformly distributed random variables on []0,1 . Therefore, if we assume for moment that
Yn converges in distribution to some Y, we obtain

() () () ()()1 2 2 1 1 21 , .L Y L YU Y U Y U U C U U∗= + − + − +

Here 1 2, , ,U U Y Y and Y ∗ are independent. Y ∗ and Y have the same distribution as Y. Finally we show
that nY converges in fact to the fixed point Y.

Let D be the space of distribution functions F with finite second moments ()2dx F x < ∞∫ and the first
moment ()d 0x F x =∫ . We use the Wasserstein metric [4] on D.

() 2, inf ,d F G X Y= −

where 2. denotes the 2L norm. Defining a map :T D D→ by

() () () ()()1 2 2 1 1 21 , ,T F L X X X Cτ τ τ τ τ τ∗= + − + − +

where 1, , ,X X X τ∗ and 2τ are independent .

() () () .L X L X L X F∗= = =

Here τ1 and τ2 are uniformly distributed random variables on []0,1 and C is a map defined as []: 0,1C → .
We have to refer to Roesler (see in [4] [21] and [22]) for the main idea for the next lemma.

Lemma 1
The map :T D D→ is a contraction on (),D d and has a unique fixed point. Moreover, every sequence

10

M. Ragab et al.

() ()2, , , , ,F T F T F F D∈ converges in the d-metric to fixed point of T.
Proof
Let F and G are in D

() () () ()()1 2 2 1 1 21 , .T F L X X X Cτ τ τ τ τ τ∗= + − + − +

() () () ()()1 2 2 1 1 21 , .T G L Y Y Y Cτ τ τ τ τ τ∗= + − + − +

() () () .L X L X L X F∗= = =

() () () .L Y L Y L Y G∗= = =

The random variables 1 2, , ,X Xτ τ ∗ and X are independent. Also 1 2, , ,Y Yτ τ ∗ and Y are independent.
Here 1τ and 2τ are uniformly distributed on []0,1 . Then

() ()()
() () () () () ()

() () () () ()

()() () ()() ()() ()() ()()
()() ()() ()()
()()

2

2

1 2 2 1 1 2 1 2 2 1 1 2 2
2

1 2 2 1 2

2 22 2 22
1 2 2 1

2 22

2

,

1 , 1 ,

1

1

1 1 1
3 3 6
5 ,
6

d S F S G

X X X C Y Y Y C

X Y X Y X Y

E X Y E E X Y E E X Y E

E X Y E X Y E X Y

E X Y

τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ

τ τ τ τ

∗

∗ ∗

∗ ∗

∗ ∗

≤ + − + − + − − − − − −

≤ − + − − + − −

≤ − + − − + − −

 ≤ − + − + −

≤ −

where

()
1312 2 1

1 1 10
0

1d .
3 3

E ττ τ τ

= = =

∫

()() () ()
13

12 2 2
2 2 20

0

1 11 1 d .
3 3

E
τ

τ τ τ
 −

− = − − = − =

∫

()() () ()

() ()

() ()

1 1 1 12 2 2 2
1 2 1 2 1 2 1 1 2 2 1 20 0 0 0

1 13 2 11 12 21 1
2 2 1 2 2 2 20 00

0 0

12 3
2 22

0

d d 2 d d

1 12 d 2 d
3 2 3 2

1 1 1 1 .
3 2 3 3 2 3 6

E

t

τ τ τ τ τ τ τ τ τ τ τ τ

τ ττ τ τ τ τ τ τ

τ ττ

− = − = − +

 = − ⋅ + ⋅ = − ⋅ ⋅ +

 = − + = − + =

∫ ∫ ∫ ∫

∫ ∫

Taking the infimum over all possible (),X Y we obtain

() ()() ()5, , ,
6

d T F T G d F G≤

using Banach fixed point theorem completes the proof (also see[13]).

Acknowledgments
We thank the editor and the referee for their comments.

11

M. Ragab et al.

References
[1] Hoare, C.A.R. (1962) Quicksort. The Computer Journal, 5, 10-15. http://dx.doi.org/10.1093/comjnl/5.1.10
[2] Rosler, U. (2001) On the Analysis of Stochastic Divide and Conquer Algorithms. Algorithmica, 29, 238-261.

http://dx.doi.org/10.1007/BF02679621
[3] Regnier, M. (1989) A Limiting Distribution for Quicksort. Informatique Théorique et Applications, 23, 335-343.
[4] Roesler, U. (1992) A Fixed Point Theorem for Distributions. Stochastic Processes and their Applications, 42, 195-214.

http://dx.doi.org/10.1016/0304-4149(92)90035-O
[5] Roesler, U. and Rueschendorf, L. (2001) The Contraction Method for Recursive Algorithms. Algorithmica, 29, 3-33.

http://dx.doi.org/10.1007/BF02679611
[6] Ragab, M. (2011) Partial Quicksort and Weighted Branching Processes. PhD Thesis, 28-35.
[7] Ragab, M. and Rosler, U. (2014) The Quicksort Process. Stochastic Processes and their Applications, 124, 1036-1054.

http://dx.doi.org/10.1016/j.spa.2013.09.014
[8] Fill, J.A. and Janson, S. (2001) Approximating the Limiting Quicksort Distribution. Random Structures Algorithms, 19,

376-406. http://dx.doi.org/10.1002/rsa.10007
[9] Fill, J.A. and Janson, S. (2004) The Number of Bit Comparisons Used by Quicksort: An Average-Case Analysis.

ACM-SIAM Symposium on Discrete Algorithms., New York, 300-307 (Electronic).
[10] (2009) http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
[11] Ragab, M. (2015) Partial Quicksort and Weighted Branching Process: Surveys and Analysis. LAP Lambert Academic

Publishing, Germany.
[12] Fuchs, M. (2013) A Note on the Quicksort Asymptotics. Random Structures and Algorithms.
[13] Iliopoulos, V. and Penman, D.P. (2012) Dual Pivot Quicksort. Discrete Mathematics, Algorithms and Applications, 04,

No. 3. http://dx.doi.org/10.1142/S1793830912500413
[14] Iliopoulos, V. (2013) The Quicksort Algorithm and Related Topics. PhD Thesis. Department of Mathematical Sciences,

University of Essex. http://repository.essex.ac.uk/13266
[15] Martinez, C., Nebel, M.E. and Wild, S. (2014) Analysis of Branch Misses in Quicksort. SIAM.

http://dx.doi.org/10.1137/1.9781611973761.11
[16] Wild, S., Nebel, M.E. and Martienz, C. (2014) Analysis of Pivot Sampling in Dual-Pivot Quicksort. arXiv preprint ar-

Xiv:1412.0193.
[17] Wild, S. (2012) Java 7’s Dual Pivot Quicksort. Master Thesis, University of Kaiserslautern, Kaiserslautern, Germany.

http://www.uni-kl.de/en/home/
[18] Choi, J. and Srivastava, H.M. (2011) Some Summation Formulas involving Harmonic Numbers and Generalized Har-

monic Numbers. Mathematical and Computer Modelling, 54, 2220-2234.
http://dx.doi.org/10.1016/j.mcm.2011.05.032

[19] Wild, S., Nebel, M.E., Reitzig, R. and Laube, U. (2013) Engineering Java 7’s Dual Pivot Quicksort. Proceedings of the
ALENEX 2013, New Orleans, Louisiana, USA, 7 January 2013, 55-69.

[20] Wild, S. and Nebel, M.E. (2012) Average Case Analysis of Java 7’s Dual Pivot Quicksort . In: Epstein, L. and Ferra-
gina, P., Eds., Algorithms—ESA 2012, Springer, Berlin/Heidelberg, 825-836.
http://dx.doi.org/10.1007/978-3-642-33090-2_71

[21] Wild, S., Nebel, M.E. and Mahmoud, M. (2014) Analysis of Quickselect Under Yaroslavskiy’s Dual-Pivoting Algo-
rithm. Algorithmica, 78, 485-506. http://dx.doi.org/10.1007/s00453-014-9953-x

[22] Wild, S., Nebel, M.E. and Neininger, R. (2013) Average Case and Distributional Analysis of Java 7’s Dual Pivot
Quicksort. arXiv preprint arXiv:1304.0988.

12

http://dx.doi.org/10.1093/comjnl/5.1.10
http://dx.doi.org/10.1007/BF02679621
http://dx.doi.org/10.1016/0304-4149(92)90035-O
http://dx.doi.org/10.1007/BF02679611
http://dx.doi.org/10.1016/j.spa.2013.09.014
http://dx.doi.org/10.1002/rsa.10007
http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
http://dx.doi.org/10.1142/S1793830912500413
http://repository.essex.ac.uk/13266
http://dx.doi.org/10.1137/1.9781611973761.11
http://www.uni-kl.de/en/home/
http://dx.doi.org/10.1016/j.mcm.2011.05.032
http://dx.doi.org/10.1007/978-3-642-33090-2_71
http://dx.doi.org/10.1007/s00453-014-9953-x

M. Ragab et al.

Appendix
A1. The Dual-Pivot Quicksort Algorithm [15]
DUALITY -PIVOT QUICKSORT (G, left, right)
// Sort [], ,G left right (including end points).

1) If right – left < M // i.e. the sub-array has n ≤ M elements
2) INSERTIONSORT (G, left, right)
3) Else
4) If [] []G left G right>
5) []:p G right= ; []:q G left=
6) Else
7) []:p G left= ; []:q G right=
8) End If
9) : 1A left= + ; : 1B right= − ; :B A=
10) While B C≤
11) If []G B p<
12) Swap []G B and []G A
13) : 1A A= +
14) Else
15) If []G B q≥
16) While []A C q> and B C< do : 1C C= − End While
17) If []G C p≥
18) Swap []G B and []G C
19) Else
20) Swap []G B and []G B ; Swap []G B and []G A
21) : 1A A= +
22) End if
23) : 1C C= −
24) End if
25) End if
26) : 1B B= +
27) End While
28) : 1A A= − ; : 1C C= +
29) [] []:G left G L= ; [] :G L p= // Swap pivots to final position
30) [] []:G right G C= ; [] :G C q=
31) DUALITY-PIVOT QUICKSORT (), , 1G left L −
32) DUALITY-PIVOT QUICKSORT (), 1, 1G L g+ −
33) DUALIY-PIVOT QUICKSORT (), 1,G g right+
34) End if

A2. The Implementation of the New Dual-Pivot
Here’s the implementation of the new Dual-Pivot (Yaroslavskiy) in java:

public main void sort(double[] g) {
sort(g, 0, g.length);
}
public main void sort(double[] g, double fromIndex, double toIndex) {
rangeCheck(g.length, fromIndex, toIndex);
Yaroslavskiy(g, fromIndex, toIndex - 1, 3);
}
private main void rangeCheck(double length, double fromIndex, double toIndex) {
if (fromIndex > toIndex) {
throw new IllegalArgumentException("fromIndex > toIndex");

13

M. Ragab et al.

}
if (fromIndex < 0) {
throw new ArrayIndexOutOfBoundsException(fromIndex);
}
if (toIndex > length) {
throw new ArrayIndexOutOfBoundsException(toIndex);
}
}
private main void swap(double[] g, double i, double j) {
int tem = g[i];
g[i] = g[j];
g[j] = tem;
}
private static void dualPivotQuicksort(double [] g, double left, double right, double div) {
double lenth = right - left;
if (lenth < 27) { // insertion sort for tiny array
for (double i = left + 1; i <= right; i++) {
for (int j = i; j > left &&g[j] < g[j - 1]; j--) {
swap(g, j, j - 1);
}
}
return;
}
int third = len / div;
// "medians"
int s1 = left + third;
int s2 = right - third;
if (s1 <= left) {
s1 = left + 1;
}
if (s2 >= right) {
s2 = right - 1;
}
if (g[s1] < g[s2]) {
swap(g, s1, left);
swap(g, s2, right);
}
else {
swap(g, s1, right);
swap(g, s2, left);
}
// chosse the pivots
double first pivot =g[left];
double second pivot = g[right];
// pointers
double less = left + 1;
double great = right - 1;
// sorting the array by the Dual pivot Quicksort
for (int k = less; k <= great; k++) {
if (g[k] < first pivot) {
swap(g, k, less++);
}
else if (g[k] > second pivot) {

14

M. Ragab et al.

until (k > great && g[great] < second pivot) {
great--;
}
swap(g, k, great--);
if (g[k] < first pivot) {
swap(g, k, less++);
}
}
}
// swaps
double Dis = great - less;
if (Dis < 13) {
div++;
}
swap(g, less - 1, left);
swap(g, great + 1, right);
// recursive the algorithm for the arrays
Yaroslavskiy(g, left, less - 2, div);
Yaroslavskiy(g, great + 2, right, div);
// subarray
if (first pivot < second pivot) {
Yaroslavskiy(g, less, great, div);
}
}

15

	On the Convergence of the Dual-Pivot Quicksort Process
	Abstract
	Keywords
	1. Introduction
	2. Run-Time Performance
	3. The Dual-Pivot Quicksort Average Case Analysis
	4. Expected Number of Comparisons
	5. Varience of Comparisons
	6. Asympototic Distribution
	Acknowledgments
	References
	Appendix
	A1. The Dual-Pivot Quicksort Algorithm [15]
	A2. The Implementation of the New Dual-Pivot

