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Abstract

Sorting an array of objects such as integers, bytes, floats, etc. is considered as one of the most im-
portant problems in Computer Science. Quicksort is an effective and wide studied sorting algo-
rithm to sort an array of n distinct elements using a single pivot. Recently, a modified version of
the classical Quicksort was chosen as standard sorting algorithm for Oracles Java 7 routine library
due to Vladimir Yaroslavskiy. The purpose of this paper is to present the different behavior of the
classical Quicksort and the Dual-pivot Quicksort in complexity. In Particular, we discuss the con-
vergence of the Dual-pivot Quicksort process by using the contraction method. Moreover we show
the distribution of the number of comparison done by the duality process converges to a unique
fixed point.
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1. Introduction

Quicksort is one of the important sorting algorithms. Hoare [1] proposed an algorithm depended on selecting an
arbitrary element from the array. This element called a pivot element such that Quicksort algorithm used for
parting the arrays into two sub-arrays: those smaller than the pivot and those larger than the pivot [2].

After that Quicksort depends on recursive sorting of the two subarrays. Later Sedgewick studied several variants.

Regnier [3] studied the limiting distribution of the number of comparisons done by Quicksort algorithm when
suitably normalized. It converges with uncertain unknown limit. The first accounts were computed by Henne-
quin who proved that this distribution is not a normal distribution. The limiting distribution is characterized by a
stochastic fixed point equation [4] [5]. The cost of the Quicksort algorithm depends on the position of the se-
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lected pivot. There are many cases to choose the pivot element. The worst-case, the best-case and the average
case express the performance of the algorithm. We will discuss some of them and for more details; we refer to
Ragab [6] and [7]. The worst-case occurs when the pivot is the smallest (or largest) element at partitioning on
array of size n, yielding one empty sub-array, one element (pivot) in the correct place and one sub-array of size
n — 1. So, the two sub-arrays are lopsided so this case is defined by worst case [8]. We found the recursion depth
is n — 1 levels and the complexity of Quicksort is O(nz). The best case occurs when the pivot is in the median
at each partition step, i.e. after each partitioning, on array of size n, yielding two sub-arrays of approximately
equal size and, the pivot element in the middle position takes n data comparisons [9]. There are various methods
to choose a good pivot, like choosing the First element, Last element, and Median-of-three elements (selection
three elements, and find the median of these elements), and so on. In this case the Quicksort algorithm selects a
pivot by random selection each time. This choice reduces probability that the worst-case ever occurs. The other
method, which essential prevents the worst case from ever occurring, picks a pivot as the median of the array
each time. When we chose the pivot, we compare all other elements to it and we have n — 1 comparisons to di-
vided the array. The choosing of the pivot divided the array into one sub-array of size 0 and one sub-array of
size n — 1, or into a sub-array of size 1 and other one of size n — 2, and so on up to a sub-array of size n — 1 and
one of size 0. We have n possible positions and each one is equality in probability 1/n. Hennequin studied com-
parisons for array by using Quicksort with r pivots when r = 2, same comparisons as classic Quicksort in one
partitioning. When r > 2, he found the problem is complied. Yaroslavskiy [10] introduced a new implementation
of Dual-pivot Quicksort in Java 7°s runtime library. In 2012, Wild and Nabel denoted exact numbers of swaps
and comparisons for Yaroslavskiy’s algorithm [10]. In this paper, our aim is to analyze the running time perfor-
mance of Dual-pivot Quicksort. The limiting distribution of the normalized number of comparisons required by
the Dual-pivot Quicksort algorithm is studied. It is known to be the unique fixed point of a certain distributional
transformation T with zero mean and finite variance.

We show that using two pivot elements (or partitioning to three subarrays) is very efficient, particularly on
large arrays. We propose the new Dual-pivot Quicksort scheme, faster than the known implementations, which
improves this situation (see in [11] and [12]). The implementation of the Dual-pivot Quicksort algorithm has
been inspected on different inputs and primitive data types.

The new Quicksort algorithm uses partitioning a source array T [ ]g , where g is primitive array which we
need to sort it. Such as int, float, byte, char, double, long and short, to three parts defined by two pivot elements
p and q (and therefore, there are pointers A, B, C and left and right indices of the first and last elements respec-
tively). The aim of this paper is topresent such a version arising from an algorithm depending on the work in [13]
and [14]. The Dual-pivot Quicksort is explained clearly in [15] and it works as follow:

1) For small arrays (length < 17), use the Insertion sort algorithm [10].

2) Choose two pivot elements p and g. We can get, for example, the first element ¢ [Ieft] as p and the last
element g[right] asq.

3) p must be less than g, otherwise they are swapped. So, we have the following parts.
Part I with indices from left + 1 to A — 1 with elements, which are less than p.
Part 11 with indices from A to B — 1 with elements, which are greater or equal to p and less or equal to g.
Part 111 with indices from C + 1 to right — 1 with elements greater than g.
Part IV contains the rest of the elements to be examined with indices from B to C.
4) The next element g[B] from the part IV is compared with two pivots p and g, and placed to the corres-
ponding part I, 11, or 111

5) The pointers A, B, and C are changed in the corresponding directions.

6) The steps 4 - 5 are repeated while B<C.

7) The pivot element p is swapped with the last element from part I, the pivot element q is swapped with the
first element from part I11.

8) The steps 1 - 7 are repeated recursively for every part I, part 11, and part Il as in Figure 1.

L rlr [ Jrsesa] [ 2 ] [oo] |

Left A B C Right
Part 1 Part I1 Part IV Part I11

Figure 1. Graph explains the dual-pivot quicksort algorithm.
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2. Run-Time Performance

In this section, we introduce some running time of the Dual-pivot Quicksort. An efficient procedure is described
by Vasileios Illiopoulos and David B. Penman [13], where they analyzethe Dual pivot Quicksort algorithm. Their
approach can be here provided and for more detailswe refer to [13] and [14]. First we introduce the algorithm of
it and we compare between it and the classical Quicksort as follows [16].

The following graphs show the relation between the size of array which need to sort and the time of complex-
ity which represent by the number of comparisons and swaps as in Figure 2. We found the Dual-pivot Quicksort
is faster than classical Quicksort.

3. The Dual-Pivot Quicksort Average Case Analysis

To find the distributional equation, we note the following: for the underlying process, there are two parts. The
first part is partitioning and the second is the total number of comparisons to sort an array of n>2 keys, when
the pivot is a uniform random variable {1,2,3,---,n} is equal to the number of comparisons to sort the sub-
array ofon U, —1 keys below the first pivot [17].

In addition, we need to compute the number of comparisons to sort the sub-array of n —U,12 elements above
the second pivot plus the number of comparisons to sort the sub-array of Un2 —Unl -1 elements between the
first and the second pivot.

Plus 2n —Urll —2 comparisons done to partition the array which come from when the all elements compare one
time with the first pivot and the remain elements compare two times with the second and the first pivot. Therefore,
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Figure 2. Comparison between the classical Quicksort and the Dual-pivot Quicksort.
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d —
Xp=20-U, =2+ X, 5+ Xy + Xy 4 1)
where the random variables Xy X,’j_unz and )Zunz—unl—l are identically distributed and independent of U,

d
and Unz . Here = refers to the equality in distribution.

The array is partitioned into three subarrays one with U, —1 keys smaller than the first pivot, a subarray of
U,, —U, —1 keys between two pivots and the part of n—-U_  elements greater than the second pivot. The
algorithm is then recursively applied to each of these subarrays. The number of comparisons during the first
stage is

A :1+|:(Unl _1)+2(Un2 -U, —1)+2(n—Unz )J

where U, =1---,n-1 and U, =U, +1---,n. Using [11], the average value of A can be calculated as fol-
low:

n-1 n

E(A)= UZ (1+[(i—1)+2(j—i—1)+2(n—j)])

1
j=i+l
2

ﬁii(zniz)n(nz_l)(g 0 —2n? + ; j=5n3_7

j=i+l
2

4. Expected Number of Comparisons

Here by Equation (1) and using [13], it is easy to determine the recurrence for the expected number of compari-
sons due to the duality as follow:

5n_7 n n-1 n . n-1 n _
£(X,)- 2 [EEet -0 E S e, ) £ T )
3 ( ) i=1 j=i+l i=1 j=i+l i=1 j=i+
Since the three double sums above are equal, then the recurrence becomes
5n-7 6 Y .
E(X, )= —1)E(X,
(%) =5 R -DE().
setting a, =E(X,),
5n — 7 =
= 3 2 2.
a'n 3 _ ) |:1( ) i-1
By initial conditions we have a, =a, =0 . Multiplying both sides by [2) , We obtain

a5 2 s S |- MO i,

We introduce a difference operator for the solution of this recurrence. The operator is defined by
AF (n):=AF (n+1)-F(n). )
And for higher orders
A“F(n)=A"F (n+1)—-A'F (n).

Thus, we have
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n n+1 n 2_ n-t
Al _|a, a.,—|.la = Sn"=3n, Da,.
2 2 2 2 i-0

n n+1 n
Al _la,=A a,,—A|_|a,=5n+1+3a,.
2 2 2
By definition (2),

,(N n+1 n n+2 n+1 n
A 2an:A 5 aM—Azan: 5 a,, —2 9 an+1+2an.

(n+1)(n+2)a,,-2n(n+1)a,,, +n(n-1)a, =2(5n+1+3a,)
then
(n+1)((n+2)a,,-(n-2)a,,)+(n+2)((n+1)a,, -(n-3)a,)=2(5n+1).
Dividing by (n+1)(n+2), we obtain the telescoping recurrence

(n+2)a,,—(n-2)a,, _ (n+1)a,, —(n-3)a, .\ 2(5n+1)
n+2 n+1 (n+1)(n+2)’

which yields

(n+2)an+2—(n—2)an+1_22”: 5j+1 18 +10H,, —18n.

n+2 - jzo(j+l)(j+2)_n+2

(n-1)(n-2)(n-3)

24

SR TR R TLE P

M- U020 o) .

By using maple V. lliopoulos and D. B. Penman [13] get

> (i-1)(i-2)(i-3)- e@

j=1

Multiplying by

, this recurrence is transformed to a telescoping one

And for the other sums in Equation (3):

Therefore,

(" o3 ) 2 S0 -26 -9
("3

Now the equation becomes
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Ui (e LR e Y

a =9+1o[”—+1(Hm1—3j 1} 180+

"2 5 5) 4 5
Finally, the expected number of comparisons, when two pivots are chosen is
a, =2(n+1)H, —4n~2nlog(n), 4)

n

where H, isthe harmonic number defined by H, = Z% (see [18] and [19]).

k=1
This is the same value of the expected number of comparisons, when one pivot chosen in the classical Quick-
sort [20]. Note that this result for the dual Quicksort is identical with theexpected number of comparisons in
[13].

5. Varience of Comparisons

The main result of this section was obtained by [13] (see following results for explanationand notation). Now we
compute the variance of the number of comparisons by Dual-pivot Quicksort. Recall that

A=2n-i-2 and E(A)=2"", (5)
From Equation (1), we have
1 n-1 n
P(X,=t)= [n leZlP(&+X.1+X,.1+Xn, t),
=1 j=i+
i)

noting that the resulting subarrays are independently sorted, then we get

P(X,=t)= (]ZZZ[ (X, =1)P (XJ.fH:m)P(X;LJ.:t—m—I—2n+i+2)}.
2

i=l j=i+1l,m

Letting
f.(2)=2 P(X,=t)Z
t=0
be the ordinary probability generating function for the number of comparisons needed to sort n keys, we obtain

L (2) = 2 2 2 (2) i (2) o (2) ®)
B

i=1 j=i+l

It holds that f,(1)=1 and f ( )=2(n+1)H, —4n. Moreover, the second order derivative of Equation (6)
evaluatedat z=1 is recurswely given by

H0 g S oo £ E 19028 (e i-2)E(x,)
#25 3 (2n-i-2)E (X1} 42 3 (2n-i -2 (X, )
28 SEXE(X ) 25 S E(XL)E(X, )+ 28 E (X, L)E (X,
RaAERaNALR AL
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By simple manipulation of indices, the sums of the products of expected values are equal. The double sum of
the product of the mean number of comparisons can be simplified as follows:

Ej_zni;lE(xil)E(an)= ?Z_th(Xil)an_i;E(xj)

:nZl[z(nl)Hi1—4(i—1)]{2(”_2”1j+—”_i_52(”4) }

We find

+?Zj‘(| -1)(n—-i)H_H_, +§(n i)H_H,;

The recurrence becomes

fr(1)=2(n+1)(n+2)(H - HP)-H, 50 +4—37n+6j

n

209 , 731 13 6 n-1 o
g W e Nt s ) (1) 15 (1),
25" Y38 n+6+n(n—1)i§(n i) " (1)

n
where H!® is the second order harmonic number defined by H,(f) =y
n n

1
d, = f,(1) and subtracting (;jdn from (n; Jdm,we get

_nH, (84n? +198n +42)
9

A(gjdn =4n(n +1)(n+2)(H§ - ng))

+33d,, +%(79n2 +231n+14).

i=1

By using the identity [4]

2H
e~ =( 7 -2+ 2 o

It holds that

n
A’ (Zjdn =12(n+1)(n+2)(H7 - H{¥) - H, (20" + 320 ~12) +17n” + 37n + 3d,.
The previous equation is the same as

n+2 n+1 n
dn+2 -2 dn+l+ dn'
2 2 2
And our recurrence becomes

(n+1)(n+2)d,,, -2n(n+1)d,,, +n(n-1)d,
:2(12(n +1)(n+2)(HZ ~H® —H, (20" +32n-12)+17n" +37n+3dn)).
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Dividing by (n+1)(n+2), we obtain the telescoping recurrence
(n+2)d,., - (n-2)d

n+l

n+2
—(n— H (20n? +32n-12 2
_(n+1)dy,-(n-3)d, 12(H2, 1Y) - o ) am?+am |
n+1 (n+1)(n+2) (n+1)(n+2)

(n+2)d,.,-(n-2)d,,,
=(24n2+100n+1o4)(H§ﬂ-Hgﬂ)-Hnﬂ(ssnz+292n-8)+122n2+346n+20,
which is equivalent to
nd, —(n-4)d,,
= (24n” +4n)(HZ —H!P) - H,, (88n° —60n —8)+122n° ~142n + 20.

(n-1)(n-2)(n-3)

24
f(2)=4(n+1) (H2, —HE])=4H,,; (n+1)(4n +3)+23n” + 330 +12.

Again as before, multiplying both sides by , the recurrence telescopes with solution

Using the well known fact that

2

Var(C,)=f/(1)+ f/(1)-(f/ (1) .
the variance of the number of key comparisons of the Dual-pivot Quicksort is (see [17] [19] and [20])
7n?—4(n+1)H® —2(n+1)H, +13n,
where Hr(f) is the second order harmonic number defined by (see [18] and[19])
Ll
ngz) = Zk—z
k=1
6. Asympototic Distribution

In this section, we show the convergence results which are essential for the main purpose.
Defining a random variables

.ixn_E(Xn)

VA I GV S ®)
n

Equation (8) can be rewritten in the following form

d 1 « N2
Yn ::H(zn —Un1 -2+ XUm—l + Xnﬂnz + XUnz—Unl—l - E(xn))'

and so,

M
u, -1 n-u,
_ o )z L
Up,~Up -1 ( Uny Uy 1)_(Un2 _Un1_1)+2n_unl_2 (9)
Upy-Up -1
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By a simple manipulation, one gets

u,-1) .. (n-U,) - u, -u, -1
Yo =Yoo = Y, | 2+ fwn(unl,unz),

where the cost function C, (Unl,unz) is given as and it seems to be like in [6] and [7], and given by

c, (i) =2”‘—i‘2+%(E(xH)+ E(Xp)+E(X 1) -E(X,)). (10)

Now, we show the random vector [UTW Ur:Z j converges to a uniformly distributed random vector (Ul,Uz)
on [0,1]. So

(U%,U%J#(ul,uz). a

Here (Uy,U,) is uniformly distributed random vector on [0,1]. The moment generating function of
(U,.U,,) isgiven by

M(U,.U, )(s.5,) B> e Pl (U, U,, ) =(KuK,) |

ke kop=ky+1
=My, ()M, (s)

1 esl n+1) esl 1 e (n-¢-1)_es2

(n) e*-1
2
{ ] sy(n+1) _ed esz(n+1) g%

1 e2 -1

U, U,
For the random vector | —%,—™2 |,
n

1 M) _gsn 1 gn(md)(ned) _gspin

2 2 esl(n+l)/(n+l) _ esl/n esz(n+1)/(n+1) _ esz/n
“{n(n-1) et -1 e -1

Now, the random vector (Ul,Uz) has the following moment generating function

11 1 1 s S _
M u,u,) (s1,8,) = J'jesl‘ﬁSztzdtldt2 = jesmdtljeSztzdtz :(e S 1)[6 i 1]_ (12)
00 0 0
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U
By the above Equation (12) the moment generating function of —* is an approximation to the average val-
n

. . . u, . L
ue of e** over the interval [0,1]. The moment generating function of —2 is an approximation to the aver-
n

age value of e%* over the interval [0,1] (see [8] and [9]).
For the cost function

C, (i’ J):

By using asymptotically, the expected complexity of Dual-pivot Quicksort is 2nlogn given in Equation (4),
it follows that

U U
Iian(n~—”1,n~ ”2]
n—o0 n n

— lim _M+ ! (E(xunﬁ)+ E(Xru, )+ E(Xu, 0,1)- E(Xn))}

'[ el st o v,
n. - n _1}09(% U, _1)—2nlog(n)ﬂ

U, n-U
=2+2¢ Iog(gl)+ 2(1-¢,)log(1-¢,)+2(&, —&)log(&, — &), Ve, & €[0,1].

—2n_i_2+1|:E(Xi71)+E(X:fj)—i_E(XJ'*H)_E(X”)]

n n

n-u

+2

U U
Thus Cn(n-—”l,n- ”ZJ converges to some C(U,,U,), defined as
n n

C(U,U,)=2+2U,log(U,)+2(1-U,)log(1-U,)+2(U, -U,)log (U, -U,),

where U; and U, are uniformly distributed random variables on [0,1] . Therefore, if we assume for moment that
Y, converges in distribution to some Y, we obtain

L(Y)=L(YU,+Y"(1-U,)+Y (U, -U,)+C(U..U,)).

Here U,,U,,Y,Y and Y* are independent. Y* and Y have the same distribution as Y. Finally we show
that Y, converges in fact to the fixed point Y.

Let D be the space of distribution functions F with finite second moments fxzdF )<oo and the first
moment J'xdF ) 0. We use the Wasserstein metric [4] on D.

d(F,G)=inf|X -Y],,
where ||||2 denotes the L, norm. Definingamap T:D —>D by
T(F)=L(nX +(1-7,) X"+ X (2, —7,)+C(7,7,)),
where X, X", X,7; and 7, areindependent .
L(X)=L(X")=L(X)=F.

Here 7; and z, are uniformly distributed random variables on [0,1] and C is a map defined as C:[0,1] > R.
We have to refer to Roesler (see in [4] [21] and [22]) for the main idea for the next lemma.

Lemma 1

The map T:D — D is a contraction on (D,d) and has a unique fixed point. Moreover, every sequence
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F.T(F).,T?(F),--,F eD, converges in the d-metric to fixed point of T.
Proof

LetFand GareinD
T(F)=L(nX +(1-5) X"+ X (7, - 7,) +C(,,7,)).
T(G)=L(zY +(1- TZ)Y*+( )Y+C(rl,rz))
L(X)=L(x")=L
J=L(v")=L

The random variables 7,,7,,X, X" and X are independent. Also 7,,7,,Y,Y" and Y are independent.
Here 7, and 7, are uniformly distributed on [0,1]. Then

d*(S(F).s(G))

<[ X +(1-2,) X" + X (5, -1,)+ C(20,7,) = 7Y ~(1-1,)Y ~ (7, ~5,)Y ~C (1.7, ).
<lr (X =Y)+(1-7,) (X =Y )+ (5, — 7, ) (X -Y)

<E((X-Y)')E(z)+ E((X* —Y*)Z)E((l—r2)2)+ E((X-¥))E((r.-a))
g%(E((X —Y)2)+%E((x*—Y*)z)+%E((X—V)2)

5

_6E((X YY),

2

where
E () = [ {%} -1
E(a-n))=-f0-n) o =[—(1‘”)3T )
( ) [[[(n-7) drdz, =[], (s - 207, + 2 )drdr,
_ :[gz +122-71|sz12:.[:(%—2-(12)-%+(r22)jd12
:[f_z_@+(f_5>]1:

3 2 3

1

2
2
27,1

2t],

Taking the infimum over all possible (X ,Y) we obtain

d (T(F),T(G))S\Ed (F,G),
using Banach fixed point theorem completes the proof (also see[13]).
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Appendix
A1l. The Dual-Pivot Quicksort Algorithm [15]

DUALITY -PIVOT QUICKSORT (G, left, right)
Il Sort G[left, -, right] (including end points).
1) If right — left < M // i.e. the sub-array has n <M elements
2) INSERTIONSORT (G, left, right)
3) Else
4) If G[left]>G[right]
5) p:=G[right]; q:=G[left]
6) Else
7) p:=G[left]; q:=G[right]
8) End If
9) A=left+1; B:=right—1; B:=A
10) While B<C
11) If G[B]<p
12) Swap G[B] and G[A]
13) A=A+l
14) Else
15) If G[B]>q
16) While A[C]>q and B<C do C:=C-1 End While
17)1f G[C]=p
18) Swap G[B] and G|[C]
19) Else
20) Swap G[B] and G[B];Swap G[B] and G[A]
21) A=A+1
22) End if
23) C=C-1
24) End if
25) End if
26) B:=B+1
27) End While
28) A=A-1; C=C+1
29) G[left]:=G[L]; G[L]:=p // Swap pivots to final position
30) G[right]:=G[C]; G[C]=q
31) DUALITY-PIVOT QUICKSORT (G, left, L—l)
32) DUALITY-PIVOT QUICKSORT (G,L+1,g-1)
33) DUALIY-PIVOT QUICKSORT (G, g +1,right)
34) End if

A2. The Implementation of the New Dual-Pivot

Here’s the implementation of the new Dual-Pivot (Yaroslavskiy) in java:
public main void sort(double[] g) {
sort(g, 0, g.length);
}
public main void sort(double[] g, double fromindex, double tolndex) {
rangeCheck(g.length, fromindex, tolndex);
Yaroslavskiy(g, fromindex, tolndex - 1, 3);
}
private main void rangeCheck(double length, double fromIndex, double tolndex) {
if (fromlIndex > tolndex) {
throw new lllegal ArgumentException("fromindex > tolndex");

)
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}
if (fromIndex < 0) {

throw new ArraylndexOutOfBoundsException(fromindex);
}

if (tolndex > length) {

throw new ArraylndexOutOfBoundsException(tolndex);

}

}

private main void swap(double[] g, double i, double j) {
int tem = g[i];

alil = 9lil;

g[i] = tem;

}

private static void dualPivotQuicksort(double [] g, double left, double right, double div) {
double lenth = right - left;

if (lenth < 27) { // insertion sort for tiny array

for (double i = left + 1; i <=right; i++) {

for (intj =1i;j > left &&g[j] < g[j - 1]; j--) {

SW&p(g, jv J - 1);

}

}

return;

}

int third = len / div;

/l "medians”

int s1 = left + third;

int s2 = right - third,;

if (s1 <= left) {

sl =left+1;

}

if (s2 >=right) {
s2 =right - 1;

}

if (g[s1] < g[s2]) {

swap(g, s1, left);

swap(g, s2, right);

}

else {

swap(g, s1, right);

swap(g, s2, left);

}

/I chosse the pivots

double first pivot =g[left];

double second pivot = g[right];

/I pointers

double less = left + 1;

double great = right - 1;

/I sorting the array by the Dual pivot Quicksort
for (int k = less; k <= great; k++) {
if (g[k] < first pivot) {

swap(g, k, less++);

else if (g[k] > second pivot) {
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until (k > great && g[great] < second pivot) {
great--;

}

swap(g, k, great--);

if (g[K] < first pivot) {

swap(g, k, less++);

}

}

}

Il swaps

double Dis = great - less;

if (Dis<13) {

div++;

}

swap(g, less - 1, left);

swap(g, great + 1, right);

I/ recursive the algorithm for the arrays
Yaroslavskiy(g, left, less - 2, div);
Yaroslavskiy(g, great + 2, right, div);
I/ subarray

if (first pivot < second pivot) {
Yaroslavskiy(g, less, great, div);

}

}
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