

Comparative Studies of New Complexes Synthesized by Chemical and Tribochemical **Reactions Derived from Malonic Acid** Dihydrazide (L; MAD) with Cu²⁺ and Co²⁺ Salts

Sawsan Mohamed Al-Ashgar

Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, KSA Email: d.sawsan94@hotmail.com

How to cite this paper: Al-Ashqar, S.M. (2018) Comparative Studies of New Complexes Synthesized by Chemical and Tribochemical Reactions Derived from Malonic Acid Dihydrazide (L; MAD) with Cu2+ and Co2+ Salts. Open Journal of Inorganic Chemistry, 8, 28-42. https://doi.org/10.4236/ojic.2018.81003

Received: October 25, 2017 Accepted: January 26, 2018 Published: January 29, 2018

Copyright © 2018 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/ **Open Access**

Abstract

The reaction of L (MAD) with Cu²⁺ and Co²⁺ chlorides affords new metal complexes. The isolated solid complexes were synthesized by two different techniques *i.e.*, chemical and tribochemical methods. Four new complexes were synthesized by direct chemical reactions of MCl₂ (M = Co^{2+} and Cu^{2+}) with MAD in absolute EtOH. The isolated solid complexes were used as starting compounds to synthesize another four new complexes using tribochemical technique by grinding the previous complexes in the solid state with excess KI in agate mortar. The results of the isolated complexes indicate the substitution of the chloride by iodide ions during grinding and extraction of the complexes by a mixture of solvents (EtOH + MeOH). Also, the results suggest that no reduction of Cu²⁺ or oxidation of Co²⁺ complexes is observed. The IR spectra of the complexes suggest that L acts in a bidentate manner. Moreover, the results of electronic spectra and magnetic measurements for the chloride and iodide complexes suggest distorted-octahedral and/or tetrahedral for Cu²⁺ and high-spin octahedral and/or tetrahedral structures around the Co^{2+} ion, respectively.

Keywords

Tribochemical Reactions, MAD Complexes, Spectral and Magnetic Studies, Cu²⁺ and Co²⁺ Complexes, Green Chemistry

1. Introduction

Malonic acid dihydrazide (MDH; \mathbf{L}) is a vital class of ligands in coordination chemistry and finds extensive applications in different fields [1]. Dihydrazide derivatives are polydentate ligands coordinating in neutral forms [2]. The applications of metal complexes in various fields like anti-inflammatory and analgesic have been extensively examined [3]. The hydrazide moiety $(-N_2H_4)$ possesses a potential therapeutic effect and plays an important role in medicine [4] [5] [6]. Earlier work illustrated that some drugs show increased activity when administered as metal chelates rather in the form of original organic compounds [7] [8]. These complexes play an important role in bioinorganic chemistry and redox enzyme systems [9] [10] [11]. The study of structural and binding features of various metal complexes plays an important role in understanding of the biological process. Redox properties of a drug can give insight into its metabolic or pharmaceutical activity [12] [13] [14]. Literature survey indicates that electrochemical studies have been manipulated to predict the behavior of ligand and its metal complexes in biochemistry and medicine [15]. In recent years, an increasing number of complexes derived from dihydrazides have been investigated [16]. Also, an increasing number of transition metal complexes of dihydrazides have been studied in details [17]. However, no attempt appears to have been made to monitor the tribochemical reactions derived from dihydrazides. The aim of present work is to study the synthesis of novel Cu²⁺ and Co²⁺ complexes derived from L (MAH) by both chemical and tribochemical reactions and the isolated solid complexes were characterized by elemental analyses, spectral (IR, ¹H-NMR and UV-vis.) and magnetic measurements. The goal of synthesis of complexes by tribochemical is to study the role of KI on substitution and the oxidation and/or reduction of the metal ions. Also, this method gives high yield and is considered as a cheap and new method for synthesis of new types of complexes.

2. Experimental

All the chemicals (salts and solvents) were purchased from Aldrcih and used without purification. Malonic acid dihydrazide (MAH, **L**) was synthesized by refluxing equivalent amounts of diethyl malonate (15.2 ml) in EtOH and hydrazine hydrate (6.2 ml) on water bath for 4 hrs. The white product (m.p.; $152^{\circ}C - 156^{\circ}C$; yield: 90%) was obtained by cooling and the product was characterized by chemical and spectral methods. The ligand (MAH, **L**) was crystallized from absolute EtOH.

2.1. Preparation of Metal Complexes

2.1.1. Preparation of Cu²⁺ and Co²⁺ Complexes by Chemical Method

Four solid complexes derived from the reaction of $CuCl_2$ and $CoCl_2$ dissolved in EtOH (25 ml with **L** in 50 ml EtOH with the general formulae, $[Cu(\mathbf{L})Cl_2]$, $[Co_2(\mathbf{L})_2(H_2O)Cl]Cl$, $[Cu(\mathbf{L})_3]Cl_3 \cdot \frac{1}{2}$ EtOH and $[Co(\mathbf{L})_3]Cl_2$, were synthesized and characterized. The reaction mixtures were refluxed on a water bath for 1 hr. The complexes were filtered off, washed several times with absolute EtOH followed by dry diethyl ether and finally dried in a vacuum desiccator over anhydrous P_4O_{10} . [Cu(L)Cl₂] is olive-green in color. Anal. Calcd: for C₃H₈CuN₄O₂Cl₂ (266.6): C, 13.5; H, 3.0; N, 21.0; Cu, 23.8; Cl, 12.9%. Found: C, 12.9; H, 2.8; N, 20.6; Cu, 23.4; Cl, 12.2%.; Yield 85%; green powder; m.p.; 168°C; Yield: 90%; $\Lambda^+_{\rm m}$ (DMSO): 9 ohm⁻¹·cm²·mol⁻¹ and $\mu_{\rm eff}$ (2.0 BM).

[Co(L)₂(H₂O)Cl]Cl is pink in color. Anal. Calcd: for C₆H₁₈Co₂N₈O₅Cl₂ (412.118): C, 17.5; H, 4.4; N, 27.2; Co, 14.3; Cl, 17.2%. Found: C, 17.2; H, 4.1; N, 27.1; Co, 14.3; Cl, 17.2%.; m.p.; 218°C; Yield: 86 %; Λ^{+}_{m} (DMSO): 55 ohm⁻¹·cm²·mol⁻¹ and μ_{eff} (5.2 BM).

 $\label{eq:cull} \begin{array}{l} [Cu(L)_3]Cl_2\cdot \strut EtOH \ is \ brown \ in \ color. \ Anal. \ Calcd: \ for \ C_{10}H_{27}CuN_{12}O_6Cl_2 \\ (553.868): C, 21.7; \ H, \ 4.9; \ N, \ 30.3; \ Cu, \ 11.5; \ Cl, \ 12.8\%. \ Found: \ C, \ 21.6; \ H, \ 4.8; \ N, \\ 30.8; \ Cu, \ 11.1; \ Cl, \ 12.6\%.; \ m.p.; \ 254^\circC; \ Yield: \ 90 \ \ \Lambda^+_m \ (DMSO): \ 70 \\ ohm^{-1}\cdot cm^2\cdot mol^{-1} \ and \ \mu_{eff} \ (2.0 \ BM). \end{array}$

 $[Co(L)_3]Cl_2$ is violet in color. Anal. Calcd: for $C_{10}H_{27}CoN_{12}O_6Cl_2$ (526.223): C, 20.5; H, 4.6; N, 31.9; Co, 11.2; Cl, 13.5%. Found: C, 20.4; H, 5.0; N, 31.2; Co, 10.9; Cl, 13.3%.; m.p.; 184°C; Yield: 80 %; Λ^+_m (DMSO): 75 ohm⁻¹·cm²·mol⁻¹ and μ_{eff} (4.9 BM).

2.1.2. Preparation of Cu²⁺ and Co²⁺ Complexes by Tribochemical Reactions

The Cu²⁺ and Co²⁺ complexes (0.5 g) synthesized from the previous method were grinded with KI (6 g) for 2 hrs until the color of the original complex is changed. A mixture of MeOH (80 ml) and EtOH (20 ml) was then added and the solution was refluxed for 2hrs and then left overnight. The isolated complexes with the general formulae; $[Cu(L)I_2] \cdot 2H_2O$, $[Co(L)_2I_2] \cdot 2H_2O$, $[Co(L)_3]I_2 \cdot \frac{1}{2}$ EtOH $\cdot 2H_2O$ and $[Cu(L)_3]I_2$; were filtered off, washed with 100 ml of a mixture of EtOH and H_2O (1:1) and finally dried in an oven at 80°C; Yield: 78% - 88%.

[Cu(L)I₂]·2H₂O is pale yellow in color. Anal. Calcd: for $C_3H_{12}CuN_4O_3I_2$ (485.509): C, 7.4; H, 2.5; N, 11.5; Cu, 13.1; I, 52.3%. Found: C, 6.7; H, 1.9; N, 11.1; Cu, 13.0; I, 52.1%.; m.p.; 210°C; Yield: 78%; Λ^+_m (DMSO): 8 ohm⁻¹·cm²·mol⁻¹ and μ_{eff} (1.8 BM).

 $\label{eq:co(L)(H_2O)_2I_2] is simon in color. Anal. Calcd: for C_6H_{20}CoN_4O_4I_2 (613.028): C, 11.8; H, 3.3; N, 18.3; Co, 9.6; I, 41.4\%. Found: C, 11.8; H, 2.8; N, 17.7; Co, 9.3; I, 40.9\%.; m.p.; 196°C; Yield: 82%; <math>\Lambda^+_{\rm m}$ (DMSO): 5 ohm⁻¹·cm²·mol⁻¹ and $\mu_{\rm eff}$ (4.9 BM).

[Co(L)₃]I₂·½EtOH·2H₂O is buff in color. Anal. Calcd: for C₁₀H₂₇CoN₁₂O₆I₂ (768.192): C, 15.6; H, 4.1; N, 21.9; Co, 7.7; I, 33.0%. Found: C, 15.4; H, 3.7; N, 21.2; Co, 7.2; I, 32.4%.; m.p.; 238°C; Yield: 88%; Λ^+_{m} (DMSO): 66 ohm⁻¹·cm²·mol⁻¹ and μ_{eff} (5.0 BM).

 $[Cu(L)_3]I_2$ is brown in color. Anal. Calcd: for $C_9H_{24}CuN_{12}O_6I_2$ (713.278): C, 15.1; H, 3.4; N, 23.6; Cu, 8.9; I, 35.6%. Found: C, 14.7; H, 2.8; N, 22.8; Cu, 8.1; I, 35.1%.; m.p.; 245°C; Yield: 75%; Λ^+_m (DMSO): 59 ohm⁻¹·cm²·mol⁻¹ and μ_{eff} (1.78 BM).

2.2. Physical Measurements

Elemental analyses contents (C, H and N) were determined at the Microanalyti-

cal Unit, Center of King Fahd Institute at Jeddah, Saudi Arabia. Copper and cobalt contents were determined by complexometric titration in the presence of Xylenol orange as an indicator [18]. Molar conductivities measurements were carried out using Tacussel model CD 75. The chloride and iodide contents were determined as AgCl or AgI [18]. The IR spectra in the 400 - 4000 cm⁻¹ range were recorded in KBr on a Mattson 5000 FTIR Spectrometer. The electronic spectra of the Cu²⁺ and Co²⁺ complexes were recorded in Nujol mull in the range (200 - 900 nm) using Unicam spectrometer model UV2. L was recorded on ¹H-NMR Spectrometer (400 MHz) in d₆-DMSO at Mansoura University at Mansoura. Magnetic moments were determined using a Sherwood balance at room temperature (25°C) with Hg[Co(NSC)₄] as a calibrate. The diamagnetic corrections for L and its metal atoms were computed using Pascal's constants [19]. The corrected values were calculated according to the following equation:

$$\mathbf{X}_{dia.}\left(\mathrm{molar}\right) = \sum n_{A}\chi_{A} + \sum \lambda$$

where

 χ_A = gram atomic susceptibility of atom *A*.

 n_A = is the number of atom *A* in the compound.

 λ = constitutive for certain bond types.

3. Results and Discussion

3.1. Physical Properties and Elemental Analyses

All the isolated metal complexes are colored, stable against light and air for two years. Also, the complexes are insoluble in most common organic solvents but easily soluble in DMF and DMSO. The molar conductivities for all the iodide complexes are non-conducting except the two complexes with the general formulae, $[Cu(L)_3]I_2$ and $[Co(L)_3]I_2$ ·½EtOH·2H₂O, which are conducting and have values 75 and 88 Ω^{-1} ·cm²·mol⁻¹ in DMSO, respectively. On the other hand, the molar conductance of the chloride complexes in DMSO falls in the 55 - 75 Ω^{-1} ·cm²·mol⁻¹ indicating 1:1 and 1:2 electrolytes, respectively. The low value (9 Ω^{-1} ·cm²·mol⁻¹) for $[Cu(L)Cl_2]$ indicates that the complex is non-electrolytic [20]. Moreover, the results show that the metal complexes have comparatively low melting points (168°C - 254°C) suggesting the weakness of the bond between the metal ions and **L**. The structure of **L** is represented as shown in **Figure 1**.

3.2. Infrared Spectra

The IR spectrum of **L** in KBr (**Figure S1**) shows several bands at 3315, 3296 and 3131 cm⁻¹ assigned to $v_{as}(NH_2)$, $v_s(NH_2)$ and v(NH) vibrations, respectively. The observation of broad weak bands in the 1940 - 1800 and 2755 - 2500 cm⁻¹ region suggests the presence of intra-molecular hydrogen bonding of the types O-H....N and/or N-H....O [21] [22]. The bands observed at 1705 sh, 1635 sh and 1539s cm⁻¹ are assigned to v(C=O), $v(NH_2)$ and v(N-C-O) vibrations, respectively. The observation of the former two bands as shoulder bands suggests these

Figure 1. Malonohydrazide (L; MDH).

groups are taken part in hydrogen bonding. The results suggest that the first type of the hydrogen bonding (O-H...N) is more likely occurred. All these foundations suggest that **L** (MDH) can be represented in **Figure 2**.

The mode of bonding was determined by comparing the IR spectra of **L** with its complexes (Cu²⁺ and Co²⁺). The IR spectra of the complexes obtained by chemical method with the general formulae, [Cu(**L**)Cl₂] (**Figure S2**), [Co(**L**)₂(H₂O)Cl]Cl (**Figure S3**), [Cu(**L**)₃]Cl₂·½EtOH (**Figure S4**) and [Co(L)₃]Cl₂ (**Figure S5**) indicate that the **L** behaves in a bidentate manner and coordinates *via* the two carbonyl groups forming six-membered ring around the metal ions. The negative shifts of these two bands to lower wavenumbers show the involvement of both these groups in bonding. The most important assignments IR bands for **L** and its metal complexes are listed in **Table 1**. Also, the ligand behaves in bidentate manner *via* the carbonyl oxygen (CO) and the amino (NH₂) groups in case of the complexes with the general formula, [M(L)₃]I₂·XS (M = Cu²⁺, Co²⁺ and XS = zero in case of Cu²⁺ while XS = ½EtOH·2H₂O in case of Co²⁺).

3.3. ¹H-NMR Spectra

The ¹H-NMR spectrum of **L** in d₆-DMSO displays four signals at 10.3, 9.9, 9.3 and 3.9, relative to TMS (**Figure 3**). These signals are assigned to NH₂ (hydrogen-bonded), NH₂ (free), NH (free) and CH₂ protons, respectively. The results are taken as strong evidence for the existence of hydrogen bonding between CO and NH₂ groups and coincide with the results of IR spectra. The former three signals disappear on adding D₂O as shown in **Figure S6**.

3.4. Electronic Spectra and Magnetic Data

The Cu²⁺ and Co²⁺ complexes with the general formulae, $[Cu(L)Cl_2]$ (**Figure S7**), $[Co(L)_2(H_2O)Cl]Cl$ (**Figure S8**), $[Cu(L)_3]Cl_2 \cdot \frac{1}{2}EtOH$ (**Figure S9**) and $[Co(L)_3]Cl_2$ (**Figure S10**), were carried out in Nujol mull. The spectrum of the Cu²⁺ complex, $[Cu(L)_3]Cl_2 \cdot \frac{1}{2}EtOH$, shows a band at 14368 cm⁻¹ attributed to ${}^2E_g \rightarrow {}^2T_{2g}$ transition [19] in a distorted-octahedral geometry around the Cu²⁺ ion. The value of magnetic moment is 2.0 BM is taken as additional evidence for the existence of distorted-octahedral geometry around the Cu²⁺ ion. On the other hand, the value of magnetic moment of the Co²⁺ complexes, $[Co(L)_2Cl_2]Cl$ (5.2 BM) and $[Co(L)_3]Cl_2$ (4.9 BM) suggests the paramagnetic nature of the two complexes and the existence of d⁷-configuration around the Co²⁺ ion. Also, the data suggest that

Figure 3. ¹H-NMR spectrum of L in d_6 -DMSO.

Table 1. The most important IR bands of MDH and its complexes.

Compound	$\nu(OH)$ solvent	$\nu_{as}(\mathrm{NH_2})$	$_{\nu s}(\mathrm{NH_2})$	ν(NH)	ν(CO)	ν(N-C-O)	ν(M-N)
L ¹ ,MDH	-	3320	3156	2945	1705 _{sh}	1494	
$[Cu(\mathbf{L})Cl_2]$	-	3487	3209	3114	1689	1602	430
[Co(L) ₂ (H ₂ O)Cl]Cl	-	3467	3370	3330	1650	1550	453
$[Cu(\mathbf{L})_3]Cl_2\cdot\frac{1}{2}EtOH$	3444	3410	3194		-	1642	435
$[Co(L)_3]Cl_2$	-	3447	3200	3055	1669	1628	440
$[Cu(L)I_2]\cdot 2H_2O$	3445	3411	3278		-	1661	429
$[\text{Co}(\text{L})(\text{H}_2\text{O})_2\text{I}_2]$	-	3435	3320	3090	1660	1615	435
$[Co(L)_3]I_2 \cdot \frac{1}{2}EtOH \cdot 2H_2O$	3450	3420	3365	3130	1675	1620	425
$[Cu(L)_3]I_2$	-	3410	3320	3110	1660	1610	440

Figure 4. Structure of [Cu(**L**)Cl₂].

Figure 5. Structure of $[Co(\mathbf{L})(H_2O)_2Cl_2]$.

Figure 6. Structure of $[Co(\mathbf{L})_2(H_2O)Cl]Cl$.

Figure 7. Structure of $[Cu(L)(H_2O)_2I_2]$.

Figure 8. $[Cu(L)_3]I_2$ (X=O) and $[Co(L)_3]I_2$ ·½EtOH·2H₂O.

no oxidation of Co^{2+} to Co^{3+} ion as reported earlier by Mostafa *et al.* [21]. The electronic spectrum of $[\text{Co}(\mathbf{L})_2\text{Cl}_2]\text{Cl}$ in Nujol mull shows three bands in the 15,700, 19,840 and 21,740 - 28,900 cm⁻¹ regions attributed to the ${}^3\text{T}_{1g} \Rightarrow {}^3\text{T}_{2g}$, ${}^3\text{T}_{1g} \Rightarrow {}^3\text{T}_{2g}$ and ${}^3\text{T}_{1g} \Rightarrow {}^3\text{T}_{1g}$ transitions, respectively, in a high-spin octahedral Co²⁺ system. The observation of these three bands may also suggest that the complexes have *trans*-configuration [22] [23]. All the above foundations suggest representative structures for the isolated complexes with the general formulae, $[\text{Cu}(\mathbf{L})\text{Cl}_2]$, $[\text{Co}(\mathbf{L})(\text{H}_2\text{O})\text{cl}]_2$], $[\text{Co}(\mathbf{L})_2(\text{H}_2\text{O})\text{Cl}]$, $[\text{Cu}(\text{L})(\text{H}_2\text{O})_2\text{I}_2]$ and $[\text{M}(\text{L})_3]\text{I}_2\cdot\text{X}$ (M = Cu²⁺ or Co²⁺; X = O in case for Cu²⁺ and X = $\frac{1}{2}\text{EtOH}\cdot2\text{H}_2\text{O}$ in case of Co²⁺ are shown in **Figures 4-8**, respectively.

4. Conclusion

In continuation of our earlier work on tribochemical reactions and the role of metal ions as well as the ligand used in reduction of Cu^{2+} and oxidation of Co^{2+} , we extend our work to include malonic acid dihydrazide **(L)** with Cu^{2+} and Co^{2+} by chemical and tribochemical reactions. The ligand coordinates in a bidentate manner towards the metal ions. Also, the results indicate the substitution of the chloride by iodide ions has occurred in Cu^{2+} and Co^{2+} complexes. Moreover, the reduction of Cu^{2+} to Cu^{+} and the oxidation of Co^{2+} to Co^{3+} have not been occurred and confirmed by chemical, spectral and magnetic measurements.

References

- Prakash, G., Vinod, K.C.H. and Sangamesh, A.P. (2009) Synthesis, Spectral Characterization, in-Vitrmicrobiological Evaluation and Cytotoxic Activities of Novel Macrocyclicbis-Hydrazone. *Medicinal Chemistry*, 2, 1-8.
- [2] Kriza, A., Ababel, L.V. and Cioatera, N. (2010) Synthesis and Structural Studies of Complexes of Cu, Co, Ni and Zn with Isonicotinic Acid Hydrazide and Isonicotinic Acid (1-NaphthylMethylene) Hydrazide. *Journal of the Serbian Chemical Society*, 75, 229-242. <u>https://doi.org/10.2298/JSC1002229K</u>
- [3] Sondhi, S. Dinodia, M. and Kumar, A. (2006) Synthesis, Anti-Inflammatory and Analgesic Activity Evaluation of some Amidine and Hydrazone Derivatives. *Bioor*-

ganic & Medicinal Chemistry, **14**, 4657-4663. https://doi.org/10.1016/j.bmc.2006.02.014

- [4] Bredihhin, A., Groth, U.M. and Mäeorg, U. (2007) Formation and Use of a Nitrogen Dianion for Selective Hydrazine Alkylation Provides a Fast and Easy Access to Substituted Hydrazines, Which Are Widely Used As Drugs, Pesticides, and Precursors for a Variety of Compounds in Organic Synthesis. Organic Letters, 9, 1097-1099. <u>https://doi.org/10.1021/o1070026w</u>
- [5] Tšubrik, O., Sillard, R. and Mäeorg, U. (2006) Excellent Regioselectivity Is Observed in the Addition of Diverse Organometallic Nucleophiles to Unsymmetrical Azo-Compounds. Primary/Secondary/Tertiary Alkyl, Aryl and Heteroaryl Substituents Were Introduced This Way in High Yields. *Synthesis*, 5, 843-846.
- [6] Bredihhin, A. and Mäeorg, U. (2007) Alkylation of Hydrazine Using a Polyanion Strategy Provides a Fast and Convenient Access to Multialkylated Hydrazine Derivatives. Scope and Limitations of the New Method Are Also Investigated. Organic Letters, 9, 4975-4977. <u>https://doi.org/10.1021/ol702234s</u>
- [7] Kucukguzel, S.G., Mazi, A., Sahin, F., Ozturk, S. and Stables, J. (2003) Synthesis and Biological Activities of Diflunisal Hydrazide-Hydrazones. *European Journal of Medicinal Chemistry*, **38**, 1005-1013. <u>https://doi.org/10.1016/j.ejmech.2003.08.004</u>
- [8] Narang, R., Narasimhan, B. and Sharma, S. (2012) A Review on Biological Activities and Chemical Synthesis of Hydrazide Derivatives. *Current Medicinal Chemistry*, 19, 569-612. https://doi.org/10.2174/092986712798918789
- [9] Susan, M.A., Marc, O., David, P. and Ann, M. (2003) Mechanism of Horseradish Peroxidase Inactivation by Benzhydrazide: A Critical Evaluation of Arylhydrazidesas Peroxidase Inhibitors. *Biochemical Journal*, 375, 613-621. https://doi.org/10.1042/bj20021936
- [10] Bredihhin, A., Groth, U.M. and Mäeorg, U. (2007) Formation and Use of a Nitrogen Dianion for Selective Hydrazine Alkylation Provides a Fast and Easy Access to Substituted Hydrazines, Which Are Widely Used as Drugs, Pesticides and Precursors for a Variety of Compounds in Organic Synthesis. *Organic Letters*, 9, 1097-1099. <u>https://doi.org/10.1021/o1070026w</u>
- [11] Bredihhin, A. and Mäeorg, U. (2007) Alkylation of Hydrazine using a Polyanion-Strategy Provides a Fast and Convenient Access to Multialkylated Hydrazine Derivatives. Scope and Limitations of the New Method Are Also Investigated. *Organic Letters*, 9, 4975-4977. <u>https://doi.org/10.1021/ol702234s</u>
- [12] Singh, P., Goel, R.L. and Singh, B.P. (1975) Synthesis, Characterization and Biological Activity of Schiff Bases. *Journal of the Indian Chemical Society*, **52**, 958-959.
- [13] Mahindra, A.M. and Fisher, J.M. (1983) Rabinovitz. Bathocuproine Sulphonate: A Tissue Culture-Compatible Indicator of Copper-Mediated Toxicity. *Nature (London)*, **303**, 64-69. <u>https://doi.org/10.1038/303064a0</u>
- Berkessel, A., Bolte, M.T. and Nemann, L.S. (1996) Synthesis and X-Ray Crystal Structure of the First Mononuclear Nickel(II) Alkane Thiolate Complex with a Mixed (S,N,N,O) Ligand Field. *Chemische Berichte*, **129**, 1183-1189. https://doi.org/10.1002/cber.19961291007
- [15] Kolodziej, A.F. (1994) The Chemistry of Nickel-Containing Enzymes. Progress in Inorganic Chemistry, 41, 493-495.
- [16] Aggarwal, R.C. and Singh, B. (1976) Synthesis and Structural Studies of Simple and Mixed Acid Dihydrazide Complexes of Oxovanadium (IV). *Transition Metal Chemistry*, 1, 161-166.

- [17] Ahmed, A.D., Mandal, P.K. and Chaaudhuri, N.R. (1966) Metal Complexes of Malonic Dihydrazide. *Journal of Inorganic and Nuclear Chemistry*, 28, 2951-2959. <u>https://doi.org/10.1016/0022-1902(66)80022-2</u>
- [18] Vogel, A.I. (1961) A Text Book of Quantitative Inorganic Chemistry. Longmans, London.
- [19] Lewis, L. and Wilkins, R.G. (1960) Modern Coordination Chemistry. Interscience, New York.
- [20] Geary, W.J. (1971) The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. *Coordination Chemistry Reviews*, 7, 81-122. <u>https://doi.org/10.1016/S0010-8545(00)80009-0</u>
- [21] Al-Ashqar, S.M. and Mostafa, M.M. (2008) Synthesis of Some Novel Co^{II} and Co^{III} Complexes by Tribochemical Reactions using KI with Some Derivatives of Thiose-micarbazide Complexes Derived from Girard's T and P. *Spectrochimica Acta*, **71**, 1321-1326. <u>https://doi.org/10.1016/j.saa.2008.04.003</u>
- [22] Burger, K., Ruff, I. and Ruff, F. (1965) Some Theoretical and Practical Problems in the Use of Organic Reagents in Chemical Analysis-IV Infrared and Ultraviolet Spectrophotometric Study of the Dimethylglyoxime Complexes of the Transition Metals. *Journal of Inorganic and Nuclear Chemistry*, 27, 179-190. https://doi.org/10.1016/0022-1902(65)80208-1
- [23] Lever, A.B.P. (1984) Inorganic Electronic Spectroscopy. Elsevier, Amsterdam.

Supplementary

Figure S1. IR spectrum of L in KBr.

Figure S2. IR spectrum of $[Cu(\mathbf{L})Cl_2]$ in KBr.

Figure S3. IR spectrum of $[Co(\mathbf{L})_2(H_2O)Cl]Cl$ in KBr.

Figure S4. IR spectrum of $[Cu(\mathbf{L})_3]Cl_2 \cdot \frac{1}{2}EtOH$ in KBr.

Figure S5. IR spectrum of $[Co(\mathbf{L})_3]Cl_2$ in KBr.

Figure S7. UV spectrum of $[Cu(\mathbf{L})Cl_2]$ in Nujol.

Figure S9. UV spectrum of $[Cu(\mathbf{L})_3]Cl_2 \cdot \frac{1}{2}EtOH$ in Nujol.

Figure S10. UV spectrum of $[Co(L)_3]Cl_2$ in Nujol.