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ABSTRACT 

The B7 family member B7-H3 is broadly ex- 
pressed in many tissue and tumor types. B7-H3 
expression is induced on some immune cells; 
however, its immunological function remains 
controversial, because both immunoenhancing 
and immunoinhibitory effects have been re- 
ported in human and mouse systems. We have 
previously reported the following: 1) murine 
B7-H3 specifically bound to Triggering receptor 
expressed on myeloid cells (TREM)-like tran- 
script 2 (TLT-2, TREML2), a member of the TREM 
family of receptors; and 2) the B7-H3:TLT-2 
pathway up-regulated T cell responses. However, 
the expression and function of human TLT-2 has 
not yet been clarified. A recent study found no 
evidence to support the existence of an interact- 
tion between human B7-H3 and TLT-2. In this 
study, we demonstrated that human B7-H3 binds 
to TLT-2 and augments T cell responses. Human 
and mouse B7-H3Ig chimeric proteins cross- 
interacted with both human and mouse species 
of TLT-2-transduced cells. Human TLT-2 was 
expressed on freshly isolated, peripheral blood 
B cells and monocytes, and subpopulations of 
CD4+ and CD8+ T cells. Human TLT-2 expression 
on T cells did not correlate with naïve or memory 
phenotypes and was diminished after culture, 
despite the presence of mitogenic stimuli. Con- 
stitutive TLT-2 expression on monocytes was 
also down-regulated after culture. Human B7-H3 
transfectants augment IL-2 production from 
TLT-2-transduced T cell hybridomas, and IFN-γ 
production from peripheral blood CD4+ and CD8+ 
T cells. The enhanced responses were inhibited 
by the addition of anti-TLT-2 mAbs, suggesting 
TLT-2-mediated costimulatory effect. Our results 

demonstrate the existence of a functional inter- 
action between human B7-H3 and TLT-2, and the 
restricted expression of TLT-2 on T cells and 
monocytes. 
 
Keywords: B7-H3; Co-Signal Molecule; T Cell; 
TLT-2 

1. INTRODUCTION 

A T cell response is triggered by interaction with anti- 
gen-presenting cells. This response is positively or nega- 
tively modulated by various co-signal molecules [1-3]. 
B7-H3 (CD276) is a member of the B7 family, which 
was originally identified as costimulatory molecules for 
T cell activation [4]. B7-H3 exists in 2 forms in hu- 
mans—a majority possesses 4 immunoglobulin-like do- 
mains (4Ig), while a minority possesses 2Ig—but only in 
1 form (2Ig) in mice [5-7]. No functional difference has 
been observed between the 2 forms of B7-H3 [5,8]. Hu- 
man B7-H3 is induced on activated monocytes and den- 
dritic cells (DCs) and has also been detected on airway 
and nasal epithelial cells, muscle cells, and synoviocytes 
during inflammatory conditions, as well as on many 
types of tumors [4,7,9-18]. Like the murine system, the 
immunological function of human B7-H3 remains con-
troversial. Human B7-H3Ig fusion protein costimulated 
anti-CD3 mAb-induced proliferation of CD4+ and CD8+ 
T cells and selectively enhanced IFN-γ production. Fur-
thermore, stimulation with B7-H3-transfected tumors 
preferentially up-regulated the proliferation and IFN-γ 
production of CD8+ T-cell responses in vitro [4,19]. 
RNAi knockdown of B7-H3 expression on fibroblast- 
like synoviocytes reduced the production of TNF-γ, IFN-γ 
and IL-2 from cytokine-activated T cells [17]. These re- 
sults suggest costimulatory roles for B7-H3 in T cell- 
mediated immune responses. In contrast, other groups have 
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demonstrated that both forms of human B7-H3Ig inhib- 
ited cellular proliferation and cytokine production (e.g., 
IFN-γ, IL-2, and IL-10) by CD4+, CD8+, and naïve/pre- 
activated human T cells [5,8]. Knockdown of B7-H3 
expression in muscle cells enhanced CD8+ T cell-specific 
lysis [18]. Expression of tumor-associated B7-H3 and its 
correlation with clinical status, pathological grade, and/or 
survival rate have been extensively studied. Studies ex- 
amining the tumorigenic activity of B7-H3—including 
carcinomas of the prostate [14,20], kidney [21], lung [13], 
hypopharynx [22], colon [23], stomach [12] and pancreas 
[24]—revealed that tumor-associated B7-H3 correlated 
with higher tumor grade, lymph node- or distant-metas- 
tasis, fewer tumor-infiltrating lymphocytes (TILs), and/or 
poor survival. Only one report on pancreatic cancer has 
suggested a stimulatory role for B7-H3 in antitumor im- 
mune responses by demonstrating the correlation be- 
tween tumor-associated B7-H3 and higher TILs and im- 
proved prognosis [25]. 

Triggering receptor expressed on myeloid cells (TREM) 
and TREM-like receptors are a structurally related family 
of proteins encoded by genes clustered on mouse chro- 
mosome 17C and human chromosome 6p21 [26,27]. 
They are expressed on a variety of innate immune cells 
of myeloid lineage, including neutrophils, macrophages, 
myeloid dendritic cells, microglia, osteoclasts, and platelets. 
Unlike other TREM family members, TREM-like tran- 
script-2 (TLT-2, TREML2) is expressed on immune cells 
of lymphoid lineage (e.g., T and B cells) as well as mye-
loid cells; moreover, unlike TREM1 and TREM2, TLT-2 
does not bind to adaptor molecules such as immunore- 
ceptor tyrosine-based activation motif (ITAM)-contain- 
ing DAP12 [27,28]. Expression of mouse TLT-2 on neu- 
trophils and macrophages is up-regulated in response to 
inflammation; TLT-2 may contribute to innate cell acti- 
vation and chemotaxis [28,29]. We reported previously 
that murine TLT-2 is a counter-receptor for mouse B7-H3, 
and the TLT-2:B7-H3 pathway enhances T cell responses 
in vitro and in vivo [30]. TLT-2 is constitutively ex- 
pressed on CD8+ T cells and induced on CD4+ T cells 
after stimulation. Transduction of B7-H3 into B7-H3null-low 
tumor cells efficiently enhanced antitumor responses by 
enhancing effector CD8+ T-cell function; blockade of the 
B7-H3:TLT-2 pathway accelerated the growth of tumors 
that express endogenous B7-H3 [31]. In tumor-bearing 
mice, TLT-2 was preferentially expressed on CD8+ T 
cells in the regional lymph node, but was down-regulated 
in TILs. Recently, it was demonstrated that both forms of 
human B7-H3Ig did not bind to human TLT2, and mouse 
B7-H3Ig did not bind to mouse TLT-2 [8]. In this study, 
however, we demonstrate that human and mouse B7-H3Ig 
cross-interact with both human and mouse TLT-2 species, 
and that interactions of human TLT-2 with human B7-H3 
additionally costimulate T cell activation.  

2. MATERIAL AND METHODS 

2.1. Cell Lines 

Human T lymphoma cell lines (Jurkat, Molt4, PEER, 
and YT2C2), Burkitt’s leukemia cell lines (Daudi, Raji, 
and Ramos), EBV-transformed B lymphoblastoid cell 
line (Nalm-6 and JY), myeloid and histiocytic leukemia 
cell lines (THP-1 and U937), and a pre-B cell lymphoma 
line (697) were used. All human cell lines, murine mas-
tocytoma P815 cells, and T cell hybridoma DO11.10 
cells were cultured in RPMI1640 media containing 10% 
fetal bovine serum and antibiotics. 

2.2. Gene Transduction and Chimeric  
Fusion Proteins 

Full-length human 4IgB7-H3 (CD276) and human 
TLT-2 (TREML2) cDNA were isolated by RT-PCR from 
a renal adenocarcinoma cell line (ACHN) and peripheral 
blood CD8+ T cells, respectively, as described previously 
[32]. The cDNA was subcloned into the pMKITneo ex- 
pression vector and the pMXs-IG and pMXs-neo retro- 
viral vectors (kindly provided by Dr. T. Kitamura, Uni-
versity of Tokyo). In some experiments, both mouse and 
human TLT-2 were tagged with a FLAG sequence on 
N-termini excised from the leader sequence by PCR am- 
plification of the corresponding regions. The amplified 
cDNA was ligated onto the pMXs vectors containing 
human CD8A leader sequence. The gene-transduced cell 
lines were established as previously described [30]. Hu- 
man B7-H3Ig (hB7-H3Ig) (consisting of human B7-H3 
amino acids 1 - 458 and human IgG1 Fc) and mouse 
B7-H3Ig (mB7-H3Ig) were prepared as described previ- 
ously [33].  

2.3. Generation of MAbs against Human 
B7-H3 and TLT-2 

Hybridomas against human B7-H3 (MIH39 and 
MIH42, both mouse IgG1, κ) or human TLT-2 (MIH56, 
mouse IgM, κ; MIH59, IgG1, κ; MIH60, IgG2b, κ 
MIH61, IgG1, κ) were generated by fusing P3U1 mye- 
loma and immunized splenocytes, as described previ-
ously [32]. An anti-mouse/human B7-H3 mAb (MIH32, 
rat IgG2a, κ) was generated as described previously [30]. 
Human B7-H3/P815 and human TLT-2/DO11.10 cells 
were used for immunization. mAbs were purified from 
the culture supernatant with a Protein G column, and 
their purity was verified by SDS-PAGE. FITC-conjuga- 
tion and biotinylation were performed using a standard 
method. 

2.4. MAbs and Flow Cytometry  

mAbs against human CD3 (OKT3), CD4 (OKT4), 
CD8 (OKT8), CD14 (63D3), CD19 (HIB19), and 
CD45RA (HI100), and murine CD3 (145-2C11) were 

Copyright © 2012 SciRes.                                                                    OPEN ACCESS 



M. Hashiguchi et al. / Open Journal of Immunology 2 (2012) 9-16 

Copyright © 2012 SciRes.                                                             

11

used. Isotype control Ig (mouse IgG1, MOPC21, Sigma- 
Aldrich) was used for the control staining. For bioti-
nylated mAbs, phycoerythrin (PE)- or allophycocyanin 
(APC)-conjugated streptavidin was used for detection. 
All fluorochrome-conjugated or biotinylated mAbs and 
reagents were obtained from eBioscience or BD PharM- 
ingen, unless otherwise noted. Flow cytometry was per- 
formed using FACSCalibur (BD Biosciences) and FlowJo 
(TreeStar) software. 

in the presence of 1 µg/ml anti-CD3 mAb in 96-well 
flat-bottom plates for 24 h and 3 days, respectively. The 
production of IL-2 or IFN-γ in the culture supernatants 
was measured using Ready-Set-Go ELISA systems (eBio- 
science), as described previously [32]. In some experi- 
ments, isotype control Ig (mouse IgG1, MOPC21, Sigma- 
Aldrich) or anti-TLT-2 mAb (MIH59 and MIH60) was 
added at indicated concentrations at the start of the cul- 
ture. The statistical differences were evaluated using Mann- 
Whitney U test. 

2.5. Cell Preparation and T Cell Stimulation 
Assay  3. RESULTS 

Peripheral blood mononuclear cells (PBMCs) and 
CD4+ and CD8+ cells were isolated as described previ- 
ously [32]. PBMCs were stimulated with 2 µg/ml phyto- 
hemagglutinin (PHA; Sigma-Aldrich) or 10 µg/ml LPS 
(Sigma-Aldrich) for 3 or 7 days, and subjected to flow 
cytometry analyses. Parental DO11.10 and TLT-2/DO11.10 
cells (both 1 × 104/well) and CD4+ and CD8+ T cells (1 × 
105/well) were stimulated with the indicated density of 
mitomycin C-treated parental P815 or B7-H3/P815 cells  

3.1. Human B7-H3 Binds TLT-2 

To examine the binding of human B7-H3 to TLT-2, 
hTLT-2-transduced DO11.10 cells were generated, and 
graded doses of h4IgB7-H3Ig were added to parental 
DO11.10 and hTLT-2/DO11.10 cells before analysis by 
flow cytometry. Human B7-H3Ig bound to hTLT-2/DO11. 
10, but not to parental DO11.10, in a dose-dependent 
manner (Figure 1(a)). When hTLT-2/DO11.10 cells were  

 

 

Figure 1. B7-H3 specifically binds to TLT-2 in humans. (a) Parental DO11.10 or hTLT-2/ 
DO11.10 cells were incubated with graded doses (0.1, 0.3, 1, or 3 μg) of biotinylated 
human B7-H3Ig, followed by streptavidin-PE. Representative histogram profiles are 
shown, with the control histograms nearest the ordinate (shaded); (b) Human TLT-2/ 
DO11.10 cells were preincubated with control mouse Ig (blue line) or anti-TLT-2 mAb 
(MIH56, red line) before staining with 1 μg of B7-H3Ig as in (a). The control histogram 
without staining with B7-H3Ig is shown nearest the ordinate (shaded); (c) Parental 
DO11.10, mouse or human TLT-2-transduced DO11.10 cells were incubated with 1 μg of 
biotinylated control human IgG1, mouse B7-H3Ig, or human B7-H3Ig, or stained with 
biotinylated anti-murine (MIH47) or human (MIH61) TLT-2 mAb, followed by strepta-
vidin-PE. Representative histogram profiles are shown. 
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pretreated with anti-hTLT-2 mAb (MIH56) prior to in- 
cubation with h4IgB7-H3Ig, the binding of hB7-H3Ig to 
cell surface hTLT-2 was partially inhibited (Figure 1(b)). 
To examine the cross-interaction between species, the 
binding of m2IgB7-H3 and h4IgB7-H3Ig onto mouse or 
human TLT-2/DO11.10 cells was examined. Mouse 2IgB7- 
H3Ig bound to both mouse and human TLT-2/DO11.10, 
but not to parental DO11.10 (Figure 1(c)). Similarly, 
human 4IgB7-H3Ig bound to both human and mouse 
TLT-2/DO11.10, but not to parental DO11.10. Bioti- 
nylated control human IgG did not react with any TLT-2- 
transduced cells. Anti-mouse TLT-2 mAb (MIH47) spe- 
cifically bound to mouse TLT-2, but not to human TLT-2; 
anti-human TLT-2 mAb (MIH61) specifically bound to 
human TLT-2, but not to mouse TLT-2 (Figure 1). These 
results indicate that both human and mouse B7-H3 
cross-interacted between mouse and human TLT-2 spe- 
cies, despite the observation that the specificities of 
mAbs against their respective species-specific TLT-2 
forms were maintained. Because the extracellular do- 
mains of mouse and human TLT-2 share a 52% homol-
ogy at the amino acid level, the latter result was pre- 
dictable.  

3.2. TLT-2 Expression 

Six hybridomas producing mAbs against human TLT-2 
(MIH56-MIH61) were generated. All these mAbs spe- 
cifically reacted with human TLT-2-transduced cell lines 
(DO11.10, J558L, and 2B4), but not with the parental 
cells (Figure 1(c) and data not shown). MIH61 showed 
the highest relative reactivity to cell surface TLT-2; 
therefore, MIH61 was used in subsequent flow cytomet- 
ric analyses. Analysis of freshly isolated peripheral blood 
lymphocytes identified a subpopulation of both CD4+ 
and CD8+ T cells that constitutively expressed TLT-2; a 
comparative analysis of CD45RA+ and CD45RA– frac- 
tions did not show preferential expression in the naïve or 
memory phenotype (Figure 2(a)). By comparison, CD19+ 
B cells and CD14+ monocytes expressed substantially 
higher levels of TLT-2. PBMCs were stimulated with 
either PHA for T cells or LPS for B cells and monocytes; 
TLT-2 expression on days 3 and 7 after stimulation was 
examined. Cell surface TLT-2 expression on CD4+ and 
CD8+ T cells was gradually down-regulated even in the 
medium-alone culture and mostly diminished on day 7. 
TLT-2 expression on CD19+ B cells did not clearly 
change, but LPS stimulation appeared to induce slightly 
decreased TLT-2 expression. TLT-2 expression on CD14+ 
monocytes was also down-regulated in culture with or 
without LPS, although LPS stimulation maintained rela- 
tively constant TLT-2 expression levels at day 3. These 
results indicate that human TLT-2 is constitutively ex- 
pressed on freshly isolated PBMCs that include CD4+ 
and CD8+ T cells, B cells, and monocytes; however,  

 

Figure 2. TLT-2 expression; (a) Freshly isolated PBMCs from 
healthy donors or activated PBMCs stimulated with 2 μg/ml 
PHA or 10 μg/ml LPS for T cells or B cells and mono- cytes, 
respectively, for 3 and 7 days were stained with FITC-anti- 
CD45RA and PE-anti-CD4 or PE-anti-CD8, or FITC-anti- 
CD14 and PE-anti-CD19 mAbs in combination with bioti- 
nylated anti-TLT-2 mAb, followed by streptavidin-APC. An 
electronic gate was set on an indicated maker of lymphocytes; 
TLT-2 expression is shown as histogram profiles; (b) T cell 
lines (Jurkat, Molt4, PEER, and YT2C2), B cell lines (697, 
Daudi, JY, Nalm-6, Raji, and Ramos), and monocyte lines 
(THP-1 and U937) were stained with biotinylated anti-TLT-2 
mAb (MIH61), followed by streptavidin-PE and analyzed by 
flow cytometry. Representative histogram profiles are shown 
with the control histograms nearest the ordinate (shaded). 
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TLT-2 expression on T cells and monocytes was down- 
regulated in culture with or without specific stimuli. Our 
results suggest that cell surface TLT-2 expression was not 
stable and was easily down-regulated. 

TLT-2 expression on human cell lines was variable, 
with substantial expression observed in several cell lines 
(Molt4, PEER, THP-1, and U937) (Figure 2(b)). Despite 
relatively stable TLT-2 expression levels on peripheral 
blood-derived B cells, most B cell lines did not express 
TLT-2. Our results from both humans and mice [30,31] 
demonstrate that although TLT-2 expression is dominant 
on B cells and macrophages/monocytes, select condi- 
tioned T cells express substantial levels of TLT-2; more- 
over, continuous stimulation down-regulates rather than 
up-regulates TLT-2 expression.  

3.3. B7-H3 and TLT-2 Up-Regulates Cytokine 
Response of T Cells 

The functional roles of human B7-H3:TLT-2 pathway 
on T cell activation were examined. We previously re- 
ported marked enhancement of IL-2 production by 
stimulation of mTLT-2/DO11.10 cells with mB7-H3/P815  

plus anti-CD3 mAb [30]. We also established a human 
version of the anti-CD3 mAb-induced costimulation as- 
say system using P815 cells [30,34]. Human 4IgB7- 
H3-transfected P815 (hB7-H3/P815) cells expressed 
markedly higher levels of B7-H3 than the parental P815 
cells, but comparable levels of CD54 (ICAM-1)—a 
critical adhesion molecule—and FcγR (CD16/32) (Figure 
3(a)). Human TLT-2/DO11.10 was stimulated with hB7- 
H3/P815 cells in the presence of anti-CD3 mAb. The 
subsequent increase in IL-2 production was dependent on 
hB7-H3/P815 cell density, which was efficiently inhib- 
ited by the addition of either one of 2 different anti- 
TLT-2 mAbs (MIH59 and MIH60) (Figure 3(b), left). 
The anti-TLT-2 mAb (MIH60) inhibited IL-2 production 
from TLT-2/DO11.10 cells in a dose-dependent manner, 
whereas no inhibitory effects were observed in IL-2 
production from DO11.10 cells lacking TLT-2 (Figure 
3(b), right). These results suggest involvement of the 
TLT-2 pathway in B7-H3-induced IL-2 production. The 
role of the TLT-2 pathway in peripheral blood CD4+ and 
CD8+ T cell activation was subsequently examined. 
Stimulation with hB7-H3/P815 cells slightly enhanced  

 

 

Figure 3. B7-H3:TLT-2 ligation up-regulates cytokine production from T cells. (a) The expression levels of CD54, 
CD16/32, and B7-H3 on parental or hB7-H3/P815 were examined with PE-anti-CD54, biotin-anti-CD16/32, or bio-
tin-anti-mouse/human B7-H3 mAb (MIH32), followed by streptavidin-PE. Representative histogram profiles are shown 
with the control histograms nearest the ordinate (shaded); (b) hTLT-2/DO11.10 cells were stimulated with 1 μg/ml of 
anti-CD3 mAb in the presence of hB7-H3/P815 at the indicated cell density in the presence of 10 μg/ml of control Ig or 
anti-TLT-2 mAb (MIH59 or MIH60) (left). Parental DO11.10 or hTLT-2/DO11.10 cells were stimulated with 1 μg/ml 
anti-CD3 mAb plus 2 × 104/well hB7-H3/P815, in the presence of graded doses of anti-TLT-2 mAb (MIH60) (right). The 
result observed with 10 μg/ml of control mAb was similar to that observed in the absence of anti-TLT-2 mAb; (c) 1 × 105 
of CD4+ (left) or CD8+ (right) T cells peripheral blood from a healthy donor were stimulated with 1 μg/ml of anti-CD3 
mAb plus 4 × 104 of parental P815 or hB7-H3/P815 in the presence of 10 μg/ml control Ig or anti-TLT-2 mAb (MIH60). 
IL-2 (b) and IFN-γ (c) amounts in culture supernatants at days 1 and 4, respectively, were analyzed by ELISA. Data are 
represented as mean ± SD values of triplicate cultures for IL-2 or IFN-γ production ((b) left and (c)) or for percentage of 
maximal IL-2 production on each DO11.10 cell ((b) right). The data shown are representative of at least 2 independent 
experiments. *p < 0.05, compared with control Ig ((b) left and (c)) and with anti-TLT-2 mAb-free cultures ((b) right). 
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IFN-γ production from both CD4+ and CD8+ T cells 
compared with parental P815 cell-stimulated cultures 
(Figure 3(c)). The addition of anti-TLT-2 mAb (MIH60) 
inhibited IFN-γ production that was stimulated with ei- 
ther parental or hB7-H3/P815 cells, but inhibitory effects 
were preferentially evident in the culture with hB7-H3/ 
P815. These results suggest that the TLT-2: B7-H3 path-
way has a costimulatory function in both CD4+ and 
CD8+ T cell activation, as assessed by IFN-γ production. 
Murine mastocytoma P815 cells express low levels of 
endogenous mouse 2IgB7-H3 [30]. Because both mouse 
2IgB7-H3 and human 4IgB7-H3 could bind to human 
TLT-2 (Figure 1(c)), it is possible that interactions oc- 
curred between hTLT-2 and endogenous mB7-H3, which 
were efficiently inhibited by the addition of anti-hTLT-2 
mAbs. Further studies are needed for elucidating this 
hypothesis. Our results thus suggest that the human 
TLT-2:B7-H3 pathway enhances T cell activation. 

4. DISCUSSION 

Similar to our previous observations in mice [30], we 
have demonstrated that a major form of human B7-H3 
(4IgB7-H3) bound to human TLT-2, an interaction that 
costimulated T cell activation. Leitner et al. [8] reported 
that both forms of hB7-H3Ig (4Ig and 2Ig) did not inter- 
act with hTLT-2, and that mB7-H3Ig did not bind to 
mTLT-2. At present, we cannot clearly explain the dis- 
crepancies in the results of the 2 studies. TLT-2 expres- 
sion levels on transfectants, methodologies of prepara- 
tion and purification of fusion proteins, and binding de- 
tection methods by flow cytometry were different be- 
tween the 2 studies. Notably, Leitner et al. performed the 
staining method using unlabeled B7-H3Ig, followed by 
PE-anti-human IgG [8]. This combination of staining 
reagents did not result in substantial positive binding in 
our hands. Our study utilized the system of biotinylated 
B7-H3Ig, followed by PE-streptavidin for amplifying the 
binding process. As Leitner et al. had observed using 
TLT-2Ig [20], we could not detect substantial binding 
when we used biotinylated mouse TLT-2Ig onto mouse 
B7-H3-transfectants. These results suggest that the bind- 
ing capacity between B7-H3 and TLT-2 is very limited, 
and additional special conditions are required for visu- 
alization of TLT-2Ig binding to B7-H3.  

Consistent with our results in mice, the human TLT-2: 
B7-H3 pathway also showed costimulatory function in 
both CD4+ and CD8+ T cell activation. However, we 
suspect that the functional contribution of TLT-2:B7-H3 
pathway to T cell activation in vivo is very limited, be- 
cause TLT-2 expression on T cells is tightly restricted, 
and B7-H3 expression on antigen-presenting cells is lim- 
ited. The range of detection for costimulatory effects is 
very narrow, even under conditions of very high expres- 
sion levels of B7-H3 and TLT-2 in vitro. Furthermore, in  

the experiments using peripheral blood CD4+ and CD8+ 
T cells and hB7-H3/P815 transfectants, a clear augment- 
tation in proliferative responses was not observed. This 
suggests a unique signaling mechanism via TLT-2 that is 
distinct from CD28- or ICOS (CD278)-mediated signal- 
ing. Indeed, the cytoplasmic domain of TLT-2 includes a 
potential SH3 domain-binding motif [28]. Src family 
molecules and Grb2, which have an SH3 domain, may 
play a role in downstream signaling. Further studies are 
needed for elucidation. 

Our findings never rule out the B7-H3-mediated im- 
mune regulation that is often seen in patients with vari-
ous tissue types of carcinomas. An initial report showed 
that human B7-H3Ig-binding protein was not detected on 
freshly isolated peripheral blood T cells, transiently in- 
duced at 24 h after PHA stimulation, and declined quick- 
ly at 48 h [4]. This expression profile differs slightly 
from the TLT-2 expression profile. In addition, we could 
not detect hTLT-2 on freshly isolated peripheral blood T 
cells using hB7-H3Ig, presumably because of the low 
affinity of the interaction. Another B7-H3-binding re- 
ceptor other than TLT-2 may exist, and this putative re- 
ceptor may induce co-inhibitory signals. In addition to 
membrane-bound B7-H3, soluble B7-H3 (sB7-H3) has 
been detected in sera from healthy donors [35] as well as 
patients with cancer [36,37] and sepsis [38]. sB7-H3 has 
been shown to be released from monocytes, dendritic 
cells, and activated T cells [35]; moreover, a correlation 
between serum sB7-H3 levels and inflammatory cyto- 
kine levels (such as TNF-α and IL-6) has been observed 
in septic patients [38]. Release of sB7-H3 regulates the 
interactions of B7-H3 with its receptors. Presently, we 
have not examined whether sB7-H3 can bind cell surface 
TLT-2. It is possible that the secreted sB7-H3 binds 
TLT-2 on macrophages and neutrophils, and modulates 
innate immune responses or interferes with the binding 
of the membrane form of B7-H3. Although the soluble 
form of TLT-2 has not yet been identified, soluble 
TREM1, TREM2, and TLT-1 receptor have been de- 
tected in sera from patients with infectious diseases and 
often correlates with disease severity [27]. If a soluble 
form of TLT-2 also exists, this may add further complex- 
ity to these signaling pathways. Although we only ex- 
amined the role of TLT-2 on T cells in this study, domi- 
nant expression of TLT-2 in macrophages suggests a 
dominant contribution of TLT-2 to innate immune re- 
sponses. This may affect cell migration and inflamma- 
tory responses, resulting in the modulation of adaptive 
immune responses. Contrasting roles of B7-H3 can pro- 
bably be attributed to the existence of multiple receptors 
and soluble forms. In this study, we have demonstrated 
that human and mouse B7-H3 cross-interact with human 
and mouse TLT-2 species, and the interaction of B7-H3 
with human TLT-2 additionally augments T cell responses. 
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