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Abstract 

This article introduces and evaluates a Soil Trafficability Model (STRAM) de-
signed to estimate and forecast potential rutting depth on forest soils due to 
heavy machine traffic. This approach was developed within the wood-forwarding 
context of four harvest blocks in Northern and Central New Brunswick. Field 
measurements used for model calibration involved determining soil rut 
depths, volumetric moisture content, bulk density, soil resistance to cone pe-
netration (referred to as cone index, or CI), and the dimensionless nominal 
soil cone index (NCI) defined by the ratio of CI over wheel foot print pres-
sure. With STRAM, rut depth is inferred from: 1) machine dimensions per-
taining to estimating foot print area and pressure; 2) pore-filled soil moisture 
content and related CI projections guided by year-round daily weather 
records using the Forest Hydrology Model (ForHyM); 3) accounting for 
within-block soil property variations using multiple and Random Forest re-
gression techniques. Subsequent evaluations of projected soil moisture, CI 
and rut-depth values accounted for about 40 (multiple regression) and 80 
(Random Forest) percent of the corresponding field measured values.  
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1. Introduction 

With the wide-spread use of modern mechanized harvest machinery, forest and 
agricultural planners have to deal with the effects of heavy machine loads on soil 
rutting, compaction, erosion, and subsequent reductions in crop yields (Brady & 
Weil, 2008). Increased soil compaction reduces soil porosity, increases soil ru-
noff, damages and crushes roots, and leads to reduced root growth due to de-
creased soil oxygen levels (Grigal, 2000; Horn et al., 2004; Bassett et al., 2005; 
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Singer & Munns, 2006; Chen & Weil, 2011). Rutting results from combined soil 
compaction and soil displacement. Soil displacement occurs when soils within 
depressions and along slopes are moist to wet at or above field capacity (Raper, 
2005; Naghdi et al., 2009). Depending on their slope orientations, ruts increase, 
decrease, or collect run-off (Sutherland, 2003; Antille & Godwin, 2013; Poltorak 
et al., 2018).  

A measure of soil resistance to penetration, known as cone index (CI), is used 
to assess soil compaction and rutting. This measure varies from weak to strong 
as soil moisture content decreases, and this is particularly so in fine-textured 
soils. In contrast, sandy soils remain friable from wet to dry (Earl, 1997; Vaz, 
2003; Dexter et al., 2007; Tekeste et al., 2008; Vaz et al., 2011; Kumar et al., 2012; 
Jones & Arp, 2017).  

To comply with best forest management practices, various jurisdictions have 
established criteria as to what constitutes a rut. For example, the Province of 
British Columbia (Canada) classifies ruts > 15 cm deep to be a hazardous dis-
turbance. The Pacific Northwest region of the USA defines ruts to be >15 cm 
deep as well (Page-Dumroese et al., 2000). The Province of Alberta considers 
any soil disturbance tracking deeper than 10 cm as ruts (Alberta Forest Prod-
ucts Association, 1994; Van Rees, 2002). A visual representation of minor to 
severe soil disturbance classes including rut depths is provided in Figure A1. 

Earlier rut-depth prediction models by Maclaurin (1990) and Rantala (2001) 
related rut depth as caused by single wheel and single machine passes to the ratio 
of tire footprint pressure over soil resistance to penetration, also referred to as 
nominal cone index, or NCI (Table 1). Scholander (1974) and Saarilahti (2002a) 
extended this approach towards multiple passes. Vega-Nieva et al. (2009) mod-
ified the NCI-based multi-pass regression model by examining the experimental  
 
Table 1. Select rut depth models.  

Rut Depth Parameter Citation Rut Depth Equation 

First wheel pass Maclaurin (1990) 

1.25

0.224
NCI

Z d= ×  

First cycle pass Rantala (2001) 

0.6290.026
NCI

Z = − +  

Multi-pass Scholander (1974) 

1

1
a

nZ Z n= ×  

 
Saarilahti (2002a) ( )

1

1 1
n n n

a a a
n nZ Z Z−= +  

 
Vega-Nieva 
et al. (2009) 

( ) ( )
2

1 0

1

NCI 20 1 1 CF
NCI

pp

n

rZ n= −  

 Sirén et al. (2019) 0 1 2 v 3log MC CI tm tmZ b b M b b u e= + + + + +  

D = wheel diameter; CI = cone index; n = number of passes; NCI = nominal cone index; CF = coarse frag-
ment; M = pass-cumulative machine mass; a, an, b1, b2, b3, p1, p2 = multi-pass coefficients; r1 = site specific 
calibration parameter; um; em = random effects; NR: not reported. 
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data for a sandy soil and a clay loam soil at varying moisture contents, and with 
a wood-forwarding rut-depth data by Meek (1996) suggestion to correct for 
coarse fragment content. A recent study by Sirén et al. (2019) related rut depth 
to number of machine passes, volumetric soil moisture content, and CI. All these 
studies, however, captured only a small portion of field-determined rut depth 
variations whether based on fixed or fixed plus random effects regression mod-
els.  

This article reports on the extent of improving wood-forwarding rut-depth 
modelling based on:  

1) Using field-determined data for soil density, texture, organic matter, 
coarse fragment and weather-inferred ridge-to-valley soil moisture, CI, and 
machine-specific NCI variations for the rut-depth projection purpose. 

2) Employing fixed and random forest regression techniques for optimizing 
these projections. 

3) Selecting four of the eleven harvest blocks described in Jones and Arp 
(2019) for detailed analysis; this involved assessing wood-forwarding tracks across 
two shelterwood cutting blocks and across two commercial thinning blocks in 
Northern and Central New Brunswick, Canada. 

2. Study Locations, Materials and Methods 
2.1. Block Descriptions 

Details regarding the wood-forwarding operations within the four harvest blocks 
chosen for this study are presented in Figure 1 & Figure 2 by location, and in 
Table 2 by block-specific attributes. These blocks are a subset of the 11 blocks 
used by Jones and Arp (2019) for their on- and off-track soil moisture and CI 
study. 
 

 
Figure 1. Block and weather station locations (Blocks 1 to 11), with Blocks 1, 2, 3, and 9 
selected for rut depth determinations following wood forwarding. Background: digital 
elevation model for New Brunswick, 1 m resolution. 
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Figure 2. Plot-specific machine tracks (top) and photos (bottom) for Blocks 1, 2, 3, and 9. 
 

Table 2. Block descriptions: geographical location, forest type, elevation, slope, aspect, soil association, and plot determination 
counts for MC, CI, and rut depths. 

Block 
Lat/Long 
Coord. 

Operation 
Date 

MC/CI 
Sample 

Date 

Rut 
Sample 

Date 

Forest 
Type1 

Tree 
Species2 

Operation3 
Soil 

Association 
Elevation 

(m) 
Slope 

(˚) 
Aspect 

(˚) 
MC/CI 
Plots 

Rut 
Plots 

1 
47˚15'4.071''N 

67˚37'27.102''W 
5/2014 27/5/2014 21/10/2014 SWPL WS CT Victoria 267 2.5 158 56 29 

2 
47˚14'21.825''N 
67˚37'26.918''W 

6/2014 21/10/2014 21/10/2014 SWPL WS CT Victoria 265 3.4 112 28 40 

3 
47˚32'23.622''N 
67˚47'46.291''W 

6/2014 11/6/2014 20/10/2014 IntHW BI/RM SHW Glassville 351 4.6 189 80 75 

4 
47˚14'59.254''N 
67˚37'18.822''W 

5/2014 12/6/2014 - SWPL BS CC McGee 280 3.1 127 46 - 

5 
47˚18'20.725''N 
67˚31'42.636''W 

7/2014 15/7/2014 - SWPL WS CT Glassville 388 9.1 149 33 - 

6 
47˚12'15.037''N 
67˚14'17.548''W 

6/2014 4/6/2014 - MW EH/YB/M SC 
Jacquet 
River 

210 4.6 148 26 - 

7 
46˚12'24.987''N 
67˚15'55.072''W 

6/2014 4/6/2014 - MW EH/YB/M SC 
Jacquet 
River 

203 5.5 158 43 - 

8 
46˚42'51.411''N 
67˚3'38.865''W 

6/2014 19/6/2014 - TolHW SM/YB SHW Juniper 418 4.5 140 54 - 

9 
46˚10'42.560''N 
66˚56'30.534''W 

10/2014 20/8/2014 19/11/2014 TolHW SM/YB CC Long Lake 277 2 182 24 63 

10 
46˚26'23.956''N 
67˚15'24.656''W 

9/2012 19/6/2013 - TolHW SM/YB SHW 
Popple 
Depot 

422 8.9 185 147 - 

11 
46˚20'44.440''N 
67˚15'1.278''W 

10/2012 25/6/2013 - TolHW SM/YB SHW Kingston 319 9.6 214 159 - 

1SWPL: softwood plantation, IntHW: intolerant hardwood, MW: mixedwood, TolHW: tolerant hardwood. 2BS: black spruce; WS: white spruce, BI: birch, 
YB: yellow birch; RM: red maple; SM: sugar maple; EH: eastern hemlock. 3CT: commercial thinning, CC: clear cut, SHW: Shelterwood, SC: select cut. 

https://doi.org/10.4236/ojf.2019.94017


M.-F. Jones, P. Arp 
 

 

DOI: 10.4236/ojf.2019.94017 300 Open Journal of Forestry 
 

Blocks 1 and 2 are within 1 km of each other, and share similar site characte-
ristics. They are located within the Western reach of the Chaleur uplands. Both 
blocks are white spruce (Picea glauca (Moench) Voss) plantations. Block 1 cov-
ers a two hectare area. Block 2 covers 20.8 ha, but was sampled acrossa 3.5 ha 
area. The region has a mean annual temperature of 3.8˚C, with mean January 
and July temperatures at −11.5˚C and 18.2˚C, respectively. Mean annual preci-
pitation amounts to 1110 mm, with 300 mm as snow (Department of Environ-
ment and Climate Change Canada, 2016a). Surficial deposits vary from morainal 
sediments to loamy lodgment tills, underlain by late Ordovician marine clastics. 

Block 3 is a 20.9 ha shelterwood cut located in the southern reach of Notre 
Dame Mountains, within the Appalachians Mountain range. The area has a 
mean air temperature of 3.5˚C, with mean January and July temperatures at 
−12.9˚C to 17.6˚C, respectively. It has a mean precipitation of 1140 mm, with 
310 mm as snow (Department of Environment and Climate Change Canada, 
2016a). This block supports moderate to intolerant hardwood/mixedwood vege-
tation, mostly composed of red maple (Acer rubrum L.), yellow birch (Betula al-
leghaniensis Britt.) and balsam fir (Abies balsamea L.). Bedrock formations in-
volve late Ordovician deep-water marine clastics, with topography ranging from 
gentle, rolling plateaus to steep valleys of hummocky ablation moraines. 

Block 9 is a 25.5 ha shelterwood cut located in the Southern tip of the Mira-
michi highlands, roughly 50 km northwest from the Fredericton, the provincial 
capital for New Brunswick. The area has a mean air temperature of 5.5˚C, with 
mean January and July temperatures at −9.4˚C and 19.4˚C, respectively. Mean 
annual precipitation amounts to 1100 mm, with 250 mm as snow (Department 
of Environment and Climate Change Canada, 2016a). This block supports natu-
ral mixedwood and tolerant hardwoods, including Eastern hemlock (Tsuga ca-
nadensis L. Carrire), yellow birch, sugar maple (Acer Saccharum Marsh.), beech 
(Fagus grandifolia Ehrh.), balsam fir, Eastern white cedar (Thuja occidentalis 
L.), and black spruce (Picea mariana Mill). Surficial deposits vary from morainal 
sediments to ablation and boulder tills, underlain by early Devonian mafic vol-
canic rock and late Ordovician marine clastics. 

2.2. Wood Forwarding 

Three GPS-tracking wood-forwarding machines were used: a John Deere 1510E 
forwarder in Blocks 1 and 2, a John Deere 1110E forwarder in Block 3, and a Ti-
gercat 635D in Block 9 (Table 3). The resulting GPS data were processed to de-
termine the number of passes per same track using point buffering and overlap-
ping tools (Buja, 2012). Studies have shown that the number of wood-forwarding 
passes affects soil structure, compaction, and rut depth (Eliasson, 2005; Am-
poorter et al., 2007; Farzaneh et al., 2012; Jones et al., 2018). Some studies have 
looked at mitigating multiple-pass soil rutting using brushmats (McDonald & 
Sexias, 1997; Labelle et al., 2015). Brushmats were not found along the forward-
ing trails in Blocks 3 and 9, but were present to varying degree in Blocks 1 and 2 
as part of the commercial thinning operation. Studies have also shown that 
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Table 3. Machine specifications (Jones et al., 2018). 

Machine Specs 
JD11 JD15 TC 

Front Rear Front Rear Front Rear 

Vehicle Weight (ton/kN) 16.5/161.81 17.3/169.66 21.4/209.86 

Full Load (ton) 11.0/107.87 12.0/117.68 15/147.10 

Chassis Clearance (cm) 60.0 60.5 63.5 

Wheel Rim (cm) 67.3 67.3 81.3 

Number of Wheels 4 4 4 4 2 4 

Tire type 710/45-26.5 710/45-26.5 35.5Lx32 30.5Lx32 

Accessories Chains Tracks Tracks Tracks Chains Tracks 

Diameter (cm) 134.1 134.1 201.2 184.4 

Section Height (cm) 33.4 33.4 59.9 51.6 

Width (cm) 71.1 71.1 90.2 77.5 

Pressure (max, psi) 32 32 32 

 

lower tire footprint areas due to increasing tire pressure increases rutting (Raper 
et al., 1995; Saarilahti & Antilla, 1999; Saarilahti, 2002b; Jun et al., 2004; Affleck, 
2005; Sakai et al., 2008).  

2.3. Data Sources 

The data needed to process the temporal and spatial modelling of MC, CI, and 
soil rutting refer to:  

1) Daily precipitation (snow and rain) and mean air temperature data, needed 
for the hydrological soil moisture calculations for Blocks 1-3 and Block 9. These 
data were obtained from the airport weather station records at Saint Leonard 
and Fredericton, respectively (Department of Environment and Climate Change 
Canada, 2016a). 

2) Hydrometric stream discharge data, needed to calibrate ForHyM. These 
data were obtained for Blocks 1 - 3 from the nearby Black Brook Watershed Re-
search Site (2014), and for Block 4 from the Nashwaaksis stream data (Depart-
ment of Environment and Climate Change Canada, 2016b). 

3) LiDAR-generated bare-earth elevation data. These were downloaded from 
geoNB’s website at 1 m resolution (GeoNB, 2015). 

4) Digital soil maps (DSM layers) for soil texture (sand, silt and clay content), 
bulk density, coarse fragments, and soil organic matter for top 30 cm of soil, at 
10 m resolution (Furze, 2019).  

5) GPS-recorded machine-clearance pattern, spaced at 10 sec intervals along 
each wood-forwarding track. The generation of these data was described by 
Jones et al. (2018). 

2.4. Field Measurements 

Soil samples as well as volumetric soil moisture (MCv) and cone index (CI) read-
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ings were obtained from the top 15 cm layer of undisturbed mineral soil across 
Blocks 1 to 11 after wood forwarding (Table 2) in the fall of 2014, as described 
in Jones and Arp (2019). The samples were analyzed for texture (sand, silt and 
clay %), coarse fragments (%), organic matter content (%), and bulk density 
(g/cm3). Wood-forwarding rut depths were determined at GPS-recorded inter-
vals along the tracks. The number of passes along the tracks were obtained from 
the GPS-tracked wood-forwarding machine-clearance records (Jones et al., 
2018) through counting the number of passes per same track using digital point 
buffering and overlapping tools (Buja, 2012). 

2.5. Soil Moisture Modelling 

The Forest Hydrology Model ForHyM was used to estimate daily variations in 
pore-filled soil moisture content (MCPS) on the well-drained soils in each block 
(Appendix). The MCPS output so generated served to determine how MCPS 
would have varied at the time of wood forwarding across the terrain of each 
block by way of season- and weather-adjusted cartographic depth-to-water (DTW) 
modelling (Murphy et al., 2009, 2011; White et al., 2012). 

The cross-terrain MCPS projections were originally based on (Vega-Nieva et 
al., 2009; Jones & Arp, 2019):  

( )
( )PS,DTW PS,top

top

1 exp DTW
MC 100 100 MC

1 exp DTW

mcp

mc

mc

k
k

 − −
   = − − ×  − −  

    (1) 

where MCPS,top refers to the pore-filled soil moisture content, DTWtop refers to at 
the highest elevation in each block, kmc and pmc are block-specific calibration pa-
rameters, with MCPS,DTW = 100% along water-filled flow channels where DTW = 
0 m. The MCPS,DTW projections inside and outside wood-forwarding tracks were 
augmented via multiple regression analysis to account for changes in elevation, 
forest cover type (hardwoods, softwood, open areas), and soil organic matter 
content (OMDSM), as follows:  

PS PS,DTW 10 FIA DSM

2

MC 70.88 0.26MC 2.76log DTW 0.98OM

0.10DEM 10.22HW 4.09Track; 0.46R

= + − −

− + + =
   (2) 

with log10DTWFIA referring to the logarithm of the rasterized depth-to-water in-
dex adjusted to the upslope flow initiation area (FIA) at the time of wood for-
warding. In addition, OMDSM is the digitally derived soil organic matter raster 
(Furze, 2018; in %), DEM is elevation in meters, Track = 1 for ruts and 0 other-
wise, and HW = 1 refers to locations dominated by hardwood, otherwise HW = 
0. The values of model parameters required for Equations (1) and (2) are listed 
in Table 4. 

2.6. Cone Index and Rut Depth Modelling 

Rut locations and depths were GPS tracked and measured in the fall of 2014  
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Table 4. DTWFIA and MCPS,top specifications for Blocks 1, 2, 3, and 9 at the time of wood 
forwarding. 

Block DTWFIA (ha) MCPS,top (%) 

1 1 39.9 

2 16 35.3 

3 1 39.4 

9 0.25 26.4 

 
immediately after wood forwarding, as listed in Table 2. Volumetric soil mois-
ture, bulk density (Db) and cone penetration measurements were obtained prior 
to these operations (Jones & Arp, 2019). Once MCPS was rasterized via Equations 
(2), CI (in MPa) and NCI were emulated using the following expressions (Jones 
& Arp, 2019):  

2
PSCI 1.60 0.01MC 0.03Depth 0.76Track 0.40SW; 0.41R= − + + + =      (3) 

where Depth is soil depth (cm), Track = 1 signifies presence of track with Track 
= 0, is undisturbed soil, and SW = 1 signifies where softwoods are dominant, 
otherwise SW = 0. The normalized cone index NCI (dimensionless) was derived 
from: 

1000CI 1NCI
1 2

db
W h b d

δ
=

+
                    (4) 

with d as tire diameter (m), b as tire width (m), W as total wheel load (kN) given 
by (machine weight + load)/number of tires, h as section height of the tire (m), 
and ( )0.001 0.365 170 p Wδ = +  as tire deflection, with p is tire inflation pres-
sure (in kPa).  

Relating rut depth to NCI and number of passes along the same track pro-
duced the following regression equation:  

adj0.071 2NCI

adj

40.8 Passes
NC

2
I

; 0.3Rz ×= × =                (5) 

where z is best-fitted field-measured rut depth, and where NCIadj = (NCI + 0.48 
DTWFIA) incorporates a further numerically derived block-by-block DTW ad-
justments. 

2.7. Statistical Analyses 

All analyses were performed in R (R Core Team, 2015) after combining the ras-
terized data layers into a covariate stack. A correlation matrix was created to 
show the general association pattern between the covariates, and the covariate 
association pattern so revealed was factor analysed. This was followed modelling 
MCPS, CI, and zn using multiple and Random Forest regression formulations 
(Breiman, 2001). 
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The dataset for modelling MCPS (n = 394) and CI (n = 372) included all top 15 
cm soil sampling locations inside and outside the tracks in Blocks 1 to 11. The 
dataset for modelling rut depth (n = 207) applied to Blocks 1, 2, 3, and 9 only. 
The multivariate regression (MR) formulation via Equations (2) to (5) served to 
explore the extent of functional dependence of MCPS, CI, and zn on weather, 
season, machine type, and digital soil mapping layers. The required input for 
modelling MCPS via Equation (2) refers to MCPS,DTW (Equations (1)), log10DTW, 
OMDSM, DEM, HW = 1 or 0, and Track = 0 or 1. The required input for model-
ling CI via Equation (3) refers to modelled MCPS, Depth, SW = 1 or 0, and Track 
= 0 or 1. The required input for rut depth modelling via Equation (5) refers to 
modelled NCI and number of passes. 

MR and RF inputs comprised NCI (Equation (4)), CFDSM, OMDSM, depth to C 
horizon (CDSM), and number of passes (“Passes”). The training process was set to 
generate and test 15 regression trees using 3 variables to split each tree node, 
followed by a 10-fold cross-validation process with 10 replicates (Kohavi, 1995). 
The resulting model output produced field-determined versus Random-Forest 
fitted MCPS, CI, and zn scatter plots, and informed about the most MCPS-, CI-, 
and zn-predictive data layers. RF model performance was determined by eva-
luating the mean decreased accuracy and variable importance.  

Both MR and RF techniques were used to determine which combination of 
variables would produced the best-fitting MCPS, CI, NCI and rut depth projec-
tions. With best-fitted results reported by listing the number of variables used, 
the root mean square error (RMSE), and the coefficient of determination R2. 

2.8. Soil Trafficability Model (STRAM) 

The information flow generated from modelling soil moisture, CI and rut depth 
was organized in the form of a Soil Trafficability Model framework (STRAM), as 
shown in Figure 3. Applying STRAM involved: 

1) Initializing and calibrating ForHyM to determine MCPS for specific weather 
conditions, by block and stand type. 
 

 
Figure 3. Flowchart for generating the rut depth raster for Block 3. 
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2) Projecting MCPS across the terrain based on digital elevation, DTW, and 
soil mapping techniques, by block, using Equations (2). 

3) Combining the weather-specific MCPS projections with digitally generated 
soil properties to generate the CI, NCI and rut-depth data layers, by block, using 
Equations (3) to (5). 

4) Optimizing these data layers through R-tool regression techniques (fixed 
effects, Random Forest) based on actual field observations where available.  

3. Results 
3.1. MCPS, CI, and Rut-Depth Analysis 

The basic statistics of the plot-centered rut depth, MCPS, CFDSM, SandDSM, OMDSM, 
Db,DSM, CDSM, elevation, DTW, CI, and NCI values are listed in Table 5. The cor-
relation coefficients and their non-zero significance levels between these varia-
tions in association with block location are compiled in Table 6, along with the 
corresponding factor analysis. Factor 1 indicates that the rut-depth determina-
tions related positively to number of wood-forwarding passes, to sand and or-
ganic matter content, and to soil depth (CDSM), but negatively to NCI, as to be 
expected. In addition, rut depth was generally deeper in hardwood blocks 
(Blocks 3 and 9). Factor 2 reflects that the hardwood blocks at higher elevation 
and DTW locations had lower soil density and hence and lower soil resistance to 
penetration than the softwood blocks located at lower elevations. 
 

Table 5. Soil physical properties and rut measurements. 

Block 
SandDSM 

(%) 
OMDSM 

(%) 
CFDSM 

(%) 
Db,DSM 

(g/cm3) 
CDSM 
(m) 

Elevation 
(m) 

DTWFIA 
(m) 

MCPS 

(%) 
CI 

(MPa) 
NCI 

Passes 
(#) 

Rut Depth 
(cm) 

1 Mean 40.41 6.45 26.21 0.96 38.09 277.86 1.44 64.07 2.41 4.84 4.62 15.62 

n = 29 Min 32.31 5.3 21.9 0.90 33.97 275.73 0.00 48.54 1.90 3.82 2.00 5.50 

 Max 44.75 7.53 32.16 1.10 43.86 280.49 3.54 74.38 3.00 6.02 10.00 32.50 

 SD 2.62 0.75 2.67 0.04 2.63 1.31 1.14 7.71 0.30 0.60 1.52 6.650 

2 Mean 46.16 5.86 35.80 0.99 39.98 261.33 2.17 65.75 1.93 3.87 5.75 13.29 

n = 40 Min 36.01 4.63 27.04 0.80 34.43 258.07 0.04 46.31 1.56 3.13 2.00 2.50 

 
Max 55.42 8.54 48.14 1.11 47.29 266.48 7.26 82.88 2.42 4.87 8.00 40.00 

 
SD 4.67 1.02 6.01 0.07 2.63 2.11 1.81 9.70 0.24 0.48 1.51 10.53 

3 Mean 43.90 6.40 33.86 0.79 39.92 360.05 1.18 65.37 1.84 3.57 3.57 13.91 

n = 75 Min 36.26 4.41 21.23 0.63 33.78 345.73 0.09 47.88 1.51 2.94 2.00 0.50 

 
Max 51.36 11.50 44.06 0.97 50.42 365.91 4.51 83.71 2.33 4.54 15.00 32.00 

 
SD 3.67 1.29 5.22 0.08 3.06 4.17 0.99 6.77 0.19 0.37 2.67 8.11 

9 Mean 54.09 10.00 33.65 0.99 41.78 275.67 1.05 69.75 2.03 3.18 18.03 22.54 

n = 63 Min 41.93 7.86 22.52 0.81 36.35 266.39 0.01 46.36 1.59 2.48 2.00 0.00 

 
Max 65.16 13.30 42.84 1.20 49.57 282.96 3.12 83.85 2.63 4.12 80.00 60.00 

 
SD 4.89 1.10 4.10 0.08 2.68 4.27 0.83 9.19 0.27 0.42 22.91 13.07 
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Table 6. Pearson’s correlation matrix (below diagonal) with significance levels (above diagonal) for each variable pair, and Factor 
analysis loadings for Factor 1 and 2 following oblique factor rotation.  

Variable 
Rut 

Depth 
Passes NCI CFDSM SandDSM OMDSM Db,DSM CDSM Elevation DTWFIA 

HW 
Blocks 

Factor 
1 

Factor 
2 

Rut Depth (cm) 1.000 <0.0001 <0.0001 0.6155 <0.0001 <0.0001 0.0061 0.2369 0.0171 0.0093 0.0247 0.536 −0.011 

Passes (#) 0.470 1.000 0.0048 0.8253 <0.0001 <0.0001 <0.0001 0.0011 0.0011 0.0876 0.0189 0.622 −0.117 

NCI −0.228 −0.195 1.000 <0.0001 <0.0001 <0.0001 0.5304 <0.0001 0.0845 0.0016 <0.0001 −0.682 −0.284 

CFDSM (%) −0.035 −0.015 −0.321 1.000 <0.0001 0.0979 0.8540 0.0062 0.4404 0.5240 0.0147 0.298 0.234 

SandDSM (%) 0.305 0.424 −0.596 0.228 1.000 <0.0001 <0.0001 <0.0001 <0.0001 0.0860 <0.0001 0.836 0.034 

OMDSM (%) 0.304 0.453 −0.389 0.115 0.569 1.000 <0.0001 <0.0001 <0.0001 0.0201 <0.0001 0.793 0.072 

Db,DSM (g/cm3) 0.190 0.321 0.044 0.013 0.365 0.312 1.000 0.0093 <0.0001 0.4840 <0.0001 0.347 −0.742 

CDSM (cm) 0.083 0.225 −0.252 0.190 0.355 0.323 0.180 1.000 0.2901 0.6515 <0.0001 0.514 0.107 

Elevation (m) −0.166 −0.224 −0.120 0.054 −0.333 −0.301 −0.780 −0.074 1.000 0.0483 <0.0001 −0.208 0.873 

DTWFIA (m) 0.180 −0.011 0.217 0.045 −0.120 −0.160 0.049 0.032 −0.137 1.000 <0.0001 −0.312 −0.388 

HW Block 0.156 0.163 −0.601 0.170 0.350 0.442 −0.367 0.247 0.585 −0.283 1.000 0.578 0.870 

 
The MR-generated results in Table 7 revealed that MCPS increased signifi-

cantly with MCPS,DTW as influenced by wet weather and by decreasing DTW from 
ridge tops to low-lying areas next to water-filled flow channels. In addition, 
MCPS was higher inside than outside the tracks, and higher under hardwood ve-
getation but decreased towards the higher elevation blocks (Table 7). CI de-
creased with increasing pore-filled soil moisture content, but was noticeably 
higher within softwood blocks and tracks due to cumulative wheel-induced 
compaction. As per Equation (5), rut depth increased significantly with number 
of forwarding passes (log10Passes) and decreased significantly with increasing 
log10NCI. The non-linear DTW-adjustment for Equation (5) improved the MR 
regression results and related best-fitted scatterplots, but only to a small ex-
tent. 

The RF results, also listed in Table 7, identified MCPS, DTW, elevation (DEM) 
and OMDSM as dominant MCPS influencing predictors. For CI, RF selected ele-
vation, MCPS, SandDSM, Depth, and track location served as dominant predictors. 
For rut depth, the RF process selected number of passes, NCI, DTW and CF as 
best predictors. 

Compared to MR, the best-fitted RF-generated R2 values for MCPS, CI and rut 
depth in Table 7 were considerably higher. The corresponding scatter plots in 
Figure 4 demonstrate the extent of the MR-versus RF-generated goodness-of-fit 
for each of these variables. In detail, the eight-times-out-of-ten conformance 
levels for MCPS, CI and rut depth respectively amounted to: ±14%, ±0.7 MPA 
and ±14 cm for MR, and ±4%, ±0.3 MPA, and ±4 cm for RF (Figure 5). 

The successive inclusion of additional predictor variables from most to the 
least significant was characterized by diminishing conformance gains, as shown 
in Figure 6. Using only one continuous predictor variable for MCPS led to an  
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Table 7. Multiple and random Forest regression results for MCPS, CI and rut depth. 

Multiple Regression (MR) 

Dependent 
variables 

Intercept &  
predictor variables 

Parameter # Regr. ±SE t-value p-value R2 RMSE n 

MCPS (%) Intercept  70.883 6.326 11.205 <0.0001 0.47 11.69 394 

Equation (2) Elevation 1 −0.091 0.013 −6.937 <0.0001    

 
HW Blocks 2 10.224 2.136 4.788 <0.0001    

 
MCPS,DTW 3 0.262 0.073 3.589 0.0003    

 
OMDSM 4 −0.981 0.278 −3.529 0.0005    

 
Tracks 5 4.090 1.233 3.316 0.001    

 
log10DTW 6 −2.764 0.926 −2.986 0.003    

CI (MPa) Intercept  1.599 0.159 10.06 <0.0001 0.41 0.571 372 

Equation (3) Tracks 1 0.76 0.064 11.91 <0.0001    

 
SW Blocks 2 0.397 0.064 6.2 <0.0001    

 
MCPS 3 −0.011 0.002 −5.98 <0.0001    

 
Depth 4 0.025 0.002 9.9 0.0583    

Rut depth (cm) Intercept  18.880 6.592 2.864 0.0004 0.28 9.094 207 

Equation (4) log10Passes 1 14.327 1.856 7.721 <0.0001    

 
log10NCI 2 −22.213 10.625 −2.091 0.038    

 log10DTWFIA 3 −2.669 1.071 −2.492 0.014    

Equation (5) a/NCIadj × PassesbNCIadj      0.32 9.000 207 

 a  40.886 3.275 12.728 <0.0001    

 b  0.072 0.007 9.676 <0.0001    

Random Forest (RF) 

Dependent 
variables 

Variable Parameter # 
% Mean Decrease 

Accuracy 
Variable 

Importance 
R2 RMSE n 

MCPS (%) MCPS,DTW 1 191.04 53332.12 0.91 4.962 394 

 Elevation 2 180.54 32079.21    

 OMDSM 3 38.17 16292.63    

CI (MPa) Tracks 1 0.224 33.20 0.88 0.263 372 

 Depth 2 0.159 37.43    

 Elevation 3 0.108 49.27    

 MCPS,RF 4 0.097 47.64    

 SandDSM 5 0.070 36.86    

Rut depth (cm) Passes 1 71.77 7121.22 0.84 4.307 207 

 NCIRF 2 24.26 5744.51    

 DTWFIA 3 11.35 5971.05    

 CF 4 0.65 3813.68    
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Figure 4. Comparison between modelled linear regression and random forest for MCPS, 
CI and rut depth. 
 

 
Figure 5. Cumulative conformance probability for differences in MCPS, CI, and rut depth 
for RF and RM. 
 

 
Figure 6. Best-fitted RF- and MR-R2 and RSME values achieved using predictor variables 
in the order of decreasing numerical significance or influence. 
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RF-R2 gain of about 0.80, while the corresponding MR-R2 gain was limited to 
0.2. For CI and rut depth, MR and FR had similar low initial R2 values using, re-
spectively, the binary 0, 1 Track and the grouped number of passes (“Passes”) 
variables. Having these variables as initial predictor variables was essential to 
address the otherwise unresolvable scatter that would otherwise be incurred by 
using continuous predictor variables only. 

Figure 7 shows the GPS-tracked wood forwarding tracks across Blocks 1, 2, 3, 
and 9 are overlaid on the delineated DTW < 1 m and hill-shaded DEM back-
ground, also shown are the number of passes (top) and field-measured rut depths 
(bottom) at each location (Figure 7). Among these blocks, Block 3 revealed a close 
association between deep rut depths and DTW, followed by Block 9 and Block 2. 
Block 1 had no association between rut-depth and pass number. Rutting was 
deepest in Blocks 3 and 9 along multi-pass tracks across streams and wet-areas. 

Figure 8 provides a closer look regarding the extent of track rutting in Block 
9 through the overlays of the DTW < 0.5 m delineated patterns on the hill 
shaded-DEM (top) and the surface-image (bottom) backgrounds. The surface 
image was generated a year after the wood-forwarding operations. At that time, 
rutting appearances had faded but remained prominent in the lower left corner 
of Block 9. Rutting > 40 cm deep occurred along multiple pass tracks where 
DTW < 0.5 m. 

3.2. MCPS, CI, and Rut-Depth Projections 

Figure 9 presents the MR-and RF-generated projections and data points for 
MCPS (top) and CI (bottom) for Blocks 1, 2, 3, and 9, with RF projections more  
 

 
Figure 7. Field-measured rut-depth locations with number of passes along rut tracks 
(top) and rut depth (bottom) across Blocks 1, 2, 3 and 9, also shown are the block-specific 
weather-affected DTWFIA assignments, i.e. FIA = 1, 16, 1, 0.25, respectively. 
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Figure 8. Close-ups from Figure 7 showing rut-depth measurement locations in Block 9 
in relation to the extent of DTW < 0.5 m outline overlaid on a hill-shaded DEM (top, 10 
cm resolution) obtained from DJI Phantom 4 Pro high-resolution surface scanning, im-
aging and processing (bottom) one year after field operations. 
 

 
Figure 9. Measured MCPS and CI values at 15 cm soil depth overlaid on the correspond-
ing Equation (2) and Equation (3) map projections for Blocks 1, 2, 3 and 9, using FIA = 1, 
16, 1, 0.25, respectively. 
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detailed in appearance and conformance than the MR projections, as to be ex-
pected from the scatter plots in Figure 4, and the results listed in Table 7. 
Among the blocks, Block 9 proved to be the wettest, on account of 70 mm rain 
event two days before prior to the day of wood forwarding, and as reflected by the 
a consequential use of the DTWFIA = 0.25 ha data layer as dominant MCPS predic-
tor via Equation (4). In contrast, Block 1 was found to be excessively dry, such that 
the DTWFIA = 16 ha projection was best to represent the field-determined MCPS 
values for this block outside the tracks. For Blocks 2 and 3, the MCPS was best 
presented using the DTWFIA = 1 ha assignment to reflect the May and June soil 
moisture conditions at the time of wood forwarding. Although both blocks had 
the same DTWFIA = 1 ha assignment, they differed in terms of CI-measured soil 
strength which was determined to be weaker for the hardwood block (Block 3) 
than for the softwood block (Block 2). Typically, shallow-rooting softwood fo-
rests grow on coarser and stonier soils with lower soil organic matter accumula-
tions than deeper-rooted hardwood forests. 

Figure 10 presents an overlay of rut depth points on the corresponding MR 
(top) and RF (bottom) projections for Blocks 1, 2, 3, and 9 after 1, 10 and 50 
passes, with better and more resolved RF than MR data-to-projection confor-
mances. These plots confirm that number of passes and spatial variations in soil 
moisture are important rut-depth predictor variables. Actual rut depth, however, 
also depends on machine weight/load and soil physical properties, as quantified 
by way CI, NCI, and the variables listed in Table 7. 
 

 
Figure 10. Random Forest modelled 2- and 10-pass rut depths for Blocks 1, 2, 3, 9 with 
machines carrying full loads, with the field plot determinations overlaid, using FIA = 1, 
16, 1, 0.25, respectively. 
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4. Discussion 

While RF emulates field-measured values for MCPS, CI and rut depth considera-
bly better than best-fitted MR values, it can only do so by systematically tracking 
those variables that best account for the overall data variations, including out-
liers. To be of general value, more testing is required to capture more of the 
MCPS, CI and rut depth variations across a wide range of soil and vegetation 
conditions. In this regard, the above regression results are at least consistent 
with general expectations. For example, moist to wet soils have low physical 
strength due to low particle cohesion (Kumar et al., 2012), and are therefore 
prone to traffic-induced compaction, displacement and rutting (Sutherland, 
2003; Børgesen et al., 2006; Nikooy et al., 2016; Jones & Arp, 2017). To illustrate, 
Block 3 shows deeper ruts within the wetter DTWFIA = 1 ha marked area next to 
a stream. Block 1 with no significant rut-depth observations was cut following 
dry weather conditions during mid-June of 2014, with overall soil moisture le-
vels best conforming to a DTWFIA = 16 ha flow-channel pattern. In contrast, 
deep ruts were encountered across Block 9 due to field operations in October 
2014 following a 70 mm heavy rain event. 

In terms of other physical soil properties, studies have shown that measured 
rut depth correlates positively with increased levels of OM in the soil (Suther-
land, 2003; McFero Grace et al., 2006). In this study, rut depth also correlated 
positively with OM in Block 9 as revealed by the factor analysis results shown in 
Table 6. 

Increased sand content generally contributes to low CI, NCI and therefore to 
increased rut depth, mainly due to low particle-to-particle cohesion (Balland et 
al., 2008; Brady & Weil, 2008; Kumar et al., 2012). In contrast, high coarse frag-
ment content would increase CI, thereby decreasing rut depths. However, the 
overall CF variations within and across the blocks did not register this effect by 
way of MR, and only weakly so by RF. Typically, soils with high soil strength 
(high CI and NCI values) minimize soil disturbance (Antille & Godwin, 2013).  

Significant and influential on the MR and RF results was the dependence of 
rut depth on the number of passes (p < 0.0001). In detail, this effect decreased 
non-linearly with increasing pass number due to gradually increasing soil com-
paction, as quantified above via Equation (5) and in conformance with Eliasson 
(2005), Eliasson and Wästerlund (2007), Botta et al. (2009) and Jones et al. 
(2018). This is especially so for high traffic areas such as wood landing sites, and 
along tracks involving a hundred passes or more (Carter et al., 2007; Taghavifar 
& Mardani, 2014; Jones et al., 2018). 

Given the above moderate (MR) and strong (RF) data-to-projection confor-
mances, it should be possible—at least in general—to project and forecast soil 
trafficability by following the flowchart given in Figure 3. Fundamental to doing 
this is the combining of preceding and forecasted weather conditions (Appen-
dix) with digital soil mapping. To this effect, Figure 11 provides a summary of 
daily summer through winter, weather conditions for Block 1 for a period of 14  
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Figure 11. Historical weather for Block 1 from 2000 to 2015 showing cumulative precipi-
tation (bottom left), historical snowpack and modelled frost depth (top left), mean Janu-
ary, July, and annual air temperatures (top right), and mean ForHyM-modelled MCPS per 
week (bottom right). 
 
years. Generally, soil trafficability within this block would be best on solidly fro-
zen ground, but worst during snowmelt periods when soils tend to be equally 
wet and partially thawed across the land. In detail, April and November would 
be the wettest months (Figure 11). During spring, summer and fall, soil traffica-
bility would vary by monthly variations in soil moisture, and by the reduction 
thereof through evapotranspiration, as primarily affected by precipitation, air 
temperatures and canopy leaf area. According to Figure 11, the driest summer 
occurred in 2005 followed by wettest fall. The wettest summers occurred in 2003 
and 2011. Soil trafficability would also have been very poor in April 2005. In 
contrast, soil trafficability would have been best during the winters of 2004, 2011, 
2013 and 2014 due to deep and prolonged snowpack and soil frost conditions. 

For the spatial component of the soil trafficability projections, it is important 
to determine the likely upslope flow-channel initiation area for each block, as 
listed in Table 8. To some extent, these estimates would need to be modified by 
soil texture and coarse fragment content: FIA numbers should be higher for well 
drained and rocky soils, and lower for loamy and clayey soils. Extended droughts 
and frost periods would also increase FIA, therefore increasing the areas availa-
ble for off-road traffic. However, even during winter, care needs to be given to 
not drive along or across flow channels with high upslope flow-accumulation 
areas. This care is needed because: 1) channels may not totally be frozen on ac-
count of upwelling seepage water, and 2) soil compaction and rutting along and 
across the channels would not only aggravate subsequent flooding but also soil 
and stream bank erosion. An example of year-round soil trafficability forecasting 
by month and related weather-imposed DTWFIA assignments is provided in Fig-
ure 12, with a focus on likely rut depths to be incurred by two wood-forwarding 
passes. 
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Figure 12. Year-round RF-generated soil trafficability projections by month for Block 1, 
with focus on 2 passes and 2014 weather-affected DTWFIA assignments. 
 
Table 8. Monthly region-specific DTWFIA choices useful for forecasting soil trafficability 
across Blocks 1, 2, 3, and 9 and northwestern New Brunswick in general. 

Month 
FIA 

8 ha 4 ha 1 ha 0.25 ha 

January Frozen - - Partial Thaw 

February Frozen - - Partial Thaw 

March Frozen - - Partial Thaw 

April Frozen - - Very Wet 

May Very Dry Dry - Very Wet 

June Very Dry Dry Moist Wet 

July Very Dry Dry Moist Wet 

August Very Dry Dry Moist Wet 

September Very Dry Dry Moist Wet 

October - Dry Moist Wet 

November - Dry Moist Wet 

December Frozen Dry Moist Wet 

 
Perhaps the greatest impediment for correct soil trafficability forecasting is the 

lack of proper coarse fragment specifications, which should—ideally—represent 
total CF changes within and across soils. The CF data and data layers used for 
this purpose were, however, not revealed to be significant within- and across-block 
predictor variables for MCPS, CI and rut depth. In part, this was due to not in-
cluding coarse fragments larger than gravel size in the soil sampling process. 
However, where such sampling is sufficient, the following formulation for CI 
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may serve as general non-block specific CI predictor (Jones & Arp, 2017):  

10
2

PSlog CI 0.26 0.29 PS 0.41 MC 1.04 CF; 0.54R= × + =− × − ×       (6) 

where data for total coarse fragment content per soil volume are available, rut 
projections need to be forced towards zero when CF approaches 1. This can be 
done by, e.g. adjusting Equations (5) to  

( )adj 20.071 NCI

adj

40.8 Passes 1 CF
NCI

z ×= × × −                (7) 

5. Concluding Remarks 

While this research demonstrates that the STRAM approach can be used to assess 
and project soil trafficability through coupling block-based soil surveys with tem-
poral and spatial modelling techniques, there is a need for further data layer im-
provements using MR and RF modeling techniques. To this end, area-systematic 
rut surveys can now be conducted by, e.g., equipping off-road vehicles with 
GPS-tracking LiDAR-based rut depth sensors (Salmivaara et al., 2018). Similarly, 
Giannetti et al. (2017) proposed terrestrial portable laser scanners and Haas et al. 
(2016), Pierzchała et al. (2016) and Launiainen et al. (2017) used unmanned air-
borne vehicles (UAVs) for rut-depth stereo imaging and evaluating underlying 
terrain conditions. In addition, advances in weather-affected digital soil property 
mapping will further assist soil trafficability mapping, and the validity of the same 
needs to be assessed systematically using area-wide post-operational rut-depth 
surveys. In this regard, MR and RF techniques will be helpful in terms deter-
mining how operationally induced soil compaction and rutting as observed and 
projected vary by topographic location, season and weather. 
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Appendix  
Appendix 1. Rut Depth Severity Classes 
 

 
Figure A1. Rut depth severity classes. 
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Appendix 2. Temporal Soil Moisture Modelling 

The Forest Hydrology Model (ForHyM) uses daily temperature and precipita-
tion (rain and snow) data as well as block-specific area, vegetation, soil horizon 
texture, depth, OM, and CF (Table A1) to predict soil moisture and temperature 
fluctuations through the soil (Arp & Yin, 1992; Yin & Arp, 1994; Jutras, 2012). 
Calibrating ForHyM consists of comparing actual snowpack and hydraulic flow 
to modelled outputs and adjusting the output parameters (Table A2, Figure 
A2).  
 
Table A1. Soil profile and vegetation information used to initialize ForHyM for each 
block. 

Block Vegetation Layer Depth Texture OM (%) CF (%) 

1 

INHW, 
deep rooted 

LFH 5 Organic 100 0 

 
A 25 SL 15 20 

 
B 50 SL 5 20 

 
C 100 SL 1 35 

2 

SW, 
shallow rooted 

LFH 10 Organic 100 0 

 
A 10 LS 2 20 

 
B 50 LS 10 24 

 
C 100 SL 1 35 

3 

SW, 
shallow rooted 

LFH 10 Organic 100 0 

 
A 10 LS 2 20 

 
B 50 LS 10 24 

 
C 100 SL 1 35 

9 

TOHW, 
deep rooted 

LFH 5 Organic 100 0 

 A 10 LS 8 20 

 B 55 LS 5 20 

 C 150 SL 1 25 

 
Table A2. ForHyM calibrations pertaining to snowpack and soil permeability across 
Blocks 1 to 4. 

Blocks 1 - 3 9 

Snowpack Density 
Snow-to-air temperature gradient 0.16 0.2 

Density of fresh snow 0.16 0.2 

Saturated Soil 
Permeability Multiplier 

Surface runoff 1 1 

Forest floor infiltration 1 1 

Forest floor interflow 0.01 0.01 

A & B horizon infiltration 1 1 

A & B horizon interflow 0.05 0.01 

C horizon infiltration 1 1 

C horizon interflow 0.1 0.5 

Deep water percolation 1 1 
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Figure A2. Modelled vs measured ForHyM generated calibration outputs for snowpack 
and stream discharge for Blocks 1 to 3 (top) and Block 4 (bottom). 
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