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Abstract 
This work proposes a locally conservative and less restrictive algorithm to 
solve the problem dealt with in [1], i.e. a two-phase flow in a homogeneous 
porous medium (water and CO2), with mass absorption between the fluid 
phases and reaction between the CO2 phase and the rock. The latter is mod-
eled by two non-linear hyperbolic equations that represent the transport of 
the flowing phases for a given velocity field (equations of saturation and con-
centration). From the numerical point of view, we use the operator splitting 
technique to properly treat the time scale of each physical phenomenon and a 
high-order non-oscillatory central-scheme finite volume method for nonli-
near hyperbolic equations proposed by [2] that was extended for a system of 
equations with source terms to treat the equations that govern the saturation 
and concentration of phases. In addition, with respect to source terms, the 
mass flux between fluid phases was handled using the flash methodology, 
whereas kinetic theory was applied for reproducing the changes in porosity 
and permeability that are caused by the reaction of CO2 with the rock. The 
same physical trends observed in [1] were obtained in our numerical results 
which indicate a good predictive capability. Furthermore, this method avoids 
the difficulties that arise when adopting small time steps enforced by CFL sta-
bility restrictions. Finally, the results obtained show that the applicability of 
the KT method is beyond just a single nonlinear conservation law with the 
absence of source terms. 
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1. Introduction 

It is known to all governments that the intensification of the greenhouse effect, 
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due to the emission of gases which arises from industrial activities, is increasing 
the global temperature every year, dramatically affecting the Earth’s climate (see 
Houghton et al. [3]). According to Ravagnani and Suslick II [4] among all 
polluting gases, it is carbon dioxide (CO2) the one that contributes the most to 
the intensification of the greenhouse effect. One of the possible ways to mitigate 
CO2 effects on climate change is called carbon sequestration, which means 
separation, transportation (supercritical state) and storage of CO2 in permeable 
rocks. 

Models of geological CO2 sequestration should consider multiphase flows, 
equilibrium and non-equilibrium reactions, and partition phases in reservoirs. 
This is a prominent problem that has been investigated by several researchers: 
Meer [5] [6] [7], Holt et al. [8], Weir et al. [9], Law and Bachu [10], Lindberg 
[11], Johnson et al. [12], Ennis-King and Paterson [13], Wellman et al. [14], 
Pruess et al. [15], Xu and Pruess [16] and Kumar et al. [17]. All these works 
address the CO2 sequestration problem but ignore the reaction of CO2 with the 
rock. Going into more details on the preceding references, Malik and Islam [18] 
conducted a study in which CO2 collected was injected into the Weyburn field. 
The purpose was to determine the optimal point of injection to maximize CO2 
storage during an oil recovery procedure. Brinks and Fanchi [19] conducted a 
study of the coupling between CO2 motion and seismic response. Pruess et al. 
[15] and Xu and Pruess [16] used a detailed geochemical model to study the 
interactions between the fluid and the rock during a radial flow. Kumar et al. 
[17] conducted a thorough analysis of CO2 storage using a commercial simulator 
in a mesh of 64,000 elements. The authors concluded that the trapping of CO2 
was an important mechanism for permanent storage. Ennis-King and Paterson 
[13] used a radial geometry to study in detail the factors that affect the geological 
sequestration of CO2, including the gravitational effect. Other authors 
considered the roles of the hysteresis of relative permeability (Spiteri et al. [20]), 
dispersion (Calabrese et al. [21]) and convective mixing (Ennis-King and 
Paterson [22]) during storage of CO2. Finally, Obi and Blunt [1] applied the 
streamline method to solve the CO2 storage in an aquifer in the North Sea. They 
concluded that the CO2 distribution is dominated by advective transport due to 
the multiphase flow, and CO2 moves preferentially through the high 
permeability paths. There is no reaction; the flow of CO2 occurs until the value 
of residual saturation is reached. The precipitation leads to a decrease in porosity 
and permeability, while CO2 is stored in the solid phase. The storage efficiency of 
this mechanism is low, around 2%. 

We present a locally conservative numerical methodology to simulate the 
two-phase flow (water and CO2) with mass absorption between the fluid phases 
and reaction between the CO2 phase and rock in a homogeneous porous 
medium. The transport of the flowing phases is modeled by two non-linear 
hyperbolic equations (equations of saturation and concentration). From the 
numerical point of view, we use the operator-splitting technique to properly handle 
the time scale of each physical phenomenon and a high-order non-oscillatory 
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central-scheme finite volume method for nonlinear hyperbolic equations that 
govern the saturation and concentration of phases. Our work innovates by 
employing the KT scheme developed by Kurganov and Tadmor [2] instead of 
the streamline method used by Obi and Blunt [1]. Furthermore, the method was 
expanded for a system of equations with source terms in which the time scale 
was different for each physical phenomenon. This method avoids the difficulties 
that arise when adopting small time steps enforced by CFL stability restrictions 
(see Nessyahu and Tadmor [23]). According to Kurganov and Lin [24] and 
Correa and Borges [25], it happens because the underlying concept is to explore 
the local propagation speeds to obtain a more precise estimate of the width of 
Riemann fans, see Leveque [26], and evolves the solution on a non-uniform dual 
mesh based on symmetrical non-smooth control volumes that include the 
Riemann fans. This procedure led to a substantial reduction of the numerical 
dissipation and, after it was projected back onto the original mesh, gave rise to 
an improved fully-discrete central scheme that exhibits a concise semi-discrete 
form. In addition, with respect to source terms, the mass flux between fluid 
phases was treated1 using the flash methodology (see [27]) and the reaction of 
CO2 with rock2 which causes changes in porosity and permeability, was treated 
by applying principles of kinetic theory (see [14]). 

2. Mathematical Model 

Problem: Given the Darcy velocity [ ]: 0, , 1, 2,3n
Dt T R nΩ× → =v . The porosity 

( ): 0,1φ Ω→ , saturation ( ): 0,1S Ω→  and concentration of the CO2 phase 
:C RΩ→  are dictated by the following equations 

( ) ( )c c
c Dt d

S
f T

t
φ∂

+∇ ⋅ = −
∂

v                          (1) 

( )( ) ( )
1

1c c
c Dt d r

C S
C f T T

t
φ∂ −

 +∇ ⋅ − = − ∂
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where cf  is the fractional flow function. In order to understand this concept, 

 

 

1The dissolution of CO2 in the aqueous phase. 
2Which is known as precipitation. 
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let us start defining the total mobility as a function of the relative permeabilities 
of the fluid phases, 

Rw Rc
t w c

w c

K K
λ λ λ

µ µ
= + = +                 (4) 

where RwK  and RcK  are the coefficients of relative permeability of water and 
CO2, respectively, which vary from 0 to 1 as functions of the saturation. These 
parameters quantify the additional resistance that a moving fluid exerts on 
another. Furthermore, the fractional flow function of phase CO2, which is the 
ratio of the mobility of the phase CO2 and total mobility, is given by 

c
c

t

f λ
λ

=                              (5) 

(see for further details [28]). 
It is worth noting the physical meaning behind the govern equations. The first 

one represents the transport of CO2 in its own phase, i.e., just modeling the 
transport of the single dissolved specie. The second one express the transport of 
the dissolved CO2 in the aqueous phase. Besides that, source terms that 
embodies dissolution (this source term appear at the first equation also) and 
precipitation phenomena can be found. Finally, the latter equation has implicitly 
the following hypothesis: (i instantaneous dissolution which systematically 
means that dC K=  if 0C >  and 0c

dT =  if 0S = , (ii the precipitation has a 
forward a preferential direction, i.e.,the precipitation of the second mineral just 
occurs (if and only if) the precipitation of the primary mineral has happened, 
specifically, 2 3CO XO XCO+ → , where XO is the primary mineral and XCO3 
the second mineral. and (iii) the reaction rate is assumed to be proportional to 
the porosity as follows 

1 if 0

0 if 0

s
r

o

m T C
m

t
C

ψφφ
  
− − = − >∂   =   ∂  =

 

where ψ is a rate constant. 

3. Algorithm 

In the following subsections we are going to show a detailed description of the 
algorithm. As mentioned in the introduction, this method avoids the difficulties 
that arise when adopting small time steps enforced by CFL stability restrictions. 

3.1. Evolution in Time 

We begin with the description of the temporal evolution algorithm with 
fractional steps associated with the decomposition of operators for solving the 
system of equations of the proposed model. The given velocity field is used in 
the equations of convective transport that update the variables Sc e C. In this 
stage of the algorithm, the time step ct∆  restricted by the CFL condition (see 
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Kurganov and Tadmor [2], Nessyahu and Tadmor [23]). To simplify the 
algorithm, we make d ct t∆ = ∆  and execute the dissolution step with the new 
saturations and concentrations computed. After updating the variables Sc and C 
over the convective and the dissolution microstepping, we update the 
permeability and the porosity fields during the reactive step until the time step 

rt∆  takes place (see Figure 1). 

3.2. Predictor Problem 

This procedure will be used for both the saturation and the concentration 
problems. However, for the sake of simplicity, the following development will be 
applied for the saturation S, which does not affect the generality of the method. 
Given the porosity field ( )φ x  and Darcy total velocity Dtv  at time nt , find 
the saturation S such that: 

( ) ( )10 em ,n nS t t
t

φ +∂
+∇ ⋅ = Ω×

∂
f                  (6) 

where ( ) ( )
( )

f S
S

g S
 

=  
  

f  and satisfying the initial condition ( ), n nS t S=x . 

The KT method proposed by Kurganov and Tadmor [2] was developed for the 
nonlinear conservation laws, given by Equation (6), to a field of constant 
porosity φ. The extension of the formulation for the case where ( )φ φ= x , i.e. 
the porosity is heterogeneous, was developed by Correa and Borges [25]. Theses 
schemes are the basis of the REA Algorithm (“Reconstruction, Evolution and 
Average”), which is described below: 
 

 
Figure 1. Schematic representation that decouples the problem with respect 
to time. 
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Reconstruction: From the computed values ?€??€?of the average ,
n
i jS  and 

approximations of the derivatives ( ) ,

n
x i j

S  and ( ) ,

n
y i j

S  obtained using the 
MinMod limiters, we will rebuild the piecewise polynomial approximation that, 
for the two-dimensional case, is a bilinear interpolant given by: 

( ) ( ) ( ) ( ) ( ), , ,, ,
, para .

nnn n
i j i j x i y j i ji j i j

L S S x x S y y C= + − + − ∈x x      (7) 

Evolution: The hyperbolic equation at step nt  is solved over time in order to 
obtain the average 

,

1
i j

n
DS +  at time 1nt +  in a dual mesh. It is important to use 

information about the value of local velocity to define the size of the dual mesh, 
which will characterize the width of the Riemann fans (Leveque [26]). 

Average: We will project the average in a dual mesh 
,

1
i j

n
DS +  of each cell on the 

original mesh hτ  in order to obtain the average in each cell in the original mesh 
at time 1nt + . 

3.2.1. Reconstruct 
The linear approximations by parts are constructed from the average of each 
volume, based on Equation (7). We will approach the derivatives using the 
MinMod limiters: 

( ) ( ) ( ) ( ), 1, 1, 1, 1, ,,

1 1MinMod , ,
2

n n n n n n n
x i j i j i j i j i j i ji j

S S S S S S S
x

α α− + − +
 = − − − ∆  

  (8) 

( ) ( ) ( ) ( ), , 1 , 1 , 1 , 1 ,,

1 1MinMod , ,
2

n n n n n n n
y i j i j i j i j i j i ji j

S S S S S S S
y

α α− + − +
 = − − − ∆  

  (9) 

where 

( ) ( ) ( ) ( )1MinMod , sgn sgn min , .
2

a b a b a b= +               (10) 

The parameter α depends on the CFL conditions and varies from 1α = , 
which corresponds to the MinMod basic limiter, and 2α = , which is usually 
the value taken as upper limit (see Nessyahu and Tadmor [23]; Kurganov and 
Tadmor [2]). 

3.2.2. Evolution 
We construct the dual mesh based on the information about the local 
propagation velocity on the faces of the volume. We begin with the definition of 
discontinuous saturations on the sides of the central cell 

( ) ( ) ( ) ( ), 1 2 1, 1 2, , ,n n
l i j i l i j is y L x y s y L x y+ −

− − −= =                (11) 

( ) ( ) ( ) ( )1, 1 2 , 1 2, , ,n n
r i j i r i j is y L x y s y L x y+ −

+ + += =                (12) 

( ) ( ) ( ) ( ), 1/2 , 1 1 2, , ,n n
d i j j d i j js x L x y s x L x y+ −

− − −= =                (13) 

( ) ( ) ( ) ( ), 1 1 2 , 1 2, , ,n n
u i j j u i j js x L x y s x L x y+ −

+ + += =                (14) 

where the indices , , ,l r d u  refer to each of central cell faces and the signals (+) 
and (−) represent the saturations on the right and left, respectively (see Figure 
2). 
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Figure 2. Second order linear reconstruction in the cells 1,i jC −  and ,i jC  

(schematic drawing from Correa and Borges [25]). 
 

The maximum local wave propagation velocity on each side γ  ( , , ,l r u dγ = ) 
can be computed from the following relationship: 

( )
min max,

dmax
d

min ,
s s s

c

Sγ γ

γ
γφ φ

 ∈ 

 
 
 

=

f

a                   (15) 

where: ( ) ( )min min ,s s sγ γ γ
− + =  x x , ( ) ( )max max ,s s sγ γ γ

− + =  x x , γφ  is the 
porosity of the volumes adjacent to the central volume cφ  (see Nessyahu and 
Tadmor [25]; Kurganov and Tadmor [2]). 

Assuming that this velocity is constant for each time step, we can state that the 
information which comes from the left side, for example, travels the half cell in 
the x direction in a time given by 

.
2l

l

xt
a
∆

∆ =  

Extending this reasoning to the other sides, we have a CFL constraint for the 
time step given by 

{ }min , , , .c l r d ut t t t t∆ ≤ ∆ ∆ ∆ ∆                  (16) 

Taking a time step ct∆  from instant nt  satisfying constraint (??), we can 
de_ne the following reference points: 

1 2 1 2,ln i l lc i lx x a t x x a t− −= − ∆ = + ∆  

1 2 1 2,rn i r rc i rx x a t x x a t+ += + ∆ = − ∆  

1 2 1 2,dn j d dc j dy y a t y y a t− −= − ∆ = + ∆  

1 2 1 2,un j u uc j ux y a t y y a t+ += + ∆ = − ∆  

where the indices c and n refer to points related to the central cell and its 
neighboring cells respectively. These points are shown in Figure 3 and are used 
to build new cells called dual mesh which, in turn, is represented by the 
following ordered pairs: 
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Figure 3. Dual cells and reference points (schematic drawing from Correa e 
Borges [25]). 

 

( ) ( )1 2 1 2, , ;l ln lc j jC x x y y− += ×  

( ) ( )1 2 1 2, , ;r rc rn j jC x x y y− += ×  

( ) ( )1 2 1 2, , ;d i i dn dcC x x y y− += ×  

( ) ( )1 2 1 2, , ;u i i uc unC x x y y− += ×  

( ) ( ), , .c lc rc dc ucC x x y y= ×  

The evolution step is performed by integrating the conservation law, Equation 
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(6), in the dual cells Cγ  ( , , , ,l r u d cγ = ) from time nt  to n
ct t t= + ∆ , i.e., 

( ) ( ) ( )( ), d , d , d dn
C

tn
CC C t

w t w t w t t
γγ γ γ

φ φ
Γ

Ω = Ω − ⋅ Γ∫ ∫ ∫ ∫x x f x n    (17) 

where ( ),w tx  represents the linear reconstruction, Equation (7), and Cγ
Γ  

denotes the boundary of the cell. Then, without loss of generality, we present the 
development to cell lC . 

Now we define the discontinuous saturations at the midpoints of the sides 

( ) ( ), ,l l j r r jS s y S s y± ± ± ±= =  

( ) ( ), .d d i u u iS s x S s x± ± ± ±= =  

The first integral on the right hand side of Equation (17) can be computed as 
follows: 

( ) ( ) ( )1, ,, d d d
l ln lc

n
l i j c i jC C C

w t L Lφ φ φ−Ω = Ω + Ω∫ ∫ ∫x x x                (18) 

where 1,ln l i jC C C −=   and ,lc l i jC C C=  . Using the linear reconstructions (7) 
we can show that, according to Correa and Borges [25], 

( )

( ) ( ) ( )

{ } ( )

2
1, ,1, ,

2

, d

2 2 2

2

l

n
C

n nl n n
l i j x c i j xi j i j

l
l l c l

w t

C x xS S S S O t

C
S S O t

φ

φ φ

φ φ

− −

− +

Ω

 ∆ ∆    = + + − + ∆        

= + + ∆

∫ x

   (19) 

where the length of the dual cell lC  is given by 2l lC a t y= ∆ ∆ . 
For the approximation of the flux term, represented by the second integral on 

the right hand side of Equation (17), we applied the following approximation at 
time nt  and the values of saturation at midpoint of the face, i.e. 

( )( ) ( ) ( ){ } ( )2, d dn
Cl

t n n
lc lnt

w t t t y f S f S O t
Γ

⋅ Γ ≈ ∆ ∆ − + ∆∫ ∫ f x n    (20) 

where ( ), ,n n
lc i j lc jS L x y=  and ( )1, ,n n

ln i j ln jS L x y−= . Taking the average of 
Equation (17) over the cell lC  we get 

( ) ( )

{ } ( ) ( ){ } ( )

1 , d

1 1
2 2

l
l

l l

C
l C

n n
l l c l lc ln

C l C

w t
C

S S f S f S O t
a

φ
φ

φ φ
φ φ

− +

Ω

≈ + − − + ∆

∫ x x

       (21) 

where 
2l

c l
C

φ φ
φ

+
= . Thus, we can define the average saturation over cell lC ,  

obtained after the evolution on a time step ct∆  as: 

( ) ( ) ( ) ( )1 1 .
2l

l

n n
C c l l l lc ln

C l

S S S f S f S O t
a

φ φ
φ

+ −  = + − − + ∆   
   (22) 

With a similar development, we obtain for the remaining dual cells the 
expressions for the average saturation: 
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( ) ( ) ( ) ( )1 1
2r

r

n n
C c r r r rn rc

C r

S S S f S f S O t
a

φ φ
φ

− +  = + − − + ∆   
   (23) 

( ) ( ) ( ) ( )1 1
2d

d

n n
C c d d d dc dn

C d

S S S g S g S O t
a

φ φ
φ

+ −  = + − − + ∆   
  (24) 

( ) ( ) ( ) ( )1 1
2u

u

n n
C c u u u un uc

C u

S S S g S g S O t
a

φ φ
φ

− +  = + − − + ∆   
  (25) 

( )( ) ( )( )

( ) ( ) ( ) ( )
( )

,
, , ,

2

1
2c

nni jn
C i j l r x d u yi j i j

c

n n n n
rc lc uc dc

c c

C
S S t a a S a a S

C

f S f S g S g S
O t

x yφ φ

  = + ∆ − + −   
− − − − + ∆

∆ ∆ 

   (26) 

where ,i jC x y= ∆ ∆  and ( ) ( )c l r d uC x a a t y a a t   = ∆ − + ∆ ∆ − + ∆    . For 
more details on the development of the evolution step of the REA algorithm (see 
Kurganov and Tadmor [2]; Correa and Borges [25]). 

3.2.3. Projection and Semidiscrete Formulation 
Once the average saturations in the cells of the dual mesh are computed, we 
proceed by projecting them over the volume ,i jC  of the original mesh at time 
t , i.e., 

{ },
,

1 2
2 l r d u c

n
i j l C r C d C u C c C C C

i j

S C S C S C S C S C S I
C β θ

= + + + + −


 (27) 

where the term 

, , 2
C C

C C
l r d u

S S
I C C β θ

β θ β θ
β θ= =

+
= ∑ ∑




                (28) 

corrects the overlap that occurs in the regions of intersection of the dual cells 
Cβ  and Cθ . It can be seen that cx xβ β−  and cy yβ β−  are ( )O t∆  which 
implies ( )2

C CI O t
β θ

= ∆


. Knowing this, using the expressions for the average 
saturations in the dual mesh (Equations (22)-(26)) and remembering that Cβ  
and Cθ  represent the volumes of the dual cell, we obtain as a result 

{ } { } ( )2
,

,

.
l r d u c

cn
i j l C r C d C u C C

i j

Ct tS a S a S a S a S S O t
x y C

∆ ∆
= + + + + + ∆
∆ ∆

  (29) 

The term of the projection on the central cell can be written from Equation 
(26) as 

( )( ) ( )( )

( ) ( ) ( ) ( )
( )

, , ,
, ,

2

1
2

.

c

nnc cn
C i j l r x d u yi j i j

i j i j

n n n n
rc lc uc dc

c c

C C
S S t a a S a a S

C C

f S f S g S g S
O t

x yφ φ

  = + ∆ − + −   
− − − − + ∆

∆ ∆ 

  (30) 

Additionally: 
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( ) ( ) ( )2
,

,

1c n
i j l r d u

i j

C t tS a a a a O t
x yC

 ∆ ∆
− + − + + ∆ 

∆ ∆ 
          (31) 

enabling us to write, by replacing (31) in (30) and using the definition of 
saturations on the faces, 

( ) ( ) ( )

( ) ( ) ( ) ( )

,
,

2

1

1 .

c

c n n n
C i j l l r r rc lc

ci j

n n
d d u u uc dc

c

C tS S a S a S f S f S
xC

t a S a S g S g S O t
y

φ

φ

+ −

+ −

 ∆  = − + + −  ∆  
 ∆  − + + − + ∆  ∆  

  (32) 

Substituting into Equation (29) we have: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, , 1 1

1 1 .

l r

d u

n
i j i j n n

l C l r C r rc lc
c

n n
d C d u C u uc dc

c

S S
a S S a S S f S f S

t x

a S S a S S g S g S O t
y

φ

φ

+ −

+ −

−   = − + − − −  ∆ ∆  
  + − + − − − + ∆  ∆  

(33) 

This is the basic equation to obtain the semidiscrete formulation. To this end, 
we take the limit when 0t∆ → , which gives: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

0

0 0

0 0

lim

1 1lim lim

1 1lim lim .

l r

d u

n
i j i j

t

n n
l C l r C r rc lct t

c

n n
d C d u C u uc dct t

c

S S
t

a S S a S S f S f S
x x

a S S a S S g S g S
y y

φ

φ

∆ →

+ −

∆ → ∆ →

+ −

∆ → ∆ →

−

∆

   = − + − − −  ∆ ∆

   − − + − − −  ∆ ∆

  (34) 

Noting that, 

ln0 0

0 0

0 0

0 0

lim , lim

lim , lim

lim , lim

lim , lim

n n
lc l lt t
n n
rc r rn rt t
n n
dc d dn dt t
n n
uc u un ut t

S S S S

S S S S

S S S S

S S S S

+ −

∆ → ∆ →
− +

∆ → ∆ →
+ −

∆ → ∆ →
− +

∆ → ∆ →

 = =


= =


= =
 = =

 

, , ,

0

d
lim .

d

n
i j i j i j

t

S S S
t t∆ →

−
=

∆
                      (35) 

Now substituting Equations (22)-(25) into expression (35) and making the 
necessary simplifications we arrive at the semidiscrete formulation: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,d 1 1
d

1 1

1 1

1 1

i j l l r r
l l r r l l

c l c r c l

r r r l
c r c

d d u u
d d u u d d

c d c u c d

u u u d
c u c

S a aS S S S f S f S
t x

f S f S f S f S

a a
S S S S g S g S

y

g S g S g S g S

φ φ
φ φ φ φ φ φ

φ φ φ
φ φ

φ φ φ φ φ φ

φ φ φ

− + + − + −

+ − − +

− + + − + −

+ − − +

  = − + − − −  ∆ + + +
   − − − −    + 

  + − + − − −  ∆ + + +

 − − − − +
.
  

(36) 
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According to Kurganov and Tadmor [2], this formulation can be written in 
terms of numerical fluxes by means of the expression: 

,d
d

i j r l u dS H H H H
t x y

− −
= +

∆ ∆
               (37) 

where the numerical fluxes are given by 

( ) ( ) ( )1 , para ,c

c c c

S Sa
H S S r uβ β ββ β

β β β
β β

φ φ φ φφ
β

φ φ φ φ φ

+ −
+ −

 +
 = − − =

+ +  
   (38) 

( ) ( ) ( )1 , para ,c

c c c

S Sa
H S S l dβ β ββ β

β β β
β β

φ φ φ φφ
β

φ φ φ φ φ

+ −
+ −

 +
 = − − =

+ +  
   (39) 

with fϕ =  for ,r lβ =  and gϕ =  for ,u dβ = , (see Equation (6)). We use 
the fourth order Runge-Kutta method to solve the system of ordinary differential 
Equations (37). 

3.3. Corrector Problem 

We describe the formulation of the corrector step used for both the saturation 
and concentration equations. For brevity, the procedure will be presented only 
for the saturation. 

Knowing the solution obtained in the predictor step ( )* 1nS +  and the field 
( ), tφ x , find ( )**

1,c nS t +x  for each time subinterval ( )1,c n nt t t +∆ = ,  
0, , 1n N= −  with 0 0t = , nt T= , such that: 

**
**c
c

S S
t t

φ
φ
∂ ∂

= −
∂ ∂

                       (40) 

with the initial condition 

( ) ( )* 1** , .n
c n cS x t S +=                        (41) 

Integrating Equation (40) over the interval ct∆  for each point x∈Ω , we 
obtain: 

* 1
** 1

1 .
n n

n
n

SS φ
φ

+
+

+=                          (42) 

3.4. Dissolution 

According to Obi and Blunt [1], based in [27], in order to compute the number 
of moles of CO2 in the liquid phase c

dT  and update the values of saturation cS  
and concentration C at time 1nt + , we can use the algorithm 

( ) ( )1 1 1 1 11
nc n n n n

d c c cT S C m Sφ
+ + + + + = − +                 (43) 

where 

( ) ( )

1

1 11 1
1

if

n
d

n nc n c n
d d d dn

c
c d

C K

T K T K
S

m K

φ φ

+

+ ++ +
+

 =
≥ →  −

=
−
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( ) ( ) 11 11 1

1
if

0

nn c nnc n d
d d n

c

C TT K
S

φ
φ

++ ++ +

+

 =< → 
=

 

The dissolution constant is defined as 

2

2

CO

CO

.
1 1

L
w

d
L w

c

x m
K

mx
m

=
 

− − 
 

                      (44) 

where wm  is the molar density of water without CO2 dissolved, cm  is the 
molar density of CO2 without water dissolved and 

2CO
Lx  is the mole fraction of 

CO2 which can dissolve in the aqueous phase. 

3.5. Reaction 

In order to solve Equation (3), we compute the source term of reaction ( rT ) and 
update the porosity field φ. Moreover, an empirical law will be used to update 
the permeability field K. 

In agreement with [1] we compute the total number of moles of CO2 per unit 
volume in both phases ( ttm ) using the following algorithm 

( )1 .n n n n
tt c cm S C m Sφ  = − +                     (45) 

The total number of moles of CO2 per unit volume which effectively reacts 
with the rock is defined as 

.
1

w
r

w

c

mT m
m

=
−

                            (46) 

To calculate the variation of porosity, we use the following procedure 

( ) ( )

( )

1

1

exp if 1 exp

if 1 exp

n n n
r tt r r

n n ntt
tt r r

r

K t m T K t

m m T K t
T

φ φ φ

φ φ φ

+

+

 = − ∆ ≥ − − ∆      


= − < − − ∆   


 

Finally, the permeability is updated from the empirical formulation (Wellman 
et al. [14]): 

3.41
1 .

n
n n

nK K φ
φ

+
+  
=  

 
                      (47) 

4. Results and Discussion 

For a given velocity field ( )0, 0.18 m yearDt t =v , an injection of CO2 was 
performed for a period of 20 years ( ( )0, 0.8cS t = ) and the saturation profile was 
recorded over a period of 180 years after the injection ceased. The following 
physical parameters were considered: temperature of 353 K; water density of 
1050 kg⋅m−3; CO2 density of 710 kg⋅m−3; water viscosity of 5 × 10−4 Pa⋅s; CO2 
viscosity of 6 × 10−5 Pa⋅s; CO2 molar density ( cm ) of 16140 moles⋅m−3; effective 
molar density of the rock ( rT ) of 26.5 moles⋅m−3; porosity of 0.15φ = ; absolute 
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permeability of 100 mDK = ; water residual saturation of 0.2rwS = ; CO2 
residual saturation of 0.2rcS = . We use a reservoir of dimensions  
2000 m 1500 m 200 m× ×  and a mesh of 400 elements. We adopt the point of 
injection of 750 m from the origin and pressure difference between this point 
and the right edge is assumed to be 29 MPa. During 20 years, the CO2 was 
injected in a homogeneous porous media and the saturation profiles were 
recorded after the injection stopped for three cases: 1) disregarding dissolution 
and reaction, the flow is due to advection and dispersion only, non reactive rock, 
such as quartz, is considered (see Figure 4), 2) allowing dissolution but no 
reaction (see Figure 5), and 3) both effects considered (see Figure 6). 

The Buckley-Leverett profile (see [29]) coincides with the CO2 saturation 
 

 
Figure 4. Saturation profile during 20 years of injection, and 180 years after injection has 
stopped desconsidering dissolution and precipitation. 
 

 
Figure 5. Saturation profile during 20 years of injection, and 180 years after injection has 
stopped considering dissolution. 
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Figure 6. Saturation profile during 20 years of injection, and 180 years after injection has 
stopped considering dissolution and precipitation. 
 
recorded during injection, which shows the quality of the algorithm compared to 
the analytical solution (see Figure 7). Moreover, after the end of the injection3, 
the saturation profile was recorded for 180 years and the same physical trends 
presented in [1] were observed. First, comparing the effect of the dissolution 
with the inert case, in considering dissolution, the saturation profile length was 
slightly shorter. The reason for it is due to the fact that the CO2 was transferred 
to the aqueous phase (see Figure 4 and Figure 5). Lastly, when the dissolution 
and reaction were considered simultaneously, an expressive impact on the 
saturation profile could be noticed4. Such effect was due to the fact that the 
conditions of this simulation provided sufficient time for a meaningful amount 
of precipitation (see Figure 6). 

5. Conclusions 

In this paper, we presented a locally conservative numerical method for the 
simulation of geological storage of CO2. The innovative aspects of the new 
methodology are: 

• The time scale of each physical phenomenon was properly treated using the 
operator splitting technique; 

• An extension of the KT method was develop for a system of equations with 
source terms and applied to solve numerically the carbon sequestration model 
adopted; 

• The advantages of the KT method were inherited by the extended version, 
i.e., this method avoids the difficulties that arise when adopting small time steps 
enforced by CFL stability restrictions. 

In addition, the impact of the dissolution and precipitation of CO2 during the  

 

 

320 years. 
4During 180 years after the injection has stopped. 
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Figure 7. Comparison in between the analytical solution of Buckley-Leverett (see [29]) 
and numerical solution obtained by the proposed algorithm. 
 
injection in a homogeneous porous medium was analyzed. The results obtained 
are in agreement with the analytical solution for the injection phase and with the 
saturation profiles available in the literature for the phase after the injection 
ceased. 
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