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Abstract 
Combined effects of centrifugal and coriolis instability of the flow through a rotating curved duct 
with rectangular cross section have been studied numerically by using a spectral method, and 
covering a wide range of the Taylor number 0 2500Tr≤ ≤  for a constant Dean number 2000Dn = . 
The rotation of the duct about the center of curvature is imposed in the positive direction, and the 
effects of rotation (Coriolis force) on the flow characteristics are investigated. As a result, multiple 
branches of asymmetric steady solutions with two-, three- and multi-vortex solutions are obtained. 
To investigate the non-linear behavior of the unsteady solutions, time evolution calculations as 
well as power spectrum of the unsteady solutions are performed, and it is found that the unsteady 
flow undergoes through various flow instabilities in the scenario “chaotic → multi-periodic → pe-
riodic → steady-state”, if Tr is increased in the positive direction. The present results show the 
characteristics of both the secondary flow and axial flow distribution in the flow. 

 
Keywords 
Rotating Curved Duct; Dean Number; Taylor Number;  
Secondary Flow; Periodic Solution 

 
 

http://www.scirp.org/journal/ojfd
http://dx.doi.org/10.4236/ojfd.2014.41001
http://dx.doi.org/10.4236/ojfd.2014.41001
http://www.scirp.org
mailto:rnmondal71@yahoo.com
http://creativecommons.org/licenses/by/4.0/


R. N. Mondal et al. 
 

 
2 

1. Introduction 
Recently, great attention has been paid for the study of flows and heat transfer through rotating curved ducts and 
channels because of its practical application in chemical, mechanical, bio-mechanical and biological engineering. 
A quantitative analogy between flows in stationary curved pipes and orthogonally rotating straight pipes has 
been reported by Ishigaki [1] [2]. Taking this analogy as a basis, this study describes the characteristics of more 
general and complicated flow in rotating curved ducts. Such rotating flow passages are used in cooling systems 
in rotating machinery such as in gas turbines, turbo-machinery, electric generators and electric motors. The 
readers can refer to Berger et al. [3] and Nandakumar and Masliyah [4] for some outstanding reviews on curved 
duct flows. 

One of the interesting phenomena of the flow through a curved duct is the bifurcation of the flow because 
generally there exist many steady solutions due to channel curvature. An early complete bifurcation study of 
two-dimensional (2-D) flow through a curved duct with square cross section was performed by Winters [5]. 
However, an extensive treatment of the flow through a curved square duct was reported by Mondal et al. [6]. He 
found a close relationship between the unsteady solutions and the bifurcation diagram of steady solutions. Ishi-
gaki [2] examined the flow structure and friction factor numerically for both the counter-rotating and co-rotating 
curved circular pipe with a small curvature. Selmi et al. [7] examined the combined effects of system rotation 
and curvature on the bifurcation structure of two-dimensional flows in a rotating curved square duct. Selmi and 
Nandakumer [8] performed studies on the flow in rotating curved rectangular ducts. Yamamoto et al. [9] em-
ployed spectral method to examine the flow structure and the flow rate ratio in a rotating curved square duct 
flow and found six-cell phenomenon of the secondary flow. Recently, Mondal et al. [10] performed a compre-
hensive numerical study on the bifurcation structure and the stability of solutions for laminar forced convection 
in a rotating curved duct of square cross section, and revealed some new features on fluid flow. However, the 
complete flow structures under the combined action of coriolis and centrifugal instability are still unrevealed for 
the rotating curved rectangular duct flow at high rotation. It is an attempt of the present study. 

It is well known that, fluid flowing in a rotating curved duct is subjected to two forces: the Coriolis force, 
caused by the rotation of the duct, and centrifugal force caused by the curvature of the duct. These two forces 
affect each other, as a result complex behavior of the secondary flow and the axial flow can be obtained (Wang 
and Cheng [11]). For isothermal flows of a constant property fluid, however, the Coriolis force tends to produce 
vorticity while centrifugal force is purely hydrostatic (Zhang et al. [12]). When a temperature induced variation 
of fluid density occurs for non-isothermal flows, both Coriolis and centrifugal type buoyancy forces can contri-
bute to the generation of vorticity (Mondal et. al., [13]). These two effects of rotation either enhance or counte-
ract each other in a non-linear manner depending on the direction of wall heat flux and the flow domain. There-
fore, the effect of rotation of the system is more subtle and complicated and yields new; richer features of flow 
and heat transfer in general, bifurcation and stability in particular, for non-isothermal flows. Mondal et al. [13]] 
performed numerical prediction of the non-isothermal flows through a rotating curved square duct and revealed 
some of such new features. Very recently, Mondal et al. [14] investigated the combined effects of the Coriolis 
force and the centrifugal force on the flows in a rotating curved square duct numerically. The secondary flow 
characteristics in a curved square duct were investigated experimentally by using visualization method by Ya-
mamoto et al. [15]. Three-dimensional incompressible viscous flow and heat transfer in a rotating U-shaped 
square duct were studied numerically by Nobari et al. [16]. However, there is no known study on bifurcation and 
unsteady flow characteristics in a rotating curved rectangular duct with large rotational speed. The present paper 
is, therefore, an attempt to fill up this gap. 

Time dependent analysis of fully developed curved duct flows was first initiated by Yanase and Nishiyama 
[17] for a rectangular cross section. In that study, they investigated unsteady solutions for the case where dual 
solutions exist. However, time-dependent behavior of the flow in a curved rectangular duct over a wide range of 
aspect ratios was investigated, in detail, by Yanase et al. [18] numerically. They observed that periodic oscilla- 
tions are available with symmetry condition while aperiodic time evolutions without symmetric condition. Wang 
and Yang [19] [20] performed numerical as well as experimental investigation on fully developed periodic os- 
cillation in a curved square duct. Flow visualization in the range of Dean numbers from 50 to 500 was carried 
out in their experiment. They showed, both experimentally and numerically, that the temporal oscillation takes 
place between symmetric/asymmetric 2-cell and 4-cell flows where there are no stable steady flows. Applying 
spectral method, Yanase et al. [21] performed comprehensive numerical study of the time-dependent solutions 
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for the non-isothermal flows through a curved rectangular duct, and studied the effects of secondary flows on 
convective heat transfer. In order to study the time-dependent behavior of the unsteady solutions, recently, 
Mondal et al. [22] performed numerical prediction of the unsteady solutions through curved square duct for iso- 
thermal flow. They showed that periodic solutions turn into chaotic solution through a multi-periodic solution, if 
the Dean number is increased no matter what the curvature is. However, transient behavior of the unsteady solu- 
tions, such as periodic, multi-periodic or chaotic solutions, is yet unresolved for the flow through a rotating 
curved rectangular duct at large pressure gradient with large rotational speed. This motivated the present study 
to investigate the non-linear behavior of the unsteady solutions by time-evolution calculation. 

In the present study, a comprehensive numerical result is presented for fully developed bifurcation structure 
of two-dimensional (2D) viscous incompressible fluid flow through a rotating curved rectangular duct. Flow 
characteristics are investigated over a wide range of Taylor number 0 2500Tr≤ ≤  for the Dean number Dn = 
2000. Studying the effects of rotation on the flow characteristics, caused by the combined action of centrifugal 
force and Coriolis force, is an important objective of the present study. 

2. Governing Equations 
Consider that the flow is viscous and incompressible which is streaming through a rotating curved duct with 
rectangular cross section. Let 2h and 2l be the height and the width of the cross section. Figure 1 shows the 
coordinate system, where C is the center of the duct crosssection and L is the radius of curvature of the duct. The 
x′  and y′  axes are taken to be in the horizontal and vertical directions respectively, and z′  is the coordinate 
along the center-line of the duct, i.e., the axial direction. The system rotates at a constant angular velocity TΩ  
around the y′  axis. It is assumed that the flow is uniform in the axial direction, and that it is driven by a 

constant pressure gradient PG G
z
′∂ = − ′∂ 

 along the center-line of the duct, i.e. the main flow direction. Then  

the continuity equation and the Navier-Stokes equation, in terms of dimensional variables, are expressed as 
Continuity equation 

0u v u
r y r
′ ′∂ ∂
+ + =
′ ′ ′∂ ∂

                                    (1) 

Momentum equations 
2 2 2

2 2 2

1 12 ,T
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t r y r r r rr y r

υ
ρ

 ′ ′ ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′+ + − − Ω = − + + + − ′ ′ ′ ′ ′ ′ ′′ ′ ′∂ ∂ ∂ ∂ ∂∂ ∂ 
          (2) 
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                   (3) 

2 2
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        (4) 

where r L x′ ′= + , and ,u v′ ′  and w′  are the dimensional velocity components in the ,x y′ ′  and z′  direc- 
tions respectively. In Equations (1) to (4) the variables with prime denote the dimensional quantities. To non- 
dimensionalize the equations, we use the non-dimensional variables defined as 

0 0

2 1, , , ,
o

u v xu v w w x
U U U l

δ
δ

′ ′ ′ ′= = = = − 
 

 0
2
0

, , , , ,
Uy z l Py z t t P

l l l L U
δ

ρ
′ ′ ′

′= = = = =  

where ,u v  and w  are the non-dimensional velocity components in the ,x y  and z  directions, respectively; 
t is the non-dimensional time, P is the non-dimensional pressure,δ  is the non-dimensional curvature defined as  

.l
L

δ =  The sectional stream function ψ  is introduced as 

1 1, .
1 1

u v
x y x x

ψ ψ
δ δ

∂ ∂
= = −

+ ∂ + ∂
                          (5) 
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Then, the basic equations for w  and ψ  are expressed in terms of non-dimensional variables as 

( ) ( )
( ) ( ) ( )

2,11 1 ,2, 1 1
ww w wx Dn x w w Tr

t a x y x a x y x y
ψ δ δ ψ ψδ δ δ δ

δ δ
∂∂ ∂ ∂ ∂

+ + − + = + ∆ − + −
∂ ∂ + + ∂ ∂ ∂

       (6) 

( )
( )
( ) ( )

( )

2 2
2

2 22 2

2 2
2

2 22 2

,1 32
1 1 , 11
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1 1 21
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w ww Tr
x x x x a y yxx

ψ ψδ ψ δ ψ δ ψ ψ ψ ψψ
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δ ψ δ ψ δδ ψ ψ
δ δδ

 ∂ ∆  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∆ − = − + ∆ − + −   + ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂∂  +   

 ∂ ∂ ∂ ∂ ∂
+ × − − ∆ + + ∆ + + ∂ + ∂ ∂ ∂∂+  

   (7) 

where, 

( )
( )

2 2

2 2 2 2

,1 , .
,

f g f g f g
x y x y y xx a y

∂∂ ∂ ∂ ∂ ∂ ∂
∆ ≡ + ≡ −

∂ ∂ ∂ ∂ ∂∂ ∂
                      (8) 

The non-dimensional parameters Dn , the Dean number and Tr , the Taylor number which appear in Equa- 
tions (6) and (7) are defined as: 

33 2 22 , T lGl lDn Tr
L

δ
µυ υδ

Ω
= =                           (9) 

In the present study, Tr  varies while Dn, δ , a  and Pr  are fixed as Dn = 2000, 0.1δ = , 1.5a =  and 
Pr 7.0=  (water). The rigid boundary conditions for w  and ψ  are used as 

( ) ( ) ( ) ( ) ( ) ( )1, , 1 1, , 1 1, , 1 0w y w x y x y x
x y
ψ ψψ ψ ∂ ∂

± = ± = ± = ± = ± = ± =
∂ ∂

        (10) 

3. Numerical Calculations 
In order to solve Equations (6) to (7) numerically, the spectral method is used (Gottlieb and Orazag [23]). By 
this method the variables are expanded by using the expansion functions ( )n xφ  and ( )n xψ  as 

( ) ( ) ( )

( ) ( ) ( )

2

22

1 ,
,

1
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x x C x

x x C x

φ

ψ

= − 


= − 

                               (11) 

where ( ) ( )( )1cos cosnC x n x−=  is the thn  order Chebyshev polynomial. ( ), ,w x y t  and ( ), ,x y tψ  are ex- 
panded in terms of the expansion functions ( )n xφ  and ( )n xψ  as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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= 

=


∑∑

∑∑
                       (12) 
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First, steady solutions are obtained by the Newton-Rapshon iteration method. Then, in order to calculate the 
unsteady solutions, the Crank-Nicolson and Adams-Bash-forth methods together with the function expansion (12) 
and the collocation methods are applied. 

4. Flux through the Duct 
The dimensional total flux Q′  through the duct in the rotating coordinate system is calculated by: 

d d ,
h l

h l

Q w x y vdQ
− −

′ ′ ′ ′= =∫ ∫                              (13) 

where 
1 1

1 1

d dQ w x y
− −

= ∫ ∫                                    (14) 

is the dimensionless total flux. The mean axial velocity, w′  is expressed as 
4
Qvw

l
′ = . In the present study, Q  

is used to denote the steady solution branches and to pursue time evolution of the unsteady solutions. 

5. Results and Discussion 
5.1. Steady Solutions and Flow Patterns 
We obtained four branches of symmetric/asymmetric steady solutions for the Dean number 2000Dn =  over 
the Taylor number 0 2500Tr≤ ≤ , as shown in Figure 2. The four steady solution branches are named the first 
steady solution branch (first branch, thick solid line), the second steady solution branch (second branch, thin 
solid line), the third steady solution branch (third branch, thick dotted line) and the fourth steady solution 
branch (fourth branch, long dash line), respectively. The steady solution branches are obtained by the path con-
tinuation technique (Keller [24]) with various initial guesses as discussed by Mondal [25]. In this regard, it 
should be noted that Mondal et al. [13] also obtained four braches of steady solutions for the non-isothermal 
flow through a rotating curved square duct. 

Then, we obtained secondary vortices on various branches of steady solutions, and it is found that at the same 
value of Tr sometimes we obtain two-vortex solution, while sometimes two- and multi-vortex solutions. It is 
found that the first and fourth steady solution branche consists of symmetric solutions while the second and third 
branches asymmetric solutions. The first branch consists of symmetric two-, four-, six-, eight- and ten-vortex 
solutions, the second branch is composed of asymmetric two- and four-vortex solutions, the third branch is cha-
racterized by asymmetric two- and four-vortex solutions, while the fourth branch is comprised with asymmetric 
two- to ten-vortex solutions. These vortices are generated due to the combined action of the centrifugal force 
and Coriolis force. The steady solution branches as well as the formation of secondary vortices on various 
branches are not shown here for brevity; however, we show some contours of secondary flow patterns and axial 
flow distribution at some specific values of Tr. To observe the pattern variation and development of the second-
ary vortices, also called the Dean vortices, contours of secondary flow patterns are shown in Figure 3 at various 
values of Tr for Dn = 2000. In the figures of the secondary flow, solid lines ( )0ψ ≥  show that the secondary 
flow is in the counter clockwise direction while the dotted lines ( )0ψ <  in the clockwise direction. As seen in 
Figure 3, the secondary flow is two-, four-, six-, eight- and ten-vortex solutions, which are obtained on different 
branches of steady solutions. Figure 4 shows typical contours of secondary flow patterns and axial flow distri-
bution on the steady solution branch at 600,Tr =  where it is found that the secondary flow consists of symme-
tric and asymmetric two- to ten-vortex solutions at 600Tr = . 

5.2. Unsteady Solutions 
In order to investigate the non-linear behavior of the unsteady solutions, time-evolution calculations of the un- 
steady solutions are performed for 2000Dn =  over the Taylor number 0 2500Tr≤ ≤ . Time evolution of Q  
for 2030Tr ≥  shows that the value of Q  quickly approaches steady-state solution no matter what the initial 
condition we use. Then, in order to see the unsteady flow characteristics for Tr < 2030 and Tr > 2030, time  
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Figure 2. Solution structure of the steady solutions for 0 ≤ 
Tr ≤ 2500 at Dn = 2000.                             
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Figure 3. Streamlines of secondary flow (top) and axial flow 
(bottom) on the steady solution branches at various values of Tr.   

 
evolutions of Q  are then performed for 0Tr = , 500, 1000, 1500, 1870, 1880, 1900, 1950 and 2050. Figure 5(a) 
shows time-evolution of Q  for 0Tr =  at Dn = 2000, where it is seen that the flow oscillates irregularly, i.e. the 
flow is chaotic. This chaotic oscillation is well justified by drawing the power spectrum as shown in Figure 5(b), 
where it is seen that lots of continuous line spectra with different frequencies are available, which suggests that 
the unsteady flow at 0Tr =  is chaotic. Typical contours of secondary flow patterns and axial flow distribution 
at 0Tr =  are shown in Figure 5(c), where it is seen that the flow oscillates between asymmetric six- to 
eight-vortex solutions. Time-evolution of Q for 500Tr =  is shown in Figure 6(a), where it is seen that the  
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Figure 5. (a) Time evolution of Q for Dn = 2000 and Tr = 0; (b) Power spectrum for Tr = 0; (c) Streamlines of 
secondary flow (top) and axial flow for Tr = 0.                                                        

 
flow is also chaotic. Power spectrum of the time change of Q  for 500Tr =  is shown in Figure 6(b), which 
justifies the chaotic behavior of the unsteady solution at Tr = 500. Typical contours of secondary flow patterns 
and axial flow distribution for 500Tr =  are shown in Figure 6(c), where it is seen that the flow oscillates be-
tween asymmetric six- to eight-vortex solutions. 

Then we performed time-evolutions of Q  for 1000Tr =  and 2000. The results are shown in Figures 7(a) 
and 8(a) respectively. It is found that the unsteady flow further oscillates irregularly, i.e. chaotic. In order to see 
the mode of the chaotic oscillations, we then performed power spectra of the time change of Q  as shown in  
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Figure 6. (a) Time evolution of Q for Dn = 2000 and Tr = 500; (b) Power spectrum for Tr = 500; (c) 
Streamlines of secondary flow (top) and axial flow (bottom) for Tr = 500.                              
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Figure 7. (a) Time evolution of Q for Dn = 2000 and Tr = 1000; (b) Power spectrum of Q for Tr = 1000; (c) 
Streamlines of secondary flow (top) and axial flow (bottom) for Tr = 1000.                             



R. N. Mondal et al. 
 

 
9 

 

2 6 

Dn = 2000 
Tr = 1500 

Q 

4 

0.265 

0.27 

0.275 

0.28 

3 5     Time (t)    

 

0 
Frequency 

Dn = 2000 
Tr = 1500 

4 

0.0015 

0 
8 

0.0005 

A
m

pl
itu

de
 

0.001 

   
 

(a)                                                   (b) 

 

 
ψ 
 
 
 
 
 
ω 

t    5.5        5.6        5.7        5.8        5.9  
(c) 

Figure 8. (a) Time evolution of Q for Dn = 2000 and Tr = 1500; (b) Power spectrum for Tr = 1500; (c) 
Streamlines of secondary flow (top) and axial flow (bottom) for Tr = 1500.                             

 
Figures 7(b) and 8(b) for 1000Tr =  and Tr = 1500 respectively, where lots of continuous line spectra with 
different frequencies are seen, which suggests that the unsteady flow at 1000Tr =  and Tr = 1500 are chaotic. 
Typical contours of secondary flow patterns and axial flow distribution for 1000Tr =  and Tr = 1500 are 
shown in Figures 7(c) and 8(c) respectively, where it is seen that the flow oscillates between asymmetric four- 
to ten-vortex solutions. Figure 9(a) shows time-evolution of Q  for 1870,Tr =  where it is seen that the flow 
is chaotic. This chaotic solution is well justified by the power spectrum of the time change of Q  as shown in 
Figure 9(b), where it is seen that lots of continuous line spectra with different frequencies are available, which 
suggests that the flow is chaotic. Secondary flow patterns and axial flow distribution for 1870Tr =  are shown 
in Figure 9(c), where it is seen that the flow oscillates between asymmetric six- and eight-vortex solutions. 

Then we performed time evolution of Q for 1880Tr =  as shown in Figure 10(a). As seen in Figure 10(a), 
the time-dependent solution for 1880Tr =  is multi-periodic. Power spectrum of the time change of Q  for Tr 
= 1880 is also shown in Figure 10(b), in which not only the line spectrum of the fundamental frequency and its 
harmonics but also other line spectrum and their harmonics are seen, which suggests that the flow is mul-
ti-periodic. Secondary flow patterns and axial flow distributions are shown in Figure 10(c), for one period of 
oscillation at 5.7 ≤ t ≤ 5.91 where it is seen that the unsteady flow at 1880Tr =  oscillates between asymmetric 
four- and six-vortex solutions. 

Next, time evolution of Q for 1900Tr =  is shown in Figure 11(a), where it is seen that the flow oscillates 
periodically. It is justified by the power spectrum as shown in Figure 11(b), where the fundamental frequency 
and its harmonics as well as line spectra with small frequency is seen, which indicates that the oscillation pre- 
sented in Figure 11(b) is multi-periodic, but not periodic. It is seen that the fundamental mode is higher than 
that of the other modes, which clearly suggests that the flow at Tr = 1900 is perfectly multi-periodic. Contours 
of secondary flow patterns and axial flow distributions are shown in Figure 11(c). As seen in Figure 11(c), the 
unsteady solution at 1900Tr =  oscillates in the asymmetric six-vortex solutions. Then, we investigated 
time-dependent solution of Q  for 1950Tr =  at Dn = 2000 as shown in Figure 12(a). It is found that the flow  
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Figure 9. (a) Time evolution of Q for Dn = 2000 and Tr = 1870; (b) Power spectrum for Tr = 1870; (c) 
Streamlines of secondary flow (top) and axial flow (bottom) for Tr = 1870.                             
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Figure 10. (a) Time evolution of Q for Tr = 1880 at Dn = 2000; (b) Power spectrum for Tr = 1880; (c) 
Streamlines of secondary flow (top) and axial flow (bottom) for Tr = 1880.                             
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Figure 11. (a) Time evolution of Q for Tr = 1900 and Dn = 2000; (b) Power spectrum for Tr = 1900; (c) 
Streamlines of secondary flow (top) and axial flow (bottom) for Tr = 1900.                            

 

 

0.29992 

1.8 2 2.2 2.4 2.6 
Time (t) 

Dn = 2000 
Tr = 1950 

Q 

0.29996 

0.29988 

0.29984 

0.2998 

        

 
Dn = 2000 
Tr = 1950 

5 

0 

0 

1E-05 

15 

2E-05 

3E-05 

4E-05 

5E-05 

6E-05 

10 20 

A
m

pl
itu

de
 

Frequency (Hz)  
(a)                                                 (b) 

  
 
ψ 
 
 
 
 
 
 
ω 

t     2.0      2.001     2.002      2.003     2.004  
(c) 

Figure 12. (a) Time evolution of Q for Tr = 1950 at Dn = 2000; (b) Power spectrum for Tr = 1950; (c) 
Streamlines of secondary flow (top) and axial flow (bottom) for Tr = 1950.                             
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Figure 13. (a) Time evolution of Q for Dn = 2000 and Tr = 2050; (b) Streamlines of secondary flow (top) and axial flow 
(bottom) for Tr = 2050.                                                                                   
 
oscillates periodically, which is well justified by the power spectrum of the time evolution of Q  as shown in 
Figure 12(b), where only the line spectrum of the fundamental frequency and its harmonics are seen, which 
suggests that the flow is purely periodic at 1950Tr = .  

Secondary flow patterns and axial flow distribution for 1950Tr =  are then shown in Figure 12(c), where it 
is seen that the flow at 1950Tr =  oscillates in the asymmetric six-vortex solutions. Figure 13(a) shows time 
evolution of Q  for 2050Tr =  at Dn = 2000. It is found that the flow does not oscillate but goes steady-state, 
so that the unsteady solution at 2050Tr =  is a steady-state solution. Typical contours of secondary flow pat- 
terns and axial flow distribution for 2050Tr =  are also shown in Figure 13(b), where it is seen that the un- 
steady flow at 2050Tr =  is an asymmetric six-vortex solution. It is noticed that axial flow is shifted near the 
outer wall of the duct as the rotational speed increases. 

6. Conclusions 
A numerical study on the fully developed two-dimensional flow of viscous incompressible fluid through a ro- 
tating curved rectangular duct of aspect ratio 1.5 and curvature 0.1 has been performed by using the spectral 
method, and covering a wide range of the Taylor number 0 2500Tr≤ ≤  for the Dean number Dn = 2000. We 
investigated flow characteristics for positive rotation of the duct, and obtained secondary flow patterns and axial 
flow distribution for several values of Tr . 

We obtained four branches of symmetric and asymmetric steady solutions with two- and multi-vortex solu- 
tions on various branches. The first branch consists of symmetric two-, four- and multi-vortex solutions. The 
second branch is composed of asymmetric two-, three- and four-vortex solutions; the third steady solution 
branch is composed of asymmetric two-, three- and four-vortex solutions, while the forth steady solution branch 
symmetric six-, eight- and ten-vortex solutions. Then, In order to study the non-linear behavior of the unsteady 
solutions, time-evolution calculations as well as power spectrum of the unsteady solutions are performed, and it 
is found that the chaotic flow turns into steady-state flow through periodic flow in the scenario “chaotic → 
multi-periodic → periodic → steady-state”, if Tr is increased from zero. It is found that at no ration, the flow is 
chaotic but as the rotational speed increases, the chaotic flow turns into steady-state flow through multi-periodic 
and periodic oscillations. The reason is that combined effect of centrifugal and Coriolis force counteract each 
other in a nonlinear manner which results in chaotic flow to turn into steady-state flow. Performing the power 
spectrum of the solutions was found to be fruitful for the investigation of unsteady flow behavior more accu-
rately. Maximum axial flow was found to be shifted near the outer wall of the duct as the rotational speed in-
creases. 
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